CN112375781B - Application of pC1300-MAS-Cas9 gene editing system in 84K poplar gene editing - Google Patents

Application of pC1300-MAS-Cas9 gene editing system in 84K poplar gene editing Download PDF

Info

Publication number
CN112375781B
CN112375781B CN202011235857.3A CN202011235857A CN112375781B CN 112375781 B CN112375781 B CN 112375781B CN 202011235857 A CN202011235857 A CN 202011235857A CN 112375781 B CN112375781 B CN 112375781B
Authority
CN
China
Prior art keywords
cas9
sequence
plants
grna
pagpds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011235857.3A
Other languages
Chinese (zh)
Other versions
CN112375781A (en
Inventor
杜娟
王瑶
安轶
卢孟柱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN202011235857.3A priority Critical patent/CN112375781B/en
Publication of CN112375781A publication Critical patent/CN112375781A/en
Application granted granted Critical
Publication of CN112375781B publication Critical patent/CN112375781B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8218Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/66General methods for inserting a gene into a vector to form a recombinant vector using cleavage and ligation; Use of non-functional linkers or adaptors, e.g. linkers containing the sequence for a restriction endonuclease
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8222Developmentally regulated expression systems, tissue, organ specific, temporal or spatial regulation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Virology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The invention relates to an application of a pC1300-MAS-Cas9 gene editing system in 84K poplar gene editing, belonging to the technical field of plant genetic engineering. Including the selection of PagPDS gene target sites; designing gRNA; construction of a CRISPR/Cas9 gene knockout vector; genetic transformation of poplar; obtaining and counting transgenic plants; the CRISPR system provides directed editing of poplar genes. The pC1300-MAS-Cas9 gene editing system is simple, quick and efficient in application in 84K poplar gene editing, and a multi-gene editing system is constructed by applying homotail enzyme preparation, and can be used for editing an unlimited number of target genes simultaneously in theory by taking pC1300-Cas9 and SK-gRNA as skeleton carriers. The invention also optimizes the promoter, drives Cas9 with MAS promoter, and studies its editing efficiency in 84K poplar.

Description

Application of pC1300-MAS-Cas9 gene editing system in 84K poplar gene editing
Technical Field
The invention relates to application of a CRISPR/Cas9 gene editing system in woody plant gene editing, in particular to application of a pC1300-MAS-Cas9 gene editing system in 84K poplar gene editing, namely application of a MAS promoter-driven Cas9 gene editing system in 84K poplar gene editing, and belongs to the technical field of biological gene engineering.
Background
The type II CRISPR/Cas9 system is an acquired immune system from streptococcus that is able to resist invasion by foreign genes. Through artificial modification, the system is widely applied to animals and plants. It consists essentially of CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and a specific Cas9 protein. CRISPR is a clustered regularly interspaced short palindromic DNA repeat consisting of a series of short highly conserved forward repeats and a sequence spacer arrangement of similar length. The Cas9 protein is a multi-domain protein consisting of 1409 amino acids, containing two nuclease domains RuvC-like and HNH. The CRISPR/Cas9 system was first successfully used in 2013 for gene editing of eukaryotic cells by Seung et al (Seung Woo Cho et al, 2013). The CRISPR/Cas 9-based gene editing system comprises two parts: sgRNA and enzyme Cas9. This system is capable of specifically recognizing a target sequence adjacent to a PAM (NGG) motif and cleaving 3nt upstream thereof, while the RuvC-like domain cleaves 3-8 nt upstream of the PAM region to form a DSB (double strains break double strand break), and then the organism repairs damaged DNA by its own repair mechanism such as homologous recombination, non-homologous recombination, and thus Indel (including deletion and insertion) phenomenon. CRISPR/Cas9 vector construction systems for application on plants include vector construction systems based on gene gun transformation and vector construction systems based on agrobacterium transformation. In the aspect of agrobacterium tumefaciens transformation commonly used at present, the construction process of a plant gene knockout carrier system based on a CRISPR/Cas9 technology is complicated, and multiple steps are needed to integrate each part onto a binary carrier.
Poplar is a model plant of woody plant research, also an important source of paper, wood, building materials, and biofuels, with high economic and ecological value (Jansson and Douglas, 2007). '84K' hybrid poplar (Populus alba x P.glandulosa) is widely planted in North China and is also an ideal research material for vascular cambium activity and wood formation by many research institutions. The '84K' hybrid poplar genomic sequence has been published (Huanget al., 2019), with a clear genetic background and high genetic conversion (Liet., 2017). Therefore, we select '84K' hybrid poplar for technical research of construction of gene editing vector and optimization of editing efficiency.
Gene editing techniques based on CRISPR/CAS9 have been applied to gene editing of woody plants. Researchers at University of Georgia (UGA) use CRISPR/Cas9 gene editing tools for the first time, and knock out key enzyme genes for lignin synthesis such as 4CL genes through gene editing, so that lignin content in wood can be effectively reduced (Zhou, jacobs et al 2015). Four guide RNAs (grnas) were designed using CRISPR/Cas9 system at university of southwest Luo Keming, targeting different genomic sites of aspen phytoene dehydrogenase gene 8 (PtoPDS), effectively editing genomic sequences in woody plants (Fan, liu et al 2015). Due to the high complexity of the genome of poplar, the genome editing efficiency of current CRISPR/CAS9 vectors in different local varieties of poplar is generally low. There is a need to modify the backbone vector to optimize the gene editing efficiency to increase the gene editing efficiency of Cas9 in poplar genomes.
The expression of the key nuclease gene Cas9 of the CRISPR/Cas9 gene editing vector is usually driven by a cauliflower mosaic virus 35S promoter (CaMV 35S) promoter or ubiquitin promoter with higher promoter activity, and researches show that: the activity of the promoter affects Cas9 expression and the final gene editing efficiency. Currently, in CRISPR/Cas9 vectors for poplar genome editing, the promoters of Cas9 genes are mostly cauliflower mosaic virus 35S promoter (CaMV 35S) promoters. Promoter-driven Cas9 gene expression vectors for high activity in poplar edited for poplar genome have not been reported. Therefore, there is a need to construct a high promoter activity driven expression CRISPR/CAS9 gene expression backbone vector in poplar, and to improve the efficiency of targeted gene editing.
Therefore, the pC1300-MAS-Cas9 gene editing system driven by the high-activity MAS promoter is applied to woody plant 84K poplar gene editing, so that plants with multiple target mutations can be conveniently and efficiently generated, and the technical problem to be solved in the technical field is urgently solved.
Disclosure of Invention
The invention aims to provide a simple and effective application of a pC1300-MAS-Cas9 gene editing system in 84K poplar gene editing, aiming at the defects existing in the prior art.
In order to achieve the above purpose, the present invention adopts the following technical scheme:
the application of the pC1300-MAS-Cas9 gene editing system in 84K poplar gene editing comprises the following steps:
step (1): selection of PagPDS Gene target sites
According to the 84K Yang Jiyin sequence, a CDS region of the PagPDS gene is found, the structure is analyzed, a potential Cas9 target site is searched, and gRNA is designed according to the position and GC content of the target site;
step (2): design of gRNA
Synthesizing a pair of DNA primers with complementary sequences, pagPDS_F and PagPDS_R according to the selected gRNA template sequence, respectively referring to sequences 3 and 4 in a sequence table, and synthesizing oligonucleotides;
according to the design principle of PAM sequences, 3 gRNAs, namely gRNA1, gRNA2 and gRNA3, are designed in sequences without SNP loci, and see sequences 9-11 in a sequence table;
step (3): construction of CRISPR/Cas9 Gene knockout vector
1) Annealing polymerization of oligonucleotides
Designing a desalting oligonucleotide chain (oligo) with a specific linker according to the subsequently ligated carrier linker sequence (g++ is F-direction; g- -R-direction), and diluting the synthesized oligonucleotide primer with ddH20 water (final concentration 100. Mu.M); annealing reaction system: 1 mu L of sense oligonucleotide (100 mu M), 1 mu L of antisense oligonucleotide (100 mu M), adding ddH20 to complement to 50 mu L, uniformly mixing the prepared annealing reaction buffer solution, centrifuging briefly, then using a PCR instrument, standing at 95 ℃ for 5min at room temperature, deforming and annealing after mixing the primers to form an oligonucleotide fragment with a sticky end, and immediately using the oligonucleotide fragment after standing at room temperature or storing the oligonucleotide fragment at-20 ℃ for a long time;
2) Construction of a Single intermediate vector
Inserting the gRNA sequence into a vector containing SK-gRNA (the sequence of which is shown as a sequence 12 in a sequence table);
3) Multiple intermediate support polymerization
Polymerizing an infinite number of SK-gRNA intermediate vectors by utilizing the property that BamHI and BglII are isotail enzymes, and carrying out enzyme digestion on the vectors by KpnI and BamHI; the fragment was digested with Spel/Xba I, xho I/Sal I, and BamH I/BgI II;
4) Construction to final vector
The pC1300-Cas9 vector is digested with KpnI and BamHI, SK-gRNA is digested with KpnI and BglII and fragments are recovered and ligated to the pC1300-Cas9 vector using a final vector ligation system;
5) Transformation competence
After transformation, 100 μl of coated plates (LB+Kan) were taken, 10 single clones were picked on LB+Kan plates the next day, 1.5mL centrifuge tubes were added with LB+Kan, shaking was performed in a shaker at 37℃at 250rmp, and after shaking, PCR detection and sequencing was performed;
firstly, gRNA1, gRNA2 and gRNA3 are connected into SK-gRNA through AarI enzyme, spel/XbaI, xhoI/SalI and BamHI/BgI II enzyme cutting sites are carried out in SK-gRNA1, SK-gRNA2 and SK-gRNA3 vectors, through homotail enzyme digestion (SK-gRNA 1 is cut by KpnI+SalI, SK-gRNA2 is cut by XhoI+XbaI, SK-gRNA3 is cut by Spel+BgI II) and recovered, and meanwhile, the final vector pC1300-Cas9 is cut and recovered by KpnI and BamHI; three intermediate vectors are simultaneously connected to a final vector pC1300-2x35S-Cas9/pC1300-MAS-Cas9 with KpnI and BamH I cleavage sites, which are respectively started by 2x35S and MAS promoters;
step (4): genetic transformation of poplar;
step (5): acquisition and statistics of transgenic plants
Respectively obtaining 40 PagPDS-2x35S-Cas9 and PagPDS-MAS-Cas9 transgenic plants by an agrobacterium transformation leaf disc method, wherein the transgenic plants of the two vectors have albino phenotype; among the 40 transgenic plants in PagPDS-2x35S-Cas9, albino seedlings are 27, the mutation rate is 67.5%, wherein 21 plants (77.8%) are of a pure-whitening phenotype, and 6 plants (22.3%) are of a yellowish green phenotype; in PagPDS-MAS-Cas9, the albino seedlings are 30 in 40 transgenic plants, the mutation rate is 75%, wherein 23 plants (76.7%) are pure white standard type, and 7 plants (23.3%) are yellow-green phenotype;
step (6): directional editing of poplar genes by CRISPR system
1) Identification of transgenic plant DNA level
After the leaves are subjected to agrobacteria dip-dyeing, screening and growing in a screening culture medium containing Hyg, and identifying rooting resistant seedlings after the material is subjected to differentiation, elongation and rooting processes;
2) Mutation identification of transgenic plants
After obtaining positive transgenic plants, using specific primers for gRNA target site detection, S_PDS_F and S_PDS_R, the sequences of which are respectively shown as sequences 7 and 8 in a sequence table, carrying out PCR amplification to obtain DNA sequence fragments with potential target site modification, then connecting the fragments to a T carrier after electrophoretic separation, transforming escherichia coli to obtain single colonies, extracting plasmids, sequencing the target sites, comparing the sequencing results with a control sequence, and analyzing mutation events.
Preferably, in the step (1), the PagPDS gene has a PagPDS form P.glandulosa sequence shown in a sequence table and a sequence 1,PagPDS form P.alba sequence shown in a sequence table and a sequence 2.
Preferably, in the step (2), after selecting the gRNA, it is further required to perform sequence verification on the gRNA target site on the target material gene, whether the gRNA exists in the target plant, then, in order to prevent the gRNA from being off-target due to mutation of nucleotides, extracting the gene DNA of the target poplar, referring to the poplar gene sequence, designing primers at 150-200bp upstream and downstream of the target site respectively, performing clone amplification on the target strip containing the target gene, detecting whether the target site sequence in the target plant is consistent with the sequence of the populus trichocarpus, and if not, performing appropriate modification on the gRNA according to the sequencing to obtain the oligonucleotide primer: pagPDS_F and PagPDS_R have sequences respectively shown as sequence 3 and sequence 4 in the sequence table.
Preferably, step (3) 2) is specifically as follows: firstly, carrying out Aar I digestion on SK-gRNA, wherein an Aar I digestion SK-gRNA carrier system is shown in the following table 1 to form a carrier with a sticky end, and then, connecting the carrier with the sticky end with the oligonucleotide fragment to convert DH5 alpha to obtain a connected final carrier; the common primer T3 and g-are matched to carry out colony PCR positive detection, and then the common primer T7 or T3 is used to carry out sequencing detection to verify whether the colony PCR positive detection is correct;
TABLE 1AarI cleavage SK-gRNA vector System
Figure BDA0002766598590000031
Figure BDA0002766598590000041
Enzyme digestion is carried out at 37 ℃ for 3-6hr, and the enzyme digestion product is purified by the kit.
Preferably, in step (3), 4), the final loaded ligation system is as shown in Table 2 below.
Table 2 end-load connection system
Figure BDA0002766598590000042
Preferably, in step (3) 5), the specific steps are as follows: firstly, carrying out Aar I enzyme digestion on SK-gRNA to form a carrier with a sticky end, carrying out denaturation annealing after mixing the gRNA to form a fragment with the sticky end, connecting the carrier and the fragment, converting DH5 alpha to obtain a connecting plasmid, and sequencing;
polymerizing 3 SK-gRNA intermediate vectors by utilizing the property that BamHI and BglII are isotail enzymes, performing enzyme digestion by using KpnI and BamHI as vectors to provide segmented SK-gRNA1, and performing enzyme digestion by using KpnI+SalI; SK-gRNA2 was digested with XhoI+XbaI; SK-gRNA3 was digested with Spel+BgI II.
Preferably, step (4) is specifically as follows:
1) Explants as transformation material: taking stem segments and tender leaf blades of 84 poplar growing for 3-4 weeks as explant transformation materials, cleaning the blades with clean water after taking materials, sterilizing in an ultra clean bench with 20% sodium hypochlorite for 20min, cleaning with sterile distilled water for at least 5 times, ensuring that no sodium hypochlorite remains on the surface of the material, and sucking redundant distilled water with sterile filter paper;
2) Tissue culture seedlings are used as transformation materials: cutting off plant leaves in an ultra-clean bench by scissors, taking small discs with obvious main veins by using a sterile 6mm puncher, and putting the small discs into a normal culture medium for standby so as to prevent water dispersion;
3) Taking out the stored carrier agrobacterium bacterial liquid in an ultralow temperature refrigerator at the temperature of 80 ℃ below zero, placing the carrier agrobacterium bacterial liquid on ice for melting, using a sterilized inoculating needle, taking a small amount of bacterial liquid, scraping the bacterial liquid on a prepared YEB solid culture medium containing 100mg/L Kan and 50mg/LRif, sealing the solid culture medium, inversely placing the solid culture medium in a 28 ℃ incubator for culturing for 48 hours, after single colony grows out, picking up the single colony, shaking the bacterial liquid in LB liquid culture medium (200 mL) containing 100mg/L Kan and 50mg/L Rif overnight (shaking table at the temperature of 28 ℃), and keeping the bacterial liquid to expand in the logarithmic phase;
4) Pouring the bacterial liquid into a sterilized centrifugal bottle, centrifuging for 30min (2560 rpm), discarding the upper bacterial liquid, and suspending the precipitate (OD 600 = 0.3-0.4) with the prepared suspension;
5) Culturing the suspended bacterial liquid in a shaking table with the temperature of 50-1000rmp for 1h;
6) The explant or tissue culture material (with or without 2-7d preculture) is soaked in the suspended bacterial liquid for dip dyeing: shaking in a 50rmp shaking table for 1-2h at room temperature;
7) After the dip dyeing is finished, sucking redundant dip dyeing liquid into the leaf by using sterile filter paper, transferring the leaf into a differentiation culture medium, and culturing in a dark inversion mode for 2d, wherein the optimal temperature is 19-21 ℃;
8) After two days, the agrobacterium grows out of the periphery of the dip-dyed material, the material is required to be cleaned, the material is cleaned by sterile water for four times, the filtered washing liquid is used for cleaning once, and after the washing liquid is added, the material is placed in a shaking table with 50-1000rmp for cleaning for 1h;
9) Placing the cleaned material in a differentiation medium containing 500 mg/Lcefotam and 2mg/L Hyg of antibiotics, culturing in dark for 2 weeks, and culturing under light for two weeks;
10 After callus growth, transferring the material to an elongation culture medium containing 50mg/L Hyg, and replacing the culture medium every 2-4 weeks;
11 When the material height is 2cm, transferring the material into rooting culture medium containing 2mg/L Hyg, and the whole transformation process is 3-8 months.
Preferably, step (6) 1) is specifically as follows: taking a small number of leaves of a rooting plant screened by Hyg, extracting DNA (deoxyribonucleic acid) for PCR (polymerase chain reaction) detection, taking a PCR amplification product with plasmid as a template as a positive control, taking a PCR amplification reaction product with unconverted wild plant gene DNA as a template as a negative control, taking a PCR reaction system as 20 mu L, uniformly mixing various components, and carrying out PCR reaction, wherein the PCR reaction procedure is as follows: after pre-denaturation at 98 ℃ for 5min, 30 cycles are carried out, wherein each cycle is denaturation at 98 ℃ for 5s, annealing at 62 ℃ for 5s and extension at 72 ℃ for 20s, finally extension at 72 ℃ is carried out for 1min, PCR products are detected by 1.0% agarose gel electrophoresis, and the observation results show that PCR detection primers are shown as sequences 5 and 6 in a sequence table; the target band 396bp.
Preferably, step (6) 2) is specifically as follows:
sanger sequencing was performed on the transgenic plant extract DNA, pagPDS-2x35S-Cas9 at the T1 site, and 53.75% of the mutations in all albino phenotype plants were single nucleotide insertions, and the rate of detection of at least one allelic mutation was 65% in 26 edited plants; 21 strains with simultaneous mutations of two alleles, including 20 homozygous mutations and 1 biallelic mutation; in the T2/T3 locus, the mutation rate was 67.5%, including 21 biallelic mutations and 4 homozygous mutations, and a deletion of 2 to 5nt was found near PAM;
in the PagPDS-MAS-Cas9 system, 30 plants were albino phenotype, mutation rate was 75%, pure-whitened plants 23 (76.7%), yellow-green phenotype plants 7 (23.3%); albino phenotype plants had alleles with significant large fragment deletions at T1 and T2/T3; regarding analysis of T1, mutations of at least one allele were detected in 29 plants (72.5%), with 22 mutations in both alleles, including 19 homozygous mutations and 3 bi-allelic mutations, and a mutation rate of 72.5% at the T2/T3 locus, including 20 homozygous mutations and 2 bi-allelic mutations.
The beneficial effects are that:
the pC1300-MAS-Cas9 gene editing system is simple, quick and efficient in application of 84K poplar gene editing, utilizes homotail enzyme preparation, constructs a multi-gene editing system, takes pC1300-MAS-Cas9 and SK-gRNA (AtU 6-26 driven intermediate vector) as a skeleton vector, and can be used for editing an unlimited number of target genes simultaneously in theory; the invention also optimizes the promoter, drives Cas9 by using the MAS promoter, and defines the editing efficiency in 84K poplar.
The invention is further described below with reference to the drawings and the detailed description, but is not meant to limit the scope of the invention.
Drawings
FIG. 1 is a diagram showing alignment of PagPDS gene in example 1 of the present invention.
FIG. 2 is a schematic representation of PagPDS target sites (T1-T3) and their sequences in example 1 of the invention.
FIG. 3 is a schematic diagram of a skeletal support of example 1 of this invention.
FIG. 4 is a schematic diagram of the vector construction procedure of example 1 of the present invention.
FIG. 5 is a schematic structural diagram of the final vector of example 1 of the present invention.
FIG. 6 is a phenotypic map of PagPDS-2x35s/MAS-Cas9 mediated transgenic plants in example 1 of the invention.
FIG. 7 is a comparison of the sequencing result of the target site in example 1 of the present invention with a control sequence.
Detailed Description
Unless otherwise specified, in the examples of the present invention, the raw materials used are all conventional raw materials commercially available in the art; the preparation method and the detection method are all conventional methods in the technical field.
Example 1
The application of the pC1300-MAS-Cas9 gene editing system in 84K poplar gene editing comprises the following steps:
step (1): selection of PagPDS Gene target sites
According to the 84K Yang Jiyin sequence, finding the CDS region of the PagPDS gene and analyzing the structure, designing primers according to the known sequence, cloning and sequencing the PDS gene in the 84K poplar, searching potential Cas9 target sites (san der et al., 2010) by utilizing an online analysis platform CRISPR-P (http:// cbi.hzau.edu.cn/cgi-bin/CRISPR) and ZiFiT Targeted version4.2 (http:// zi t.components. Org/ZiFiT/introduction. Aspx), and designing gRNA according to the position and GC content of the required target sites;
cloning PDS gene (1-3 exons) in 84K poplar, and comparing the sequences in FIG. 1, wherein the sequence is shown in FIG. 1 and is the PagPDS gene sequence comparison chart in the example 1 of the invention; blue lines represent exons; red lines indicate PAM sequences; yellow highlighting gRNA sequence; wherein, pagPDS form P.glandulosa sequence is shown in sequence 1,PagPDS form P.alba in the sequence table and sequence 2 in the sequence table;
step (2): design of gRNA
Synthesizing a pair of DNA primers with complementary sequences, pagPDS_F and PagPDS_R according to the selected gRNA template sequence, wherein the synthetic oligonucleotides are required to be PAGE purified oligonucleotides respectively referring to sequences 3 and 4 in a sequence table;
after selecting the gRNA, the sequence verification is also required to be carried out on the target locus of the gRNA on the target material gene, whether the gRNA exists in the target plant or not, then, in order to prevent the gRNA from being off target due to mutation of nucleotide, the gene DNA of the target poplar is extracted, the gene sequence of the target poplar is referenced, primers are respectively designed at the upstream and downstream 150-200bp of the target locus, the cloning amplification is carried out on the target locus containing the target gene, whether the sequence of the target locus in the target plant is consistent with the sequence of the populus trichocarpus is detected, if not, the gRNA is properly modified according to the sequencing standard, and the oligonucleotide primer is obtained: pagPDS_F and PagPDS_R, the sequences of which are respectively shown as sequence 3 and sequence 4 in the sequence table;
according to the design principle of PAM sequence, 3 gRNAs, namely gRNA1, gRNA2 and gRNA3 (see sequences 9-11 in a sequence table respectively), are designed in the sequence without SNP locus, as shown in figure 2, which is the PagPDS target locus (T1-T3) and the sequence schematic diagram thereof in the embodiment 1 of the invention; wherein PAM (5 '-NGG-3') is represented by red; blue represents exons (CDS 1-CDS 4); orange represents introns;
step (3): construction of CRISPR/Cas9 Gene knockout vector
1) Annealing polymerization of oligonucleotides
Designing a desalting oligonucleotide chain (oligo) with a specific linker according to the subsequently ligated carrier linker sequence (g++ is F-direction; g- -R-direction), and diluting the synthesized oligonucleotide primer with ddH20 water (final concentration 100. Mu.M); annealing reaction system: 1 mu L of sense oligonucleotide (100 mu M), 1 mu L of antisense oligonucleotide (100 mu M), adding ddH20 to complement to 50 mu L, uniformly mixing the prepared annealing reaction buffer solution, centrifuging briefly, then using a PCR instrument, standing at 95 ℃ for 5min at room temperature, deforming and annealing after mixing the primers to form an oligonucleotide fragment with a sticky end, and immediately using the oligonucleotide fragment after standing at room temperature or storing the oligonucleotide fragment at-20 ℃ for a long time;
2) Construction of a Single intermediate vector
Inserting the gRNA sequence into a vector containing SK-gRNA (the sequence of which is shown as a sequence 12 in a sequence table): firstly, carrying out Aar I digestion on SK-gRNA, wherein an Aar I digestion SK-gRNA carrier system is shown in the following table 1 to form a carrier with a sticky end, and then, connecting the carrier with the sticky end with the oligonucleotide fragment to convert DH5 alpha to obtain a connected final carrier; the common primer T3 and g-are matched to carry out colony PCR positive detection, and then the common primer T7 or T3 is used to carry out sequencing detection to verify whether the colony PCR positive detection is correct;
TABLE 1AarI cleavage SK-gRNA vector System
Figure BDA0002766598590000071
Enzyme cutting at 37deg.C for 3-6hr, and purifying enzyme-cut product with kit;
3) Multiple intermediate support polymerization
Polymerizing an infinite number of SK-gRNA intermediate vectors by utilizing the property that BamHI and BglII are isotail enzymes, and carrying out enzyme digestion on the vectors by KpnI and BamHI; the fragment was digested with Spel/Xba I, xho I/Sal I, and BamH I/BgI II;
4) Construction to final vector
The pC1300-Cas9 vector is subjected to enzyme digestion by KpnI and BamHI, SK-gRNA is subjected to enzyme digestion by KpnI and BglII, fragments are recovered, and are connected to the pC1300-Cas9 vector, and a final-load connection system is shown in the following table 2, wherein the sequences of gRNA1, gRNA2 and gRNA3 are respectively shown in sequences 9-11 in a sequence table;
table 2 end-load connection system
Figure BDA0002766598590000072
5) Transformation competence
After transformation, 100 μl of coated plates (LB+Kan) were taken, 10 single clones were picked on LB+Kan plates the next day, 1.5mL centrifuge tubes were added with LB+Kan, shaking was performed in a shaker at 37℃at 250rmp, and after shaking, PCR detection and sequencing was performed;
FIG. 3 is a schematic diagram of a skeletal support of example 1 of the present invention; the vector consists of a skeleton vector SK-gRNA and pC1300-Cas 9;
firstly, gRNA1, gRNA2 and gRNA3 are connected into SK-gRNA through AarI enzyme, spel/XbaI, xhoI/SalI and BamHI/BgI II enzyme cutting sites are carried out in SK-gRNA1, SK-gRNA2 and SK-gRNA3 vectors, through homotail enzyme digestion (SK-gRNA 1 is cut by KpnI+SalI, SK-gRNA2 is cut by XhoI+XbaI, SK-gRNA3 is cut by Spel+BgI II) and recovered, and meanwhile, the final vector pC1300-Cas9 is cut and recovered by KpnI and BamHI; three intermediate vectors were simultaneously ligated to final vector pC1300-Cas9 with KpnI and BamH I cleavage sites, which were started by the 2x35S and MAS promoters, respectively;
FIG. 4 is a schematic diagram showing the steps of constructing a vector according to example 1 of the present invention: firstly, carrying out Aar I enzyme digestion on SK-gRNA to form a carrier with a sticky end, carrying out denaturation annealing after mixing the gRNA to form a fragment with the sticky end, connecting the carrier and the fragment, converting DH5 alpha to obtain a connecting plasmid, and sequencing;
FIG. 5 is a schematic structural diagram of the final vector of example 1 of the present invention: polymerizing 3 SK-gRNA intermediate vectors by utilizing the property that BamHI and BglII are isotail enzymes, performing enzyme digestion by using KpnI and BamHI as vectors to provide segmented SK-gRNA1, and performing enzyme digestion by using KpnI+SalI; SK-gRNA2 was digested with XhoI+XbaI; SK-gRNA3 was digested with Spel+BgI II;
the sequence of the final vector pC1300-MAS-Cas9-PagPDS constructed finally is shown as a sequence 13 in a sequence table; the sequence of the final vector pC1300-2X35S-Cas9-PagPDS constructed finally is shown as sequence 14 in the sequence table.
Step (4): genetic transformation of poplar
The conversion steps are as follows:
1) Explants as transformation material: taking stem segments and tender leaf blades of 84 poplar growing for 3-4 weeks as explant transformation materials, cleaning the blades with clean water after taking materials, sterilizing in an ultra clean bench with 20% sodium hypochlorite for 20min, cleaning with sterile distilled water for at least 5 times, ensuring that no sodium hypochlorite remains on the surface of the material, and sucking redundant distilled water with sterile filter paper;
2) Tissue culture seedlings are used as transformation materials: cutting off plant leaves in an ultra-clean bench by scissors, taking small discs with obvious main veins by using a sterile 6mm puncher, and putting the small discs into a normal culture medium for standby so as to prevent water dispersion;
3) Taking out the stored carrier agrobacterium bacterial liquid from a refrigerator with ultralow temperature of minus 80 ℃ in a laboratory, placing the carrier agrobacterium bacterial liquid on ice for melting, using a sterilized inoculating needle, taking a small amount of bacterial liquid, dividing the bacterial liquid on a prepared YEB solid culture medium with the concentration of 100mg/L Kan and 50mg/LRif, sealing the solid culture medium, inversely placing the solid culture medium in a 28 ℃ incubator for culturing for 48 hours, picking single bacterial colonies after single bacterial colonies grow out, shaking the bacterial liquid in LB liquid culture medium (200 mL) containing 100mg/L Kan and 50mg/L Rif overnight (a shaking table with the temperature of 28 ℃), and keeping the bacterial liquid to expand in logarithmic phase;
4) Pouring the bacterial liquid into a sterilized centrifugal bottle, centrifuging for 30min (2560 rpm), discarding the upper bacterial liquid, and suspending the precipitate (OD 600 = 0.3-0.4) with the prepared suspension;
5) Culturing the suspended bacterial liquid in a shaking table with the temperature of 50-1000rmp for 1h;
6) The explant or tissue culture material (with or without 2-7d preculture) is soaked in the suspended bacterial liquid for dip dyeing: shaking in a 50rmp shaking table for 1-2h at room temperature;
7) After the dip dyeing is finished, sucking redundant dip dyeing liquid into the leaf by using sterile filter paper, transferring the leaf into a differentiation culture medium, and culturing in a dark inversion mode for 2d, wherein the optimal temperature is 19-21 ℃;
8) After two days, the agrobacterium grows out of the periphery of the dip-dyed material, the material is required to be cleaned, the material is cleaned by sterile water for four times, the filtered washing liquid is used for cleaning once, and after the washing liquid is added, the material is placed in a shaking table with 50-1000rmp for cleaning for 1h;
9) Placing the cleaned material in a differentiation medium containing 500 mg/Lcefotam and 2mg/L Hyg of antibiotics, culturing in dark for 2 weeks, and culturing under light for two weeks;
10 After callus growth, transferring the material to an elongation culture medium containing 50mg/L Hyg, and replacing the culture medium every 2-4 weeks;
11 When the height of the material is 2cm, transferring the material into a rooting culture medium containing 2mg/L Hyg, wherein the whole transformation process is 3-8 months;
acquisition and statistics of transgenic plants
Respectively obtaining 40 PagPDS-2x35S-Cas9 and PagPDS-MAS-Cas9 transgenic plants by an agrobacterium transformation leaf disc method, wherein the transgenic plants of the two vectors have albino phenotype; as shown in fig. 6, which is a phenotype diagram of PagPDS-2x35s/MAS-Cas9 mediated transgenic plants in example 1 of the present invention, scale bar = 1 cm;
table 3 is the phenotype statistics of PagPDS-2x35S/MAS-Cas9 mediated transgenic plants, wherein among the 40 transgenic plants in PagPDS-2x35S-Cas9, albino seedlings 27, mutation rate 67.5%, wherein 21 (77.8%) are pure-whitened phenotype and 6 (22.3%) are yellowish-green phenotype.
Of the 40 transgenic plants in PagPDS-MAS-Cas9, albino seedlings were 30, of which 23 (76.7%) were pure white-standard and 7 (23.3%) were yellow-green phenotypes.
TABLE 3PagPDS-2x 35S/MAS-Cas9 mediated phenotype statistics of transgenic plants
Figure BDA0002766598590000091
Step (5): directional editing of poplar genes by CRISPR system
1) Identification of transgenic plant DNA level
After the leaves are subjected to agrobacteria dip-dyeing, screening and growing in a screening culture medium containing Hyg, and identifying rooting resistant seedlings after the material is subjected to differentiation, elongation and rooting processes;
taking a small number of leaves of a rooting plant screened by Hyg, extracting DNA (deoxyribonucleic acid) for PCR (polymerase chain reaction) detection, taking a PCR amplification product with plasmid as a template as a positive control, taking a PCR amplification reaction product with unconverted wild plant gene DNA as a template as a negative control, taking a PCR reaction system as 20 mu L, uniformly mixing various components, and carrying out PCR reaction, wherein the PCR reaction procedure is as follows: after pre-denaturation at 98 ℃ for 5min, 30 cycles are carried out, wherein each cycle is denaturation at 98 ℃ for 5s, annealing at 62 ℃ for 5s and extension at 72 ℃ for 20s, finally extension at 72 ℃ is carried out for 1min, PCR products are detected by 1.0% agarose gel electrophoresis, and the observation results show that PCR detection primers are shown as sequences 5 and 6 in a sequence table; the destination band 396bp;
2) Mutation identification of transgenic plants
After a positive transgenic plant is obtained, specific primers, S_PDS_F and S_PDS_R, of which the sequences are respectively shown as sequences 7 and 8 in a sequence table are utilized, PCR amplification is carried out to obtain a DNA sequence fragment with potential target site modification, then the fragment is connected to a T carrier after electrophoresis separation, escherichia coli is transformed to obtain a single colony, plasmids are extracted for sequencing of the target site, and the sequencing result is compared with a control sequence to analyze mutation events; FIG. 7 shows the comparison of the sequencing result of the target site in example 1 of the present invention with the control sequence;
sanger sequencing was performed on the transgenic plant extract DNA, pagPDS-2x35S-Cas9 at the T1 site, and 53.75% of the mutations in all albino phenotype plants were single nucleotide insertions, and the rate of detection of at least one allelic mutation was 65% in 26 edited plants; 21 strains with simultaneous mutations of two alleles, including 20 homozygous mutations and 1 biallelic mutation; in the T2/T3 locus, mutation rate was 67.5%, including 21 bi-allelic mutations and 4 homozygous mutations, and a deletion of 2 to 5nt was found near PAM (FIG. 7A);
in the PagPDS-MAS-Cas9 system, 30 plants were albino phenotype, mutation rate was 75%, which is higher than editing efficiency of 2X35S-Cas9, pure-whitened plants 23 plants (76.7%), yellow-green phenotype plants 7 plants (23.3%) (Table 3); albino phenotype plants had alleles with significant large fragment deletions at T1 and T2/T3; regarding analysis of T1, mutations of at least one allele were detected in 29 plants (72.5%), with 22 mutations in both alleles, including 19 homozygous mutations and 3 bi-allelic mutations, with a mutation rate of 72.5% at the T2/T3 locus, including 20 homozygous mutations and 2 bi-allelic mutations (fig. 7B);
as shown in table 4, the mutation types for the target sites are summarized.
Table 4: summarizing mutation types at target sites
Figure BDA0002766598590000101
The beneficial effects are that:
unlike CRISPR/Cas9 editing systems of Golden Gate in the application study of pC1300-MAS-Cas9 gene editing system in 84K poplar gene editing, the inventors used only two simple vectors that were successfully used to target multiple sites of PagPDS gene in 84K poplar, caMV 35S promoter driven pC1300-Cas9 system mutation rate was 67.5%, pC1300-MAS-Cas9 (backbone vector pC1300-MAS-Cas9, final vector pC1300-MAS-Cas 9-PagPDS) system mutation rate was 75%, higher than that reported by Fan et al (2015) in woody species, pC1300-MAS-Cas9 system showed higher efficiency compared to pC1300-2X35S-Cas9 (backbone vector pC1300-2X 35S-9, final vector pC1300-2X 35S-9-PagPDS) system, and especially Cas system with abundant editing events of Cas 1300-DNA was shown to be deleted in the large Cas system; the CRISPR/Cas9 system constructed by homotail zymography can directly, conveniently and efficiently generate plants with a plurality of target mutations; thus, it is envisioned that the use of the pC1300-MAS-Cas9 system will help to study the relationship between multiple genes, and that efficient gene editing tools developed by the present inventors will facilitate gene function studies of woody tree species.
Sequence listing
<110> university of Zhejiang
<120> application of pC1300-MAS-Cas9 gene editing system in 84K poplar gene editing
<160> 14
<170> SIPOSequenceListing 1.0
<210> 1
<211> 1716
<212> DNA
<213> Artificial sequence (PagPDS form P. Glandulosa sequence)
<400> 1
gtttgcaggg ctgttgttac agttgttata gctgttgaat ttggttttgg agaaatgagt 60
gcattgaact tgagctggca tagtaaatca ttagactctc aagttgcctt gagatgtggc 120
gcttatccta cttgttctca ccaaacgaat gcactagctt ttagaggcag tgaatcaatg 180
ggccattctt tgaaattccc atttggaaat tcttctgcta aaacaagact aaggaatcat 240
atccgccctc ctttgcgggt gcgtagttct ctacactaca gggtaattat tagttgccaa 300
tcaatacgtg aaaatttggg gtgatctttt gtctacgctg taggttgtct gtatggacta 360
tccaagaccg gaccttgata acacggtgaa tttcttagag gctgccttgt tatcttcatc 420
ctttcgttct tctccgcgtc cagctaaacc attaaatgtt gtcattgctg gtgcaggtga 480
tgaaatctta tccttttttt gtatgggaaa aaactgtgtt gattatttag attgatttct 540
atctatctgt aaaacttttt cgttgaaata ttgtcctcgt gtttaattaa taattttgaa 600
gctcgtactt tcacaagatt tttgcatgta ctcttgagag attgtgcgat acttacttgt 660
gtgtgactac aaattttcct tattttttca ggtttggcgg gtttatcgac tgcaaaatac 720
ttggcagatg cgggccataa gcctatattg cttgaagcaa gagatgtttt aggtggaaag 780
gtttttacac tgctctactt ttacccactt ctcaagttga caacatactt gtgcttgctt 840
atttttcaat tcatttgtta tttctcttag gttgtttttt gtcctatcat catgtcatta 900
caatataatt tataatttct tgttgtgctt gatgatgtaa atgttaataa tctgaaggga 960
tattgtgttc ttatatttgt ctaaatggtg tgcaataaat cttaataatg aaggaggtta 1020
ctgttttcct cactctttcc ttgggatgaa atgacgcaag gatctcatct tctgctttgt 1080
tcatcagatc tatctttttt gttattttat caactgatat ttggcctgtt ttctgatagg 1140
tggctgcatg gaaagatgat gatggagact ggtacgagac aggcttgcat atattctgta 1200
agttctcatt actagtaaaa ggaaatcggg gatagaattt taagcttggt tttttttttc 1260
ctctcacttc gatatgcctg ttcattaggt aagataggtt caaattcctt tgtgaattct 1320
gctgcatctt cactttataa tgccttttca aattcatcct tactttattt gctctttaat 1380
gtgtttttgt ggaaagtgct aaacataccc ctgctttatg gtttttctgt tcccattctg 1440
gctattgtaa tctagctgtt gatttttatg cttcatgaag ttgtttcttt cttttttagg 1500
tgtttacctt tggtgatttt atcgttgatc ttattgaatc tttgttttgt ttcttgcaag 1560
ttggggcata tccaaatgtg cagaatcttt ttggtgaact tggtatcaat gataggttgc 1620
aatggaagga gcattctatg atatttgcaa tgccaaataa gccaggagaa ttcagtcgat 1680
ttgattttcc tgaagttctc cctgcaccat taaatg 1716
<210> 2
<211> 1717
<212> DNA
<213> Artificial sequence (PagPDS form P. Alba sequence)
<400> 2
gtttgcaggg ctgttgttac agttgttata gctgttgaat ttggttttgg agaaatgagt 60
gcattgaact tgagctggca tagtaaatca ttagactctc aagttgcctt gagatgtggc 120
gcttatccta cttgttctca ccaaacgaat gcactagctt ttagaggcag tgaatcaatg 180
ggccattctt tgaaattccc atttggaaat tcttctgcta aaacaagact aaggaatcat 240
atccgccctc ctttgcgggt gcgtagttct ctacactaca gggtaattat tagttgccaa 300
tcaatacgtg aaaatttggg gtgatctttt gtctacgctg taggttgtct gtatggacta 360
tccaagaccg gaccttgata acacggtgaa tttcttagag gctgccttgt tatcttcatc 420
ctttcgttct tctccgcgtc cagctaaacc attaaatgtt gtcattgctg gtgcaggtga 480
tgaaatctta tccttttttt gtatgggaaa aaactgtgtt gattatttag attgatttct 540
atctatctgt aaaacttttt cgttgaaata ttgtcctcgt gtttaattaa taattttgaa 600
gctcgtactt tcacaagatt tttgcatgta ctcttgagag attgtgcgat acttacttgt 660
gtgtgactaa aaattttcct tattttttca ggtttggcgg gtttatcgac tgcaaaatac 720
ttggcagatg cgggccataa gcctatattg cttgaagcaa gagatgtttt aggtggaaag 780
gtttttacac tgctctactt ttacccactt ctcaagttga caacatactt gtgcttgctt 840
atttttcaat tcatttgtta tttctcttag gttgtttttt gtcctatcat cattgtcatt 900
acaatataat ttataatttc ttgttgtgct tgatgatgta aatgttaata atctgaaggg 960
atattgtgtt cttatatttg tctaaatggt gtgcaataaa tcttaataat gaaggaggtt 1020
actgttttcc tcactctttc cttgggatga aatgacgcaa ggatctcatc ttctgctttg 1080
ttcatcagat ctatcttttt tgttatttta tcaactgata tttggcctgt tttctgatag 1140
gtggctgcat ggaaagatga tgatggagac tggtacgaga caggcttgca tatattctgt 1200
aagttctcat tactagtaaa aggaaatcgg ggatagaatt ttaagcttgg tatttttttt 1260
cctctcactt cgatatgcct gttcattagg taagataggt tcaaattcct ttgtgaattc 1320
tgctgcatct tcactttata atgccttttc aaattcatcc ttactttatt tgctctttaa 1380
tgtgtttttg tggaaagtgc taaacatacc cctgctttat ggtttttctg ttcccattct 1440
ggctattgta atctagctgt tgatttttat gcttcatgaa gttgtttctt tcttttttag 1500
gtgtttacct ttggtgattt tatcgttgat cttattgaat ctttgttttg tttcttgcaa 1560
gttggggcat atccaaatgt gcagaatctt tttggtgaac ttggtatcaa tgataggttg 1620
caatggaagg agcattctat gatatttgca atgccaaata agccaggaga attcagtcga 1680
tttgattttc ctgaagttct ccctgcacca ttaaatg 1717
<210> 3
<211> 22
<212> DNA
<213> Artificial sequence (PagPDS_F)
<400> 3
aactgggtat gcgaagactt cc 22
<210> 4
<211> 25
<212> DNA
<213> Artificial sequence (PagPDS_R)
<400> 4
aagcaagcac aagtatgttg tcaac 25
<210> 5
<211> 23
<212> DNA
<213> Artificial sequence (Cas 9F)
<400> 5
gaaaggtcgg tattcacggc gtt 23
<210> 6
<211> 22
<212> DNA
<213> Artificial sequence (Cas 9R)
<400> 6
tgttgccaaa gataggatgc ct 22
<210> 7
<211> 24
<212> DNA
<213> Artificial sequence (S_PDS_F)
<400> 7
gattatgcgt ttcgtttctt ggct 24
<210> 8
<211> 24
<212> DNA
<213> Artificial sequence (S_PDS_R)
<400> 8
gatttcatca cctgcaccag caat 24
<210> 9
<211> 24
<212> DNA
<213> Artificial sequence (gRNA 1)
<400> 9
ctatgccagc tcaagttcaa tgca 24
<210> 10
<211> 24
<212> DNA
<213> Artificial sequence (gRNA 2)
<400> 10
gaggcagtga atcaatgggc catt 24
<210> 11
<211> 24
<212> DNA
<213> Artificial sequence (gRNA 3)
<400> 11
gttcttctcc gcgtccagct aaac 24
<210> 12
<211> 3502
<212> DNA
<213> Artificial sequence (SK-gRNA)
<400> 12
ctgacgcgcc ctgtagcggc gcattaagcg cggcgggtgt ggtggttacg cgcagcgtga 60
ccgctacact tgccagcgcc ctagcgcccg ctcctttcgc tttcttccct tcctttctcg 120
ccacgttcgc cggctttccc cgtcaagctc taaatcgggg gctcccttta gggttccgat 180
ttagtgcttt acggcacctc gaccccaaaa aacttgatta gggtgatggt tcacgtagtg 240
ggccatcgcc ctgatagacg gtttttcgcc ctttgacgtt ggagtccacg ttctttaata 300
gtggactctt gttccaaact ggaacaacac tcaaccctat ctcggtctat tcttttgatt 360
tataagggat tttgccgatt tcggcctatt ggttaaaaaa tgagctgatt taacaaaaat 420
ttaacgcgaa ttttaacaaa atattaacgc ttacaatttc cattcgccat tcaggctgcg 480
caactgttgg gaagggcgat cggtgcgggc ctcttcgcta ttacgccagc tggcgaaagg 540
gggatgtgct gcaaggcgat taagttgggt aacgccaggg ttttcccagt cacgacgttg 600
taaaacgacg gccagtgagc gcgcgtaata cgactcacta tagggcgaat tgggtaccgg 660
actagtggat ccctcgagaa gcttcgttga acaacggaaa ctcgacttgc cttccgcaca 720
atacatcatt tcttcttagc tttttttctt cttcttcgtt catacagttt ttttttgttt 780
atcagcttac attttcttga accgtagctt tcgttttctt ctttttaact ttccattcgg 840
agtttttgta tcttgtttca tagtttgtcc caggattaga atgattaggc atcgaacctt 900
caagaatttg attgaataaa acatcttcat tcttaagata tgaagataat cttcaaaagg 960
cccctgggaa tctgaaagaa gagaagcagg cccatttata tgggaaagaa caatagtatt 1020
tcttatatag gcccatttaa gttgaaaaca atcttcaaaa gtcccacatc gcttagataa 1080
gaaaacgaag ctgagtttat atacagctag agtcgaagta gtgattggct cgcaggtgaa 1140
cacaacacct gcacacgttt cagagctatg ctggaaacag catagcaagt tgaaataagg 1200
ctagtccgtt atcaacttga aaaagtggca ccgagtcggt gctttttttc cacataatcg 1260
tcgacagatc ttctagagcg gccgccaccg cggtggagct ccagcttttg ttccctttag 1320
tgagggttaa ttgcgcgctt ggcgtaatca tggtcatagc tgtttcctgt gtgaaattgt 1380
tatccgctca caattccaca caacatacga gccggaagca taaagtgtaa agcctggggt 1440
gcctaatgag tgagctaact cacattaatt gcgttgcgct cactgcccgc tttccagtcg 1500
ggaaacctgt cgtgccagct gcattaatga atcggccaac gcgcggggag aggcggtttg 1560
cgtattgggc gctcttccgc ttcctcgctc actgactcgc tgcgctcggt cgttcggctg 1620
cggcgagcgg tatcagctca ctcaaaggcg gtaatacggt tatccacaga atcaggggat 1680
aacgcaggaa agaacatgtg agcaaaaggc cagcaaaagg ccaggaaccg taaaaaggcc 1740
gcgttgctgg cgtttttcca taggctccgc ccccctgacg agcatcacaa aaatcgacgc 1800
tcaagtcaga ggtggcgaaa cccgacagga ctataaagat accaggcgtt tccccctgga 1860
agctccctcg tgcgctctcc tgttccgacc ctgccgctta ccggatacct gtccgccttt 1920
ctcccttcgg gaagcgtggc gctttctcat agctcacgct gtaggtatct cagttcggtg 1980
taggtcgttc gctccaagct gggctgtgtg cacgaacccc ccgttcagcc cgaccgctgc 2040
gccttatccg gtaactatcg tcttgagtcc aacccggtaa gacacgactt atcgccactg 2100
gcagcagcca ctggtaacag gattagcaga gcgaggtatg taggcggtgc tacagagttc 2160
ttgaagtggt ggcctaacta cggctacact agaaggacag tatttggtat ctgcgctctg 2220
ctgaagccag ttaccttcgg aaaaagagtt ggtagctctt gatccggcaa acaaaccacc 2280
gctggtagcg gtggtttttt tgtttgcaag cagcagatta cgcgcagaaa aaaaggatct 2340
caagaagatc ctttgatctt ttctacgggg tctgacgctc agtggaacga aaactcacgt 2400
taagggattt tggtcatgag attatcaaaa aggatcttca cctagatcct tttaaattaa 2460
aaatgaagtt ttaaatcaat ctaaagtata tatgagtaaa cttggtctga cagttaccaa 2520
tgcttaatca gtgaggcacc tatctcagcg atctgtctat ttcgttcatc catagttgcc 2580
tgactccccg tcgtgtagat aactacgata cgggagggct taccatctgg ccccagtgct 2640
gcaatgatac cgcgagaccc acgctcaccg gctccagatt tatcagcaat aaaccagcca 2700
gccggaaggg ccgagcgcag aagtggtcct gcaactttat ccgcctccat ccagtctatt 2760
aattgttgcc gggaagctag agtaagtagt tcgccagtta atagtttgcg caacgttgtt 2820
gccattgcta caggcatcgt ggtgtcacgc tcgtcgtttg gtatggcttc attcagctcc 2880
ggttcccaac gatcaaggcg agttacatga tcccccatgt tgtgcaaaaa agcggttagc 2940
tccttcggtc ctccgatcgt tgtcagaagt aagttggccg cagtgttatc actcatggtt 3000
atggcagcac tgcataattc tcttactgtc atgccatccg taagatgctt ttctgtgact 3060
ggtgagtact caaccaagtc attctgagaa tagtgtatgc ggcgaccgag ttgctcttgc 3120
ccggcgtcaa tacgggataa taccgcgcca catagcagaa ctttaaaagt gctcatcatt 3180
ggaaaacgtt cttcggggcg aaaactctca aggatcttac cgctgttgag atccagttcg 3240
atgtaaccca ctcgtgcacc caactgatct tcagcatctt ttactttcac cagcgtttct 3300
gggtgagcaa aaacaggaag gcaaaatgcc gcaaaaaagg gaataagggc gacacggaaa 3360
tgttgaatac tcatactctt cctttttcaa tattattgaa gcatttatca gggttattgt 3420
ctcatgagcg gatacatatt tgaatgtatt tagaaaaata aacaaatagg ggttccgcgc 3480
acatttcccc gaaaagtgcc ac 3502
<210> 13
<211> 16078
<212> DNA
<213> Artificial sequence (pC 1300-MAS-Cas 9-PagPDS)
<400> 13
aattcgagct cggtaccgga ctagtggatc cctcgagaag cttcgttgaa caacggaaac 60
tcgacttgcc ttccgcacaa tacatcattt cttcttagct ttttttcttc ttcttcgttc 120
atacagtttt tttttgttta tcagcttaca ttttcttgaa ccgtagcttt cgttttcttc 180
tttttaactt tccattcgga gtttttgtat cttgtttcat agtttgtccc aggattagaa 240
tgattaggca tcgaaccttc aagaatttga ttgaataaaa catcttcatt cttaagatat 300
gaagataatc ttcaaaaggc ccctgggaat ctgaaagaag agaagcaggc ccatttatat 360
gggaaagaac aatagtattt cttatatagg cccatttaag ttgaaaacaa tcttcaaaag 420
tcccacatcg cttagataag aaaacgaagc tgagtttata tacagctaga gtcgaagtag 480
tgattggagt gcattgaact tgagcgtttc agagctatgc tggaaacagc atagcaagtt 540
gaaataaggc tagtccgtta tcaacttgaa aaagtggcac cgagtcggtg ctttttttcc 600
acataatcgt cgagaagctt cgttgaacaa cggaaactcg acttgccttc cgcacaatac 660
atcatttctt cttagctttt tttcttcttc ttcgttcata cagttttttt ttgtttatca 720
gcttacattt tcttgaaccg tagctttcgt tttcttcttt ttaactttcc attcggagtt 780
tttgtatctt gtttcatagt ttgtcccagg attagaatga ttaggcatcg aaccttcaag 840
aatttgattg aataaaacat cttcattctt aagatatgaa gataatcttc aaaaggcccc 900
tgggaatctg aaagaagaga agcaggccca tttatatggg aaagaacaat agtatttctt 960
atataggccc atttaagttg aaaacaatct tcaaaagtcc cacatcgctt agataagaaa 1020
acgaagctga gtttatatac agctagagtc gaagtagtga ttgtgttatc aaggtccggt 1080
ctgtttcaga gctatgctgg aaacagcata gcaagttgaa ataaggctag tccgttatca 1140
acttgaaaaa gtggcaccga gtcggtgctt tttttccaca taatcgtcga cagatcttct 1200
agtggatccc tcgagaagct tcgttgaaca acggaaactc gacttgcctt ccgcacaata 1260
catcatttct tcttagcttt ttttcttctt cttcgttcat acagtttttt tttgtttatc 1320
agcttacatt ttcttgaacc gtagctttcg ttttcttctt tttaactttc cattcggagt 1380
ttttgtatct tgtttcatag tttgtcccag gattagaatg attaggcatc gaaccttcaa 1440
gaatttgatt gaataaaaca tcttcattct taagatatga agataatctt caaaaggccc 1500
ctgggaatct gaaagaagag aagcaggccc atttatatgg gaaagaacaa tagtatttct 1560
tatataggcc catttaagtt gaaaacaatc ttcaaaagtc ccacatcgct tagataagaa 1620
aacgaagctg agtttatata cagctagagt cgaagtagtg attgtcaccg tgttatcaag 1680
gtcgtttcag agctatgctg gaaacagcat agcaagttga aataaggcta gtccgttatc 1740
aacttgaaaa agtggcaccg agtcggtgct ttttttccac ataatcgtcg acagatccgt 1800
acctgatctc tttctcgatc gagggagatt tttcaaatca gtgcgcaaga cgtgacgtaa 1860
gtatccgagt cagtttttat ttttctacta atttggtcgt ttatttcggc gtgtaggaca 1920
tggcaaccgg gcctgaattt cgcgggtatt ctgtttctat tccaactttt tcttgatccg 1980
cagccattaa cgacttttga atagatacgc tgacacgcca agcctcgcta gtcaaaagtg 2040
taccaaacaa cgctttacag caagaacgga atgcgcgtga cgctcgcggt gacgccattt 2100
cgccttttca gaaatggata aatagccttg cttcctatta tatcttccca aattaccaat 2160
acattacact agcatctgaa tttcataacc aatctcgata caccaaatcg accaagctag 2220
atccatggcc cctaagaaga agagaaaggt cggtattcac ggcgttcctg cggcgatgga 2280
caagaagtat agtattggtc tggacattgg gacgaattcc gttggctggg ccgtgatcac 2340
cgatgagtac aaggtccctt ccaagaagtt taaggttctg gggaacaccg atcggcacag 2400
catcaagaag aatctcattg gagccctcct gttcgactca ggcgagaccg ccgaagcaac 2460
aaggctcaag agaaccgcaa ggagacggta tacaagaagg aagaatagga tctgctacct 2520
gcaggagatt ttcagcaacg aaatggcgaa ggtggacgat tcgttctttc atagattgga 2580
ggagagtttc ctcgtcgagg aagataagaa gcacgagagg catcctatct ttggcaacat 2640
tgtcgacgag gttgcctatc acgaaaagta ccccacaatc tatcatctgc ggaagaagct 2700
tgtggactcg actgataagg cggaccttag attgatctac ctcgctctgg cacacatgat 2760
taagttcagg ggccattttc tgatcgaggg ggatcttaac ccggacaata gcgatgtgga 2820
caagttgttc atccagctcg tccaaaccta caatcagctc tttgaggaaa acccaattaa 2880
tgcttcaggc gtcgacgcca aggcgatcct gtctgcacgc ctttcaaagt ctcgccggct 2940
tgagaacttg atcgctcaac tcccgggcga aaagaagaac ggcttgttcg ggaatctcat 3000
tgcactttcg ttggggctca caccaaactt caagagtaat tttgatctcg ctgaggacgc 3060
aaagctgcag ctttccaagg acacttatga cgatgacctg gataaccttt tggcccaaat 3120
cggcgatcag tacgcggact tgttcctcgc cgcgaagaat ttgtcggacg cgatcctcct 3180
gagtgatatt ctccgcgtga acaccgagat tacaaaggcc ccgctctcgg cgagtatgat 3240
caagcgctat gacgagcacc atcaggatct gacccttttg aaggctttgg tccggcagca 3300
actcccagag aagtacaagg aaatcttctt tgatcaatcc aagaacggct acgctggtta 3360
tattgacggc ggggcatcgc aggaggaatt ctacaagttt atcaagccaa ttctggagaa 3420
gatggatggc acagaggaac tcctggtgaa gctcaatagg gaggaccttt tgcggaagca 3480
aagaactttc gataacggca gcatccctca ccagattcat ctcggggagc tgcacgccat 3540
cctgagaagg caggaagact tctacccctt tcttaaggat aaccgggaga agatcgaaaa 3600
gattctgacg ttcagaattc cgtactatgt cggaccactc gcccggggta attccagatt 3660
tgcgtggatg accagaaaga gcgaggaaac catcacacct tggaacttcg aggaagtggt 3720
cgataagggc gcttccgcac agagcttcat tgagcgcatg acaaattttg acaagaacct 3780
gcctaatgag aaggtccttc ccaagcattc cctcctgtac gagtatttca ctgtttataa 3840
cgaactcacg aaggtgaagt atgtgaccga gggaatgcgc aagcccgcct tcctgagcgg 3900
cgagcaaaag aaggcgatcg tggacctttt gtttaagacc aatcggaagg tcacagttaa 3960
gcagctcaag gaggactact tcaagaagat tgaatgcttc gattccgttg agatcagcgg 4020
cgtggaagac aggtttaacg cgtcactggg gacttaccac gatctcctga agatcattaa 4080
ggataaggac ttcttggaca acgaggaaaa tgaggatatc ctcgaagaca ttgtcctgac 4140
tcttacgttg tttgaggata gggaaatgat cgaggaacgc ttgaagacgt atgcccatct 4200
cttcgatgac aaggttatga agcagctcaa gagaagaaga tacaccggat ggggaaggct 4260
gtcccgcaag cttatcaatg gcattagaga caagcaatca gggaagacaa tccttgactt 4320
tttgaagtct gatggcttcg cgaacaggaa ttttatgcag ctgattcacg atgactcact 4380
tactttcaag gaggatatcc agaaggctca agtgtcggga caaggtgaca gtctgcacga 4440
gcatatcgcc aaccttgcgg gatctcctgc aatcaagaag ggtattctgc agacagtcaa 4500
ggttgtggat gagcttgtga aggtcatggg acggcataag cccgagaaca tcgttattga 4560
gatggccaga gaaaatcaga ccacacaaaa gggtcagaag aactcgaggg agcgcatgaa 4620
gcgcatcgag gaaggcatta aggagctggg gagtcagatc cttaaggagc acccggtgga 4680
aaacacgcag ttgcaaaatg agaagctcta tctgtactat ctgcaaaatg gcagggatat 4740
gtatgtggac caggagttgg atattaaccg cctctcggat tacgacgtcg atcatatcgt 4800
tcctcagtcc ttccttaagg atgacagcat tgacaataag gttctcacca ggtccgacaa 4860
gaaccgcggg aagtccgata atgtgcccag cgaggaagtc gttaagaaga tgaagaacta 4920
ctggaggcaa cttttgaatg ccaagttgat cacacagagg aagtttgata acctcactaa 4980
ggccgagcgc ggaggtctca gcgaactgga caaggcgggc ttcattaagc ggcaactggt 5040
tgagactaga cagatcacga agcacgtggc gcagattctc gattcacgca tgaacacgaa 5100
gtacgatgag aatgacaagc tgatccggga agtgaaggtc atcaccttga agtcaaagct 5160
cgtttctgac ttcaggaagg atttccaatt ttataaggtg cgcgagatca acaattatca 5220
ccatgctcat gacgcatacc tcaacgctgt ggtcggaaca gcattgatta agaagtaccc 5280
gaagctcgag tccgaattcg tgtacggtga ctataaggtt tacgatgtgc gcaagatgat 5340
cgccaagtca gagcaggaaa ttggcaaggc cactgcgaag tatttctttt actctaacat 5400
tatgaatttc tttaagactg agatcacgct ggctaatggc gaaatccgga agagaccact 5460
tattgagacc aacggcgaga caggggaaat cgtgtgggac aaggggaggg atttcgccac 5520
agtccgcaag gttctctcta tgcctcaagt gaatattgtc aagaagactg aagtccagac 5580
gggcgggttc tcaaaggaat ctattctgcc caagcggaac tcggataagc ttatcgccag 5640
aaagaaggac tgggacccga agaagtatgg aggtttcgac tcaccaacgg tggcttactc 5700
tgtcctggtt gtggcaaagg tggagaaggg aaagtcaaag aagctcaagt ctgtcaagga 5760
gctcctgggt atcaccatta tggagaggtc cagcttcgaa aagaatccga tcgattttct 5820
cgaggcgaag ggatataagg aagtgaagaa ggacctgatc attaagcttc caaagtacag 5880
tcttttcgag ttggaaaacg gcaggaagcg catgttggct tccgcaggag agctccagaa 5940
gggtaacgag cttgctttgc cgtccaagta tgtgaacttc ctctatctgg catcccacta 6000
cgagaagctc aagggcagcc cagaggataa cgaacagaag caactgtttg tggagcaaca 6060
caagcattat cttgacgaga tcattgaaca gatttcggag ttcagtaagc gcgtcatcct 6120
cgccgacgcg aatttggata aggttctctc agcctacaac aagcaccggg acaagcctat 6180
cagagagcag gcggaaaata tcattcatct cttcaccctg acaaaccttg gggctcccgc 6240
tgcattcaag tattttgaca ctacgattga tcggaagaga tacacttcta cgaaggaggt 6300
gctggatgca acccttatcc accaatcgat tactggcctc tacgagacgc ggatcgactt 6360
gagtcagctc gggggggata agagaccagc ggcaaccaag aaggcaggac aagcgaagaa 6420
gaagaagtag caattcggta cgctgaaatc accagtctct ctctacaaat ctatctctct 6480
ctattttctc cataaataat gtgtgagtag tttcccgata agggaaatta gggttcttat 6540
agggtttcgc tcatgtgttg agcatataag aaacccttag tatgtatttg tatttgtaaa 6600
atacttctat caataaaatt tctaattcct aaaaccaaaa tccagtacta aaatccagat 6660
ctcctaaagt ccctatagat ctttgtcgtg aatataaacc agacacgaga cgactaaacc 6720
tggagcccag acgccgttcg aagctagaag taccgcttag gcaggaggcc gttagggaaa 6780
agatgctaag gcagggttgg ttacgttgac tcccccgtag gtttggttta aatatgatga 6840
agtggacgga aggaaggagg aagacaagga aggataaggt tgcaggccct gtgcaaggta 6900
agaagatgga aatttgatag aggtacgcta ctatacttat actatacgct aagggaatgc 6960
ttgtatttat accctatacc ccctaataac cccttatcaa tttaagaaat aatccgcata 7020
agcccccgct taaaaattgg tatcagagcc atgaataggt ctatgaccaa aactcaagag 7080
gataaaacct caccaaaata cgaaagagtt cttaactcta aagataaaag atctttcaag 7140
atcaaaacta gagtcgacct gcaggcatgc aagcttggca ctggccgtcg ttttacaacg 7200
tcgtgactgg gaaaaccctg gcgttaccca acttaatcgc cttgcagcac atcccccttt 7260
cgccagctgg cgtaatagcg aagaggcccg caccgatcgc ccttcccaac agttgcgcag 7320
cctgaatggc gaatgctaga gcagcttgag cttggatcag attgtcgttt cccgccttca 7380
gtttaaacta tcagtgtttg acaggatata ttggcgggta aacctaagag aaaagagcgt 7440
ttattagaat aacggatatt taaaagggcg tgaaaaggtt tatccgttcg tccatttgta 7500
tgtgcatgcc aaccacaggg ttcccctcgg gatcaaagta ctttgatcca acccctccgc 7560
tgctatagtg cagtcggctt ctgacgttca gtgcagccgt cttctgaaaa cgacatgtcg 7620
cacaagtcct aagttacgcg acaggctgcc gccctgccct tttcctggcg ttttcttgtc 7680
gcgtgtttta gtcgcataaa gtagaatact tgcgactaga accggagaca ttacgccatg 7740
aacaagagcg ccgccgctgg cctgctgggc tatgcccgcg tcagcaccga cgaccaggac 7800
ttgaccaacc aacgggccga actgcacgcg gccggctgca ccaagctgtt ttccgagaag 7860
atcaccggca ccaggcgcga ccgcccggag ctggccagga tgcttgacca cctacgccct 7920
ggcgacgttg tgacagtgac caggctagac cgcctggccc gcagcacccg cgacctactg 7980
gacattgccg agcgcatcca ggaggccggc gcgggcctgc gtagcctggc agagccgtgg 8040
gccgacacca ccacgccggc cggccgcatg gtgttgaccg tgttcgccgg cattgccgag 8100
ttcgagcgtt ccctaatcat cgaccgcacc cggagcgggc gcgaggccgc caaggcccga 8160
ggcgtgaagt ttggcccccg ccctaccctc accccggcac agatcgcgca cgcccgcgag 8220
ctgatcgacc aggaaggccg caccgtgaaa gaggcggctg cactgcttgg cgtgcatcgc 8280
tcgaccctgt accgcgcact tgagcgcagc gaggaagtga cgcccaccga ggccaggcgg 8340
cgcggtgcct tccgtgagga cgcattgacc gaggccgacg ccctggcggc cgccgagaat 8400
gaacgccaag aggaacaagc atgaaaccgc accaggacgg ccaggacgaa ccgtttttca 8460
ttaccgaaga gatcgaggcg gagatgatcg cggccgggta cgtgttcgag ccgcccgcgc 8520
acgtctcaac cgtgcggctg catgaaatcc tggccggttt gtctgatgcc aagctggcgg 8580
cctggccggc cagcttggcc gctgaagaaa ccgagcgccg ccgtctaaaa aggtgatgtg 8640
tatttgagta aaacagcttg cgtcatgcgg tcgctgcgta tatgatgcga tgagtaaata 8700
aacaaatacg caaggggaac gcatgaaggt tatcgctgta cttaaccaga aaggcgggtc 8760
aggcaagacg accatcgcaa cccatctagc ccgcgccctg caactcgccg gggccgatgt 8820
tctgttagtc gattccgatc cccagggcag tgcccgcgat tgggcggccg tgcgggaaga 8880
tcaaccgcta accgttgtcg gcatcgaccg cccgacgatt gaccgcgacg tgaaggccat 8940
cggccggcgc gacttcgtag tgatcgacgg agcgccccag gcggcggact tggctgtgtc 9000
cgcgatcaag gcagccgact tcgtgctgat tccggtgcag ccaagccctt acgacatatg 9060
ggccaccgcc gacctggtgg agctggttaa gcagcgcatt gaggtcacgg atggaaggct 9120
acaagcggcc tttgtcgtgt cgcgggcgat caaaggcacg cgcatcggcg gtgaggttgc 9180
cgaggcgctg gccgggtacg agctgcccat tcttgagtcc cgtatcacgc agcgcgtgag 9240
ctacccaggc actgccgccg ccggcacaac cgttcttgaa tcagaacccg agggcgacgc 9300
tgcccgcgag gtccaggcgc tggccgctga aattaaatca aaactcattt gagttaatga 9360
ggtaaagaga aaatgagcaa aagcacaaac acgctaagtg ccggccgtcc gagcgcacgc 9420
agcagcaagg ctgcaacgtt ggccagcctg gcagacacgc cagccatgaa gcgggtcaac 9480
tttcagttgc cggcggagga tcacaccaag ctgaagatgt acgcggtacg ccaaggcaag 9540
accattaccg agctgctatc tgaatacatc gcgcagctac cagagtaaat gagcaaatga 9600
ataaatgagt agatgaattt tagcggctaa aggaggcggc atggaaaatc aagaacaacc 9660
aggcaccgac gccgtggaat gccccatgtg tggaggaacg ggcggttggc caggcgtaag 9720
cggctgggtt gtctgccggc cctgcaatgg cactggaacc cccaagcccg aggaatcggc 9780
gtgacggtcg caaaccatcc ggcccggtac aaatcggcgc ggcgctgggt gatgacctgg 9840
tggagaagtt gaaggccgcg caggccgccc agcggcaacg catcgaggca gaagcacgcc 9900
ccggtgaatc gtggcaagcg gccgctgatc gaatccgcaa agaatcccgg caaccgccgg 9960
cagccggtgc gccgtcgatt aggaagccgc ccaagggcga cgagcaacca gattttttcg 10020
ttccgatgct ctatgacgtg ggcacccgcg atagtcgcag catcatggac gtggccgttt 10080
tccgtctgtc gaagcgtgac cgacgagctg gcgaggtgat ccgctacgag cttccagacg 10140
ggcacgtaga ggtttccgca gggccggccg gcatggccag tgtgtgggat tacgacctgg 10200
tactgatggc ggtttcccat ctaaccgaat ccatgaaccg ataccgggaa gggaagggag 10260
acaagcccgg ccgcgtgttc cgtccacacg ttgcggacgt actcaagttc tgccggcgag 10320
ccgatggcgg aaagcagaaa gacgacctgg tagaaacctg cattcggtta aacaccacgc 10380
acgttgccat gcagcgtacg aagaaggcca agaacggccg cctggtgacg gtatccgagg 10440
gtgaagcctt gattagccgc tacaagatcg taaagagcga aaccgggcgg ccggagtaca 10500
tcgagatcga gctagctgat tggatgtacc gcgagatcac agaaggcaag aacccggacg 10560
tgctgacggt tcaccccgat tactttttga tcgatcccgg catcggccgt tttctctacc 10620
gcctggcacg ccgcgccgca ggcaaggcag aagccagatg gttgttcaag acgatctacg 10680
aacgcagtgg cagcgccgga gagttcaaga agttctgttt caccgtgcgc aagctgatcg 10740
ggtcaaatga cctgccggag tacgatttga aggaggaggc ggggcaggct ggcccgatcc 10800
tagtcatgcg ctaccgcaac ctgatcgagg gcgaagcatc cgccggttcc taatgtacgg 10860
agcagatgct agggcaaatt gccctagcag gggaaaaagg tcgaaaaggt ctctttcctg 10920
tggatagcac gtacattggg aacccaaagc cgtacattgg gaaccggaac ccgtacattg 10980
ggaacccaaa gccgtacatt gggaaccggt cacacatgta agtgactgat ataaaagaga 11040
aaaaaggcga tttttccgcc taaaactctt taaaacttat taaaactctt aaaacccgcc 11100
tggcctgtgc ataactgtct ggccagcgca cagccgaaga gctgcaaaaa gcgcctaccc 11160
ttcggtcgct gcgctcccta cgccccgccg cttcgcgtcg gcctatcgcg gccgctggcc 11220
gctcaaaaat ggctggccta cggccaggca atctaccagg gcgcggacaa gccgcgccgt 11280
cgccactcga ccgccggcgc ccacatcaag gcaccctgcc tcgcgcgttt cggtgatgac 11340
ggtgaaaacc tctgacacat gcagctcccg gagacggtca cagcttgtct gtaagcggat 11400
gccgggagca gacaagcccg tcagggcgcg tcagcgggtg ttggcgggtg tcggggcgca 11460
gccatgaccc agtcacgtag cgatagcgga gtgtatactg gcttaactat gcggcatcag 11520
agcagattgt actgagagtg caccatatgc ggtgtgaaat accgcacaga tgcgtaagga 11580
gaaaataccg catcaggcgc tcttccgctt cctcgctcac tgactcgctg cgctcggtcg 11640
ttcggctgcg gcgagcggta tcagctcact caaaggcggt aatacggtta tccacagaat 11700
caggggataa cgcaggaaag aacatgtgag caaaaggcca gcaaaaggcc aggaaccgta 11760
aaaaggccgc gttgctggcg tttttccata ggctccgccc ccctgacgag catcacaaaa 11820
atcgacgctc aagtcagagg tggcgaaacc cgacaggact ataaagatac caggcgtttc 11880
cccctggaag ctccctcgtg cgctctcctg ttccgaccct gccgcttacc ggatacctgt 11940
ccgcctttct cccttcggga agcgtggcgc tttctcatag ctcacgctgt aggtatctca 12000
gttcggtgta ggtcgttcgc tccaagctgg gctgtgtgca cgaacccccc gttcagcccg 12060
accgctgcgc cttatccggt aactatcgtc ttgagtccaa cccggtaaga cacgacttat 12120
cgccactggc agcagccact ggtaacagga ttagcagagc gaggtatgta ggcggtgcta 12180
cagagttctt gaagtggtgg cctaactacg gctacactag aaggacagta tttggtatct 12240
gcgctctgct gaagccagtt accttcggaa aaagagttgg tagctcttga tccggcaaac 12300
aaaccaccgc tggtagcggt ggtttttttg tttgcaagca gcagattacg cgcagaaaaa 12360
aaggatctca agaagatcct ttgatctttt ctacggggtc tgacgctcag tggaacgaaa 12420
actcacgtta agggattttg gtcatgcatt ctaggtacta aaacaattca tccagtaaaa 12480
tataatattt tattttctcc caatcaggct tgatccccag taagtcaaaa aatagctcga 12540
catactgttc ttccccgata tcctccctga tcgaccggac gcagaaggca atgtcatacc 12600
acttgtccgc cctgccgctt ctcccaagat caataaagcc acttactttg ccatctttca 12660
caaagatgtt gctgtctccc aggtcgccgt gggaaaagac aagttcctct tcgggctttt 12720
ccgtctttaa aaaatcatac agctcgcgcg gatctttaaa tggagtgtct tcttcccagt 12780
tttcgcaatc cacatcggcc agatcgttat tcagtaagta atccaattcg gctaagcggc 12840
tgtctaagct attcgtatag ggacaatccg atatgtcgat ggagtgaaag agcctgatgc 12900
actccgcata cagctcgata atcttttcag ggctttgttc atcttcatac tcttccgagc 12960
aaaggacgcc atcggcctca ctcatgagca gattgctcca gccatcatgc cgttcaaagt 13020
gcaggacctt tggaacaggc agctttcctt ccagccatag catcatgtcc ttttcccgtt 13080
ccacatcata ggtggtccct ttataccggc tgtccgtcat ttttaaatat aggttttcat 13140
tttctcccac cagcttatat accttagcag gagacattcc ttccgtatct tttacgcagc 13200
ggtatttttc gatcagtttt ttcaattccg gtgatattct cattttagcc atttattatt 13260
tccttcctct tttctacagt atttaaagat accccaagaa gctaattata acaagacgaa 13320
ctccaattca ctgttccttg cattctaaaa ccttaaatac cagaaaacag ctttttcaaa 13380
gttgttttca aagttggcgt ataacatagt atcgacggag ccgattttga aaccgcggtg 13440
atcacaggca gcaacgctct gtcatcgtta caatcaacat gctaccctcc gcgagatcat 13500
ccgtgtttca aacccggcag cttagttgcc gttcttccga atagcatcgg taacatgagc 13560
aaagtctgcc gccttacaac ggctctcccg ctgacgccgt cccggactga tgggctgcct 13620
gtatcgagtg gtgattttgt gccgagctgc cggtcgggga gctgttggct ggctggtggc 13680
aggatatatt gtggtgtaaa caaattgacg cttagacaac ttaataacac attgcggacg 13740
tttttaatgt actgaattaa cgccgaatta attcggggga tctggatttt agtactggat 13800
tttggtttta ggaattagaa attttattga tagaagtatt ttacaaatac aaatacatac 13860
taagggtttc ttatatgctc aacacatgag cgaaacccta taggaaccct aattccctta 13920
tctgggaact actcacacat tattatggag aaactcgagc ttgtcgatcg acagatccgg 13980
tcggcatcta ctctatttct ttgccctcgg acgagtgctg gggcgtcggt ttccactatc 14040
ggcgagtact tctacacagc catcggtcca gacggccgcg cttctgcggg cgatttgtgt 14100
acgcccgaca gtcccggctc cggatcggac gattgcgtcg catcgaccct gcgcccaagc 14160
tgcatcatcg aaattgccgt caaccaagct ctgatagagt tggtcaagac caatgcggag 14220
catatacgcc cggagtcgtg gcgatcctgc aagctccgga tgcctccgct cgaagtagcg 14280
cgtctgctgc tccatacaag ccaaccacgg cctccagaag aagatgttgg cgacctcgta 14340
ttgggaatcc ccgaacatcg cctcgctcca gtcaatgacc gctgttatgc ggccattgtc 14400
cgtcaggaca ttgttggagc cgaaatccgc gtgcacgagg tgccggactt cggggcagtc 14460
ctcggcccaa agcatcagct catcgagagc ctgcgcgacg gacgcactga cggtgtcgtc 14520
catcacagtt tgccagtgat acacatgggg atcagcaatc gcgcatatga aatcacgcca 14580
tgtagtgtat tgaccgattc cttgcggtcc gaatgggccg aacccgctcg tctggctaag 14640
atcggccgca gcgatcgcat ccatagcctc cgcgaccggt tgtagaacag cgggcagttc 14700
ggtttcaggc aggtcttgca acgtgacacc ctgtgcacgg cgggagatgc aataggtcag 14760
gctctcgcta aactccccaa tgtcaagcac ttccggaatc gggagcgcgg ccgatgcaaa 14820
gtgccgataa acataacgat ctttgtagaa accatcggcg cagctattta cccgcaggac 14880
atatccacgc cctcctacat cgaagctgaa agcacgagat tcttcgccct ccgagagctg 14940
catcaggtcg gagacgctgt cgaacttttc gatcagaaac ttctcgacag acgtcgcggt 15000
gagttcaggc tttttcatat ctcattgccc cccgggatct gcgaaagctc gagagagata 15060
gatttgtaga gagagactgg tgatttcagc gtgtcctctc caaatgaaat gaacttcctt 15120
atatagagga aggtcttgcg aaggatagtg ggattgtgcg tcatccctta cgtcagtgga 15180
gatatcacat caatccactt gctttgaaga cgtggttgga acgtcttctt tttccacgat 15240
gctcctcgtg ggtgggggtc catctttggg accactgtcg gcagaggcat cttgaacgat 15300
agcctttcct ttatcgcaat gatggcattt gtaggtgcca ccttcctttt ctactgtcct 15360
tttgatgaag tgacagatag ctgggcaatg gaatccgagg aggtttcccg atattaccct 15420
ttgttgaaaa gtctcaatag ccctttggtc ttctgagact gtatctttga tattcttgga 15480
gtagacgaga gtgtcgtgct ccaccatgtt atcacatcaa tccacttgct ttgaagacgt 15540
ggttggaacg tcttcttttt ccacgatgct cctcgtgggt gggggtccat ctttgggacc 15600
actgtcggca gaggcatctt gaacgatagc ctttccttta tcgcaatgat ggcatttgta 15660
ggtgccacct tccttttcta ctgtcctttt gatgaagtga cagatagctg ggcaatggaa 15720
tccgaggagg tttcccgata ttaccctttg ttgaaaagtc tcaatagccc tttggtcttc 15780
tgagactgta tctttgatat tcttggagta gacgagagtg tcgtgctcca ccatgttggc 15840
aagctgctct agccaatacg caaaccgcct ctccccgcgc gttggccgat tcattaatgc 15900
agctggcacg acaggtttcc cgactggaaa gcgggcagtg agcgcaacgc aattaatgtg 15960
agttagctca ctcattaggc accccaggct ttacacttta tgcttccggc tcgtatgttg 16020
tgtggaattg tgagcggata acaatttcac acaggaaaca gctatgacca tgattacg 16078
<210> 14
<211> 16406
<212> DNA
<213> Artificial sequence (pC 1300-2X35S-Cas 9-PagPDS)
<400> 14
aattcgagct cggtaccgga ctagtggatc cctcgagaag cttcgttgaa caacggaaac 60
tcgacttgcc ttccgcacaa tacatcattt cttcttagct ttttttcttc ttcttcgttc 120
atacagtttt tttttgttta tcagcttaca ttttcttgaa ccgtagcttt cgttttcttc 180
tttttaactt tccattcgga gtttttgtat cttgtttcat agtttgtccc aggattagaa 240
tgattaggca tcgaaccttc aagaatttga ttgaataaaa catcttcatt cttaagatat 300
gaagataatc ttcaaaaggc ccctgggaat ctgaaagaag agaagcaggc ccatttatat 360
gggaaagaac aatagtattt cttatatagg cccatttaag ttgaaaacaa tcttcaaaag 420
tcccacatcg cttagataag aaaacgaagc tgagtttata tacagctaga gtcgaagtag 480
tgattggagt gcattgaact tgagcgtttc agagctatgc tggaaacagc atagcaagtt 540
gaaataaggc tagtccgtta tcaacttgaa aaagtggcac cgagtcggtg ctttttttcc 600
acataatcgt cgagaagctt cgttgaacaa cggaaactcg acttgccttc cgcacaatac 660
atcatttctt cttagctttt tttcttcttc ttcgttcata cagttttttt ttgtttatca 720
gcttacattt tcttgaaccg tagctttcgt tttcttcttt ttaactttcc attcggagtt 780
tttgtatctt gtttcatagt ttgtcccagg attagaatga ttaggcatcg aaccttcaag 840
aatttgattg aataaaacat cttcattctt aagatatgaa gataatcttc aaaaggcccc 900
tgggaatctg aaagaagaga agcaggccca tttatatggg aaagaacaat agtatttctt 960
atataggccc atttaagttg aaaacaatct tcaaaagtcc cacatcgctt agataagaaa 1020
acgaagctga gtttatatac agctagagtc gaagtagtga ttgtgttatc aaggtccggt 1080
ctgtttcaga gctatgctgg aaacagcata gcaagttgaa ataaggctag tccgttatca 1140
acttgaaaaa gtggcaccga gtcggtgctt tttttccaca taatcgtcga cagatcttct 1200
agtggatccc tcgagaagct tcgttgaaca acggaaactc gacttgcctt ccgcacaata 1260
catcatttct tcttagcttt ttttcttctt cttcgttcat acagtttttt tttgtttatc 1320
agcttacatt ttcttgaacc gtagctttcg ttttcttctt tttaactttc cattcggagt 1380
ttttgtatct tgtttcatag tttgtcccag gattagaatg attaggcatc gaaccttcaa 1440
gaatttgatt gaataaaaca tcttcattct taagatatga agataatctt caaaaggccc 1500
ctgggaatct gaaagaagag aagcaggccc atttatatgg gaaagaacaa tagtatttct 1560
tatataggcc catttaagtt gaaaacaatc ttcaaaagtc ccacatcgct tagataagaa 1620
aacgaagctg agtttatata cagctagagt cgaagtagtg attgtcaccg tgttatcaag 1680
gtcgtttcag agctatgctg gaaacagcat agcaagttga aataaggcta gtccgttatc 1740
aacttgaaaa agtggcaccg agtcggtgct ttttttccac ataatcgtcg acagatccgt 1800
acccctactc caaaaatgtc aaagatacag tctcagaaga ccaaagggct attgagactt 1860
ttcaacaaag ggtaatttcg ggaaacctcc tcggattcca ttgcccagct atctgtcact 1920
tcatcgaaag gacagtagaa aaggaaggtg gctcctacaa atgccatcat tgcgataaag 1980
gaaaggctat cattcaagat gcctctgccg acagtggtcc caaagatgga cccccaccca 2040
cgaggagcat cgtggaaaaa gaagacgttc caaccacgtc ttcaaagcaa gtggattgat 2100
gtgacatctc cactgacgta agggatgacg cacaatccca cccctactcc aaaaatgtca 2160
aagatacagt ctcagaagac caaagggcta ttgagacttt tcaacaaagg gtaatttcgg 2220
gaaacctcct cggattccat tgcccagcta tctgtcactt catcgaaagg acagtagaaa 2280
aggaaggtgg ctcctacaaa tgccatcatt gcgataaagg aaaggctatc attcaagatg 2340
cctctgccga cagtggtccc aaagatggac ccccacccac gaggagcatc gtggaaaaag 2400
aagacgttcc aaccacgtct tcaaagcaag tggattgatg tgacatctcc actgacgtaa 2460
gggatgacgc acaatcccac tatccttcgc aagacccttc ctctatataa ggaagttcat 2520
ttcatttgga gaggacagcc caagctagat ccatggcccc taagaagaag agaaaggtcg 2580
gtattcacgg cgttcctgcg gcgatggaca agaagtatag tattggtctg gacattggga 2640
cgaattccgt tggctgggcc gtgatcaccg atgagtacaa ggtcccttcc aagaagttta 2700
aggttctggg gaacaccgat cggcacagca tcaagaagaa tctcattgga gccctcctgt 2760
tcgactcagg cgagaccgcc gaagcaacaa ggctcaagag aaccgcaagg agacggtata 2820
caagaaggaa gaataggatc tgctacctgc aggagatttt cagcaacgaa atggcgaagg 2880
tggacgattc gttctttcat agattggagg agagtttcct cgtcgaggaa gataagaagc 2940
acgagaggca tcctatcttt ggcaacattg tcgacgaggt tgcctatcac gaaaagtacc 3000
ccacaatcta tcatctgcgg aagaagcttg tggactcgac tgataaggcg gaccttagat 3060
tgatctacct cgctctggca cacatgatta agttcagggg ccattttctg atcgaggggg 3120
atcttaaccc ggacaatagc gatgtggaca agttgttcat ccagctcgtc caaacctaca 3180
atcagctctt tgaggaaaac ccaattaatg cttcaggcgt cgacgccaag gcgatcctgt 3240
ctgcacgcct ttcaaagtct cgccggcttg agaacttgat cgctcaactc ccgggcgaaa 3300
agaagaacgg cttgttcggg aatctcattg cactttcgtt ggggctcaca ccaaacttca 3360
agagtaattt tgatctcgct gaggacgcaa agctgcagct ttccaaggac acttatgacg 3420
atgacctgga taaccttttg gcccaaatcg gcgatcagta cgcggacttg ttcctcgccg 3480
cgaagaattt gtcggacgcg atcctcctga gtgatattct ccgcgtgaac accgagatta 3540
caaaggcccc gctctcggcg agtatgatca agcgctatga cgagcaccat caggatctga 3600
cccttttgaa ggctttggtc cggcagcaac tcccagagaa gtacaaggaa atcttctttg 3660
atcaatccaa gaacggctac gctggttata ttgacggcgg ggcatcgcag gaggaattct 3720
acaagtttat caagccaatt ctggagaaga tggatggcac agaggaactc ctggtgaagc 3780
tcaataggga ggaccttttg cggaagcaaa gaactttcga taacggcagc atccctcacc 3840
agattcatct cggggagctg cacgccatcc tgagaaggca ggaagacttc tacccctttc 3900
ttaaggataa ccgggagaag atcgaaaaga ttctgacgtt cagaattccg tactatgtcg 3960
gaccactcgc ccggggtaat tccagatttg cgtggatgac cagaaagagc gaggaaacca 4020
tcacaccttg gaacttcgag gaagtggtcg ataagggcgc ttccgcacag agcttcattg 4080
agcgcatgac aaattttgac aagaacctgc ctaatgagaa ggtccttccc aagcattccc 4140
tcctgtacga gtatttcact gtttataacg aactcacgaa ggtgaagtat gtgaccgagg 4200
gaatgcgcaa gcccgccttc ctgagcggcg agcaaaagaa ggcgatcgtg gaccttttgt 4260
ttaagaccaa tcggaaggtc acagttaagc agctcaagga ggactacttc aagaagattg 4320
aatgcttcga ttccgttgag atcagcggcg tggaagacag gtttaacgcg tcactgggga 4380
cttaccacga tctcctgaag atcattaagg ataaggactt cttggacaac gaggaaaatg 4440
aggatatcct cgaagacatt gtcctgactc ttacgttgtt tgaggatagg gaaatgatcg 4500
aggaacgctt gaagacgtat gcccatctct tcgatgacaa ggttatgaag cagctcaaga 4560
gaagaagata caccggatgg ggaaggctgt cccgcaagct tatcaatggc attagagaca 4620
agcaatcagg gaagacaatc cttgactttt tgaagtctga tggcttcgcg aacaggaatt 4680
ttatgcagct gattcacgat gactcactta ctttcaagga ggatatccag aaggctcaag 4740
tgtcgggaca aggtgacagt ctgcacgagc atatcgccaa ccttgcggga tctcctgcaa 4800
tcaagaaggg tattctgcag acagtcaagg ttgtggatga gcttgtgaag gtcatgggac 4860
ggcataagcc cgagaacatc gttattgaga tggccagaga aaatcagacc acacaaaagg 4920
gtcagaagaa ctcgagggag cgcatgaagc gcatcgagga aggcattaag gagctgggga 4980
gtcagatcct taaggagcac ccggtggaaa acacgcagtt gcaaaatgag aagctctatc 5040
tgtactatct gcaaaatggc agggatatgt atgtggacca ggagttggat attaaccgcc 5100
tctcggatta cgacgtcgat catatcgttc ctcagtcctt ccttaaggat gacagcattg 5160
acaataaggt tctcaccagg tccgacaaga accgcgggaa gtccgataat gtgcccagcg 5220
aggaagtcgt taagaagatg aagaactact ggaggcaact tttgaatgcc aagttgatca 5280
cacagaggaa gtttgataac ctcactaagg ccgagcgcgg aggtctcagc gaactggaca 5340
aggcgggctt cattaagcgg caactggttg agactagaca gatcacgaag cacgtggcgc 5400
agattctcga ttcacgcatg aacacgaagt acgatgagaa tgacaagctg atccgggaag 5460
tgaaggtcat caccttgaag tcaaagctcg tttctgactt caggaaggat ttccaatttt 5520
ataaggtgcg cgagatcaac aattatcacc atgctcatga cgcatacctc aacgctgtgg 5580
tcggaacagc attgattaag aagtacccga agctcgagtc cgaattcgtg tacggtgact 5640
ataaggttta cgatgtgcgc aagatgatcg ccaagtcaga gcaggaaatt ggcaaggcca 5700
ctgcgaagta tttcttttac tctaacatta tgaatttctt taagactgag atcacgctgg 5760
ctaatggcga aatccggaag agaccactta ttgagaccaa cggcgagaca ggggaaatcg 5820
tgtgggacaa ggggagggat ttcgccacag tccgcaaggt tctctctatg cctcaagtga 5880
atattgtcaa gaagactgaa gtccagacgg gcgggttctc aaaggaatct attctgccca 5940
agcggaactc ggataagctt atcgccagaa agaaggactg ggacccgaag aagtatggag 6000
gtttcgactc accaacggtg gcttactctg tcctggttgt ggcaaaggtg gagaagggaa 6060
agtcaaagaa gctcaagtct gtcaaggagc tcctgggtat caccattatg gagaggtcca 6120
gcttcgaaaa gaatccgatc gattttctcg aggcgaaggg atataaggaa gtgaagaagg 6180
acctgatcat taagcttcca aagtacagtc ttttcgagtt ggaaaacggc aggaagcgca 6240
tgttggcttc cgcaggagag ctccagaagg gtaacgagct tgctttgccg tccaagtatg 6300
tgaacttcct ctatctggca tcccactacg agaagctcaa gggcagccca gaggataacg 6360
aacagaagca actgtttgtg gagcaacaca agcattatct tgacgagatc attgaacaga 6420
tttcggagtt cagtaagcgc gtcatcctcg ccgacgcgaa tttggataag gttctctcag 6480
cctacaacaa gcaccgggac aagcctatca gagagcaggc ggaaaatatc attcatctct 6540
tcaccctgac aaaccttggg gctcccgctg cattcaagta ttttgacact acgattgatc 6600
ggaagagata cacttctacg aaggaggtgc tggatgcaac ccttatccac caatcgatta 6660
ctggcctcta cgagacgcgg atcgacttga gtcagctcgg gggggataag agaccagcgg 6720
caaccaagaa ggcaggacaa gcgaagaaga agaagtagca attcggtacg ctgaaatcac 6780
cagtctctct ctacaaatct atctctctct attttctcca taaataatgt gtgagtagtt 6840
tcccgataag ggaaattagg gttcttatag ggtttcgctc atgtgttgag catataagaa 6900
acccttagta tgtatttgta tttgtaaaat acttctatca ataaaatttc taattcctaa 6960
aaccaaaatc cagtactaaa atccagatct cctaaagtcc ctatagatct ttgtcgtgaa 7020
tataaaccag acacgagacg actaaacctg gagcccagac gccgttcgaa gctagaagta 7080
ccgcttaggc aggaggccgt tagggaaaag atgctaaggc agggttggtt acgttgactc 7140
ccccgtaggt ttggtttaaa tatgatgaag tggacggaag gaaggaggaa gacaaggaag 7200
gataaggttg caggccctgt gcaaggtaag aagatggaaa tttgatagag gtacgctact 7260
atacttatac tatacgctaa gggaatgctt gtatttatac cctatacccc ctaataaccc 7320
cttatcaatt taagaaataa tccgcataag cccccgctta aaaattggta tcagagccat 7380
gaataggtct atgaccaaaa ctcaagagga taaaacctca ccaaaatacg aaagagttct 7440
taactctaaa gataaaagat ctttcaagat caaaactaga gtcgacctgc aggcatgcaa 7500
gcttggcact ggccgtcgtt ttacaacgtc gtgactggga aaaccctggc gttacccaac 7560
ttaatcgcct tgcagcacat ccccctttcg ccagctggcg taatagcgaa gaggcccgca 7620
ccgatcgccc ttcccaacag ttgcgcagcc tgaatggcga atgctagagc agcttgagct 7680
tggatcagat tgtcgtttcc cgccttcagt ttaaactatc agtgtttgac aggatatatt 7740
ggcgggtaaa cctaagagaa aagagcgttt attagaataa cggatattta aaagggcgtg 7800
aaaaggttta tccgttcgtc catttgtatg tgcatgccaa ccacagggtt cccctcggga 7860
tcaaagtact ttgatccaac ccctccgctg ctatagtgca gtcggcttct gacgttcagt 7920
gcagccgtct tctgaaaacg acatgtcgca caagtcctaa gttacgcgac aggctgccgc 7980
cctgcccttt tcctggcgtt ttcttgtcgc gtgttttagt cgcataaagt agaatacttg 8040
cgactagaac cggagacatt acgccatgaa caagagcgcc gccgctggcc tgctgggcta 8100
tgcccgcgtc agcaccgacg accaggactt gaccaaccaa cgggccgaac tgcacgcggc 8160
cggctgcacc aagctgtttt ccgagaagat caccggcacc aggcgcgacc gcccggagct 8220
ggccaggatg cttgaccacc tacgccctgg cgacgttgtg acagtgacca ggctagaccg 8280
cctggcccgc agcacccgcg acctactgga cattgccgag cgcatccagg aggccggcgc 8340
gggcctgcgt agcctggcag agccgtgggc cgacaccacc acgccggccg gccgcatggt 8400
gttgaccgtg ttcgccggca ttgccgagtt cgagcgttcc ctaatcatcg accgcacccg 8460
gagcgggcgc gaggccgcca aggcccgagg cgtgaagttt ggcccccgcc ctaccctcac 8520
cccggcacag atcgcgcacg cccgcgagct gatcgaccag gaaggccgca ccgtgaaaga 8580
ggcggctgca ctgcttggcg tgcatcgctc gaccctgtac cgcgcacttg agcgcagcga 8640
ggaagtgacg cccaccgagg ccaggcggcg cggtgccttc cgtgaggacg cattgaccga 8700
ggccgacgcc ctggcggccg ccgagaatga acgccaagag gaacaagcat gaaaccgcac 8760
caggacggcc aggacgaacc gtttttcatt accgaagaga tcgaggcgga gatgatcgcg 8820
gccgggtacg tgttcgagcc gcccgcgcac gtctcaaccg tgcggctgca tgaaatcctg 8880
gccggtttgt ctgatgccaa gctggcggcc tggccggcca gcttggccgc tgaagaaacc 8940
gagcgccgcc gtctaaaaag gtgatgtgta tttgagtaaa acagcttgcg tcatgcggtc 9000
gctgcgtata tgatgcgatg agtaaataaa caaatacgca aggggaacgc atgaaggtta 9060
tcgctgtact taaccagaaa ggcgggtcag gcaagacgac catcgcaacc catctagccc 9120
gcgccctgca actcgccggg gccgatgttc tgttagtcga ttccgatccc cagggcagtg 9180
cccgcgattg ggcggccgtg cgggaagatc aaccgctaac cgttgtcggc atcgaccgcc 9240
cgacgattga ccgcgacgtg aaggccatcg gccggcgcga cttcgtagtg atcgacggag 9300
cgccccaggc ggcggacttg gctgtgtccg cgatcaaggc agccgacttc gtgctgattc 9360
cggtgcagcc aagcccttac gacatatggg ccaccgccga cctggtggag ctggttaagc 9420
agcgcattga ggtcacggat ggaaggctac aagcggcctt tgtcgtgtcg cgggcgatca 9480
aaggcacgcg catcggcggt gaggttgccg aggcgctggc cgggtacgag ctgcccattc 9540
ttgagtcccg tatcacgcag cgcgtgagct acccaggcac tgccgccgcc ggcacaaccg 9600
ttcttgaatc agaacccgag ggcgacgctg cccgcgaggt ccaggcgctg gccgctgaaa 9660
ttaaatcaaa actcatttga gttaatgagg taaagagaaa atgagcaaaa gcacaaacac 9720
gctaagtgcc ggccgtccga gcgcacgcag cagcaaggct gcaacgttgg ccagcctggc 9780
agacacgcca gccatgaagc gggtcaactt tcagttgccg gcggaggatc acaccaagct 9840
gaagatgtac gcggtacgcc aaggcaagac cattaccgag ctgctatctg aatacatcgc 9900
gcagctacca gagtaaatga gcaaatgaat aaatgagtag atgaatttta gcggctaaag 9960
gaggcggcat ggaaaatcaa gaacaaccag gcaccgacgc cgtggaatgc cccatgtgtg 10020
gaggaacggg cggttggcca ggcgtaagcg gctgggttgt ctgccggccc tgcaatggca 10080
ctggaacccc caagcccgag gaatcggcgt gacggtcgca aaccatccgg cccggtacaa 10140
atcggcgcgg cgctgggtga tgacctggtg gagaagttga aggccgcgca ggccgcccag 10200
cggcaacgca tcgaggcaga agcacgcccc ggtgaatcgt ggcaagcggc cgctgatcga 10260
atccgcaaag aatcccggca accgccggca gccggtgcgc cgtcgattag gaagccgccc 10320
aagggcgacg agcaaccaga ttttttcgtt ccgatgctct atgacgtggg cacccgcgat 10380
agtcgcagca tcatggacgt ggccgttttc cgtctgtcga agcgtgaccg acgagctggc 10440
gaggtgatcc gctacgagct tccagacggg cacgtagagg tttccgcagg gccggccggc 10500
atggccagtg tgtgggatta cgacctggta ctgatggcgg tttcccatct aaccgaatcc 10560
atgaaccgat accgggaagg gaagggagac aagcccggcc gcgtgttccg tccacacgtt 10620
gcggacgtac tcaagttctg ccggcgagcc gatggcggaa agcagaaaga cgacctggta 10680
gaaacctgca ttcggttaaa caccacgcac gttgccatgc agcgtacgaa gaaggccaag 10740
aacggccgcc tggtgacggt atccgagggt gaagccttga ttagccgcta caagatcgta 10800
aagagcgaaa ccgggcggcc ggagtacatc gagatcgagc tagctgattg gatgtaccgc 10860
gagatcacag aaggcaagaa cccggacgtg ctgacggttc accccgatta ctttttgatc 10920
gatcccggca tcggccgttt tctctaccgc ctggcacgcc gcgccgcagg caaggcagaa 10980
gccagatggt tgttcaagac gatctacgaa cgcagtggca gcgccggaga gttcaagaag 11040
ttctgtttca ccgtgcgcaa gctgatcggg tcaaatgacc tgccggagta cgatttgaag 11100
gaggaggcgg ggcaggctgg cccgatccta gtcatgcgct accgcaacct gatcgagggc 11160
gaagcatccg ccggttccta atgtacggag cagatgctag ggcaaattgc cctagcaggg 11220
gaaaaaggtc gaaaaggtct ctttcctgtg gatagcacgt acattgggaa cccaaagccg 11280
tacattggga accggaaccc gtacattggg aacccaaagc cgtacattgg gaaccggtca 11340
cacatgtaag tgactgatat aaaagagaaa aaaggcgatt tttccgccta aaactcttta 11400
aaacttatta aaactcttaa aacccgcctg gcctgtgcat aactgtctgg ccagcgcaca 11460
gccgaagagc tgcaaaaagc gcctaccctt cggtcgctgc gctccctacg ccccgccgct 11520
tcgcgtcggc ctatcgcggc cgctggccgc tcaaaaatgg ctggcctacg gccaggcaat 11580
ctaccagggc gcggacaagc cgcgccgtcg ccactcgacc gccggcgccc acatcaaggc 11640
accctgcctc gcgcgtttcg gtgatgacgg tgaaaacctc tgacacatgc agctcccgga 11700
gacggtcaca gcttgtctgt aagcggatgc cgggagcaga caagcccgtc agggcgcgtc 11760
agcgggtgtt ggcgggtgtc ggggcgcagc catgacccag tcacgtagcg atagcggagt 11820
gtatactggc ttaactatgc ggcatcagag cagattgtac tgagagtgca ccatatgcgg 11880
tgtgaaatac cgcacagatg cgtaaggaga aaataccgca tcaggcgctc ttccgcttcc 11940
tcgctcactg actcgctgcg ctcggtcgtt cggctgcggc gagcggtatc agctcactca 12000
aaggcggtaa tacggttatc cacagaatca ggggataacg caggaaagaa catgtgagca 12060
aaaggccagc aaaaggccag gaaccgtaaa aaggccgcgt tgctggcgtt tttccatagg 12120
ctccgccccc ctgacgagca tcacaaaaat cgacgctcaa gtcagaggtg gcgaaacccg 12180
acaggactat aaagatacca ggcgtttccc cctggaagct ccctcgtgcg ctctcctgtt 12240
ccgaccctgc cgcttaccgg atacctgtcc gcctttctcc cttcgggaag cgtggcgctt 12300
tctcatagct cacgctgtag gtatctcagt tcggtgtagg tcgttcgctc caagctgggc 12360
tgtgtgcacg aaccccccgt tcagcccgac cgctgcgcct tatccggtaa ctatcgtctt 12420
gagtccaacc cggtaagaca cgacttatcg ccactggcag cagccactgg taacaggatt 12480
agcagagcga ggtatgtagg cggtgctaca gagttcttga agtggtggcc taactacggc 12540
tacactagaa ggacagtatt tggtatctgc gctctgctga agccagttac cttcggaaaa 12600
agagttggta gctcttgatc cggcaaacaa accaccgctg gtagcggtgg tttttttgtt 12660
tgcaagcagc agattacgcg cagaaaaaaa ggatctcaag aagatccttt gatcttttct 12720
acggggtctg acgctcagtg gaacgaaaac tcacgttaag ggattttggt catgcattct 12780
aggtactaaa acaattcatc cagtaaaata taatatttta ttttctccca atcaggcttg 12840
atccccagta agtcaaaaaa tagctcgaca tactgttctt ccccgatatc ctccctgatc 12900
gaccggacgc agaaggcaat gtcataccac ttgtccgccc tgccgcttct cccaagatca 12960
ataaagccac ttactttgcc atctttcaca aagatgttgc tgtctcccag gtcgccgtgg 13020
gaaaagacaa gttcctcttc gggcttttcc gtctttaaaa aatcatacag ctcgcgcgga 13080
tctttaaatg gagtgtcttc ttcccagttt tcgcaatcca catcggccag atcgttattc 13140
agtaagtaat ccaattcggc taagcggctg tctaagctat tcgtataggg acaatccgat 13200
atgtcgatgg agtgaaagag cctgatgcac tccgcataca gctcgataat cttttcaggg 13260
ctttgttcat cttcatactc ttccgagcaa aggacgccat cggcctcact catgagcaga 13320
ttgctccagc catcatgccg ttcaaagtgc aggacctttg gaacaggcag ctttccttcc 13380
agccatagca tcatgtcctt ttcccgttcc acatcatagg tggtcccttt ataccggctg 13440
tccgtcattt ttaaatatag gttttcattt tctcccacca gcttatatac cttagcagga 13500
gacattcctt ccgtatcttt tacgcagcgg tatttttcga tcagtttttt caattccggt 13560
gatattctca ttttagccat ttattatttc cttcctcttt tctacagtat ttaaagatac 13620
cccaagaagc taattataac aagacgaact ccaattcact gttccttgca ttctaaaacc 13680
ttaaatacca gaaaacagct ttttcaaagt tgttttcaaa gttggcgtat aacatagtat 13740
cgacggagcc gattttgaaa ccgcggtgat cacaggcagc aacgctctgt catcgttaca 13800
atcaacatgc taccctccgc gagatcatcc gtgtttcaaa cccggcagct tagttgccgt 13860
tcttccgaat agcatcggta acatgagcaa agtctgccgc cttacaacgg ctctcccgct 13920
gacgccgtcc cggactgatg ggctgcctgt atcgagtggt gattttgtgc cgagctgccg 13980
gtcggggagc tgttggctgg ctggtggcag gatatattgt ggtgtaaaca aattgacgct 14040
tagacaactt aataacacat tgcggacgtt tttaatgtac tgaattaacg ccgaattaat 14100
tcgggggatc tggattttag tactggattt tggttttagg aattagaaat tttattgata 14160
gaagtatttt acaaatacaa atacatacta agggtttctt atatgctcaa cacatgagcg 14220
aaaccctata ggaaccctaa ttcccttatc tgggaactac tcacacatta ttatggagaa 14280
actcgagctt gtcgatcgac agatccggtc ggcatctact ctatttcttt gccctcggac 14340
gagtgctggg gcgtcggttt ccactatcgg cgagtacttc tacacagcca tcggtccaga 14400
cggccgcgct tctgcgggcg atttgtgtac gcccgacagt cccggctccg gatcggacga 14460
ttgcgtcgca tcgaccctgc gcccaagctg catcatcgaa attgccgtca accaagctct 14520
gatagagttg gtcaagacca atgcggagca tatacgcccg gagtcgtggc gatcctgcaa 14580
gctccggatg cctccgctcg aagtagcgcg tctgctgctc catacaagcc aaccacggcc 14640
tccagaagaa gatgttggcg acctcgtatt gggaatcccc gaacatcgcc tcgctccagt 14700
caatgaccgc tgttatgcgg ccattgtccg tcaggacatt gttggagccg aaatccgcgt 14760
gcacgaggtg ccggacttcg gggcagtcct cggcccaaag catcagctca tcgagagcct 14820
gcgcgacgga cgcactgacg gtgtcgtcca tcacagtttg ccagtgatac acatggggat 14880
cagcaatcgc gcatatgaaa tcacgccatg tagtgtattg accgattcct tgcggtccga 14940
atgggccgaa cccgctcgtc tggctaagat cggccgcagc gatcgcatcc atagcctccg 15000
cgaccggttg tagaacagcg ggcagttcgg tttcaggcag gtcttgcaac gtgacaccct 15060
gtgcacggcg ggagatgcaa taggtcaggc tctcgctaaa ctccccaatg tcaagcactt 15120
ccggaatcgg gagcgcggcc gatgcaaagt gccgataaac ataacgatct ttgtagaaac 15180
catcggcgca gctatttacc cgcaggacat atccacgccc tcctacatcg aagctgaaag 15240
cacgagattc ttcgccctcc gagagctgca tcaggtcgga gacgctgtcg aacttttcga 15300
tcagaaactt ctcgacagac gtcgcggtga gttcaggctt tttcatatct cattgccccc 15360
cgggatctgc gaaagctcga gagagataga tttgtagaga gagactggtg atttcagcgt 15420
gtcctctcca aatgaaatga acttccttat atagaggaag gtcttgcgaa ggatagtggg 15480
attgtgcgtc atcccttacg tcagtggaga tatcacatca atccacttgc tttgaagacg 15540
tggttggaac gtcttctttt tccacgatgc tcctcgtggg tgggggtcca tctttgggac 15600
cactgtcggc agaggcatct tgaacgatag cctttccttt atcgcaatga tggcatttgt 15660
aggtgccacc ttccttttct actgtccttt tgatgaagtg acagatagct gggcaatgga 15720
atccgaggag gtttcccgat attacccttt gttgaaaagt ctcaatagcc ctttggtctt 15780
ctgagactgt atctttgata ttcttggagt agacgagagt gtcgtgctcc accatgttat 15840
cacatcaatc cacttgcttt gaagacgtgg ttggaacgtc ttctttttcc acgatgctcc 15900
tcgtgggtgg gggtccatct ttgggaccac tgtcggcaga ggcatcttga acgatagcct 15960
ttcctttatc gcaatgatgg catttgtagg tgccaccttc cttttctact gtccttttga 16020
tgaagtgaca gatagctggg caatggaatc cgaggaggtt tcccgatatt accctttgtt 16080
gaaaagtctc aatagccctt tggtcttctg agactgtatc tttgatattc ttggagtaga 16140
cgagagtgtc gtgctccacc atgttggcaa gctgctctag ccaatacgca aaccgcctct 16200
ccccgcgcgt tggccgattc attaatgcag ctggcacgac aggtttcccg actggaaagc 16260
gggcagtgag cgcaacgcaa ttaatgtgag ttagctcact cattaggcac cccaggcttt 16320
acactttatg cttccggctc gtatgttgtg tggaattgtg agcggataac aatttcacac 16380
aggaaacagc tatgaccatg attacg 16406

Claims (4)

  1. Application of pC1300-MAS-Cas9 gene editing system in 84K poplar gene editing, comprising the following steps:
    step (1): selection of PagPDS Gene target sites
    According to the 84K Yang Jiyin sequence, a CDS region of the PagPDS gene is found, the structure is analyzed, a potential Cas9 target site is searched, and gRNA is designed according to the position and GC content of the target site;
    in the step (1), pagPDS gene, pagPDS form P. Glandulosa sequence is shown as sequence 1 in a sequence table, pagPDS form P. Alba sequence is shown as sequence 2 in the sequence table;
    step (2): design of gRNA
    According to the design principle of PAM sequences, 3 gRNAs, namely gRNA1, gRNA2 and gRNA3, are designed in sequences without SNP loci, and see sequences 9-11 in a sequence table;
    step (3): construction of CRISPR/Cas9 Gene knockout vector
    1) Annealing polymerization of oligonucleotides
    Based on the subsequently ligated vector adaptor sequences, desalted oligonucleotide strands with specific adaptors are designed, and the synthesized oligonucleotide primers are primed with ddH 2 Diluting with water; annealing reaction system: 1. Mu.L of sense oligonucleotide, 1. Mu.L of antisense oligonucleotide, add ddH 2 0 to 50 mu L, uniformly mixing the prepared annealing reaction buffer solution, centrifuging briefly, then using a PCR instrument, standing at 95 ℃ for 5min at room temperature for 20min, mixing the primers, performing deformation annealing to form an oligonucleotide fragment with a sticky end, and immediately using the oligonucleotide fragment or standing at-20 ℃ for long-term storage after the standing at room temperature is finished;
    2) Construction of a Single intermediate vector
    Inserting the gRNA sequence into a carrier containing SK-gRNA, wherein the SK-gRNA sequence is shown as a sequence 12 in a sequence table; ligating gRNA1, gRNA2, gRNA3 into SK-gRNA by AarI enzyme;
    3) Multiple intermediate support polymerization
    Polymerizing 3 SK-gRNA intermediate vectors by utilizing the property that BamHI and BglII are isotail enzymes, performing enzyme digestion by using KpnI and BamHI as vectors to provide segmented SK-gRNA1, and performing enzyme digestion by using KpnI+SalI; SK-gRNA2 was digested with XhoI+XbaI; SK-gRNA3 was digested with Spel+BgI II;
    4) Construction to final vector
    The pC1300-Cas9 vector is digested with KpnI and BamHI, SK-gRNA is digested with KpnI and BglII and fragments are recovered and ligated to the pC1300-Cas9 vector using a final vector ligation system;
    the final vector pC1300-Cas9 was digested with KpnI and BamH I and recovered; three intermediate vectors were simultaneously ligated to final vector pC1300-Cas9 with KpnI and BamH I cleavage sites, which were started by the 2x35S and MAS promoters, respectively;
    5) Transformation competence
    After transformation, taking 100 mul of coated plates, selecting 10 monoclone on an LB+Kan plate the next day, adding LB+Kan into a 1.5mL centrifuge tube, shaking bacteria in a shaking table at 37 ℃ and 250rmp, and performing PCR detection and sequencing after the bacteria are well shaken;
    step (4): genetic transformation of poplar
    Step (5): acquisition and statistics of transgenic plants
    Respectively obtaining 40 PagPDS-2x35S-Cas9 and PagPDS-MAS-Cas9 transgenic plants by an agrobacterium transformation leaf disc method, wherein the transgenic plants of the two vectors have albino phenotype; among the 40 transgenic plants in PagPDS-2x35S-Cas9, albino seedlings are 27, and mutation rate is 67.5%, wherein 21 plants are of a pure-whitening phenotype, and 6 plants are of a yellow-green phenotype; among the 40 transgenic plants in PagPDS-MAS-Cas9, albino seedlings are 30, wherein 23 plants are pure white standard type, and 7 plants are yellow-green phenotype;
    step (6): directional editing of poplar genes by CRISPR system
    1) Identification of transgenic plant DNA level
    After the leaves are subjected to agrobacteria dip-dyeing, screening and growing in a screening culture medium containing Hyg, and identifying rooting resistant seedlings after the material is subjected to differentiation, elongation and rooting processes;
    2) Mutation identification of transgenic plants
    After obtaining positive transgenic plants, using specific primers for gRNA target site detection, carrying out PCR amplification to obtain DNA sequence fragments with potential target site modification, then connecting the fragments to a T carrier after electrophoresis separation, converting escherichia coli to obtain single colonies, extracting plasmids for sequencing of target sites, comparing sequencing results with a control sequence, and analyzing mutation events.
  2. 2. The use of the pC1300-MAS-Cas9 gene editing system according to claim 1 in 84K poplar gene editing, characterized in that:
    in step (3) 2), the specific steps are as follows: firstly, carrying out Aar I enzyme digestion on SK-gRNA to form a carrier with a sticky end, carrying out denaturation annealing on the gRNA after mixing to form a fragment with the sticky end, connecting the carrier and the fragment, and converting DH5
    Figure QLYQS_1
    The ligation plasmid was obtained and sequenced.
  3. 3. Use of the pC1300-MAS-Cas9 gene editing system according to claim 2 in 84K poplar gene editing, characterized in that: the step (4) is specifically as follows:
    1) Explants as transformation material: taking stem segments and tender leaf blades of 84 poplar growing for 3-4 weeks as explant transformation materials, cleaning the blades with clean water after taking materials, sterilizing in an ultra clean bench with 20% sodium hypochlorite for 20min, cleaning with sterile distilled water for at least 5 times, ensuring that no sodium hypochlorite remains on the surface of the material, and sucking redundant distilled water with sterile filter paper;
    2) Tissue culture seedlings are used as transformation materials: cutting off plant leaves in an ultra-clean bench by scissors, taking small discs with obvious main veins by using a sterile 6mm puncher, and putting the small discs into a normal culture medium for standby so as to prevent water dispersion;
    3) Taking out the stored carrier agrobacterium bacterial liquid from a refrigerator with ultralow temperature of minus 80 ℃ in a laboratory, placing the carrier agrobacterium bacterial liquid on ice for melting, using a sterilized inoculating needle, taking a small amount of bacterial liquid, dividing the bacterial liquid on a prepared YEB solid culture medium with the concentration of 100mg/L Kan and 50mg/LRif, sealing the solid culture medium, inversely placing the solid culture medium in a 28 ℃ incubator for culturing for 48 hours, picking single bacterial colonies after single bacterial colonies grow out, shaking the bacterial colonies overnight in an LB liquid culture medium with the concentration of 100mg/L Kan and 50mg/L Rif, and keeping the bacterial liquid to amplify in a logarithmic phase;
    4) Pouring the bacterial liquid into a sterilized centrifugal bottle, centrifuging for 30min, discarding the upper bacterial liquid, then suspending the precipitate by using the prepared suspension, wherein the OD600 = 0.3-0.4;
    5) Culturing the suspended bacterial liquid in a shaking table with the temperature of 50-1000rmp for 1h;
    6) Soaking the explant or tissue culture material in the suspended bacterial liquid for dip-dyeing: shaking in a 50rmp shaking table for 1-2h at room temperature;
    7) After the dip dyeing is finished, sucking redundant dip dyeing liquid into the leaf by using sterile filter paper, transferring the leaf into a differentiation culture medium, and culturing in a dark inversion mode for 2d, wherein the optimal temperature is 19-21 ℃;
    8) After two days, the agrobacterium grows out of the periphery of the dip-dyed material, the material is required to be cleaned, the material is cleaned by sterile water for four times, the filtered washing liquid is used for cleaning once, and after the washing liquid is added, the material is placed in a shaking table with 50-1000rmp for cleaning for 1h;
    9) Placing the cleaned material in a differentiation medium containing 500 mg/Lcefotam and 2mg/L Hyg of antibiotics, culturing in dark for 2 weeks, and culturing under light for two weeks;
    10 After callus growth, transferring the material to an elongation culture medium containing 50mg/L Hyg, and replacing the culture medium every 2-4 weeks;
    11 When the material height is 2cm, transferring the material into rooting culture medium containing 2mg/L Hyg, and the whole transformation process is 3-8 months.
  4. 4. The use of the pC1300-MAS-Cas9 gene editing system of claim 3 in 84K poplar gene editing, characterized in that: step (6) 2) is specifically as follows:
    sanger sequencing was performed on the transgenic plant extract DNA, pagPDS-2x35S-Cas9 at the T1 site, and 53.75% of the mutations in all albino phenotype plants were single nucleotide insertions, and the rate of detection of at least one allelic mutation was 65% in 26 edited plants; 21 strains with simultaneous mutations of two alleles, including 20 homozygous mutations and 1 biallelic mutation; in the T2/T3 locus, the mutation rate was 67.5%, including 21 biallelic mutations and 4 homozygous mutations, and a deletion of 2 to 5nt was found near PAM;
    in the PagPDS-MAS-Cas9 system, 30 plants are albino phenotype, the mutation rate is 75%, the pure albino plants are 23 plants, and the yellow-green phenotype plants are 7 plants; albino phenotype plants had alleles with significant large fragment deletions at T1 and T2/T3; regarding analysis of T1, mutations of at least one allele were detected in 29 plants, with 22 mutations in both alleles, including 19 homozygous mutations and 3 bi-allelic mutations, and a mutation rate of 72.5% at the T2/T3 locus, including 20 homozygous mutations and 2 bi-allelic mutations.
CN202011235857.3A 2020-11-08 2020-11-08 Application of pC1300-MAS-Cas9 gene editing system in 84K poplar gene editing Active CN112375781B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011235857.3A CN112375781B (en) 2020-11-08 2020-11-08 Application of pC1300-MAS-Cas9 gene editing system in 84K poplar gene editing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011235857.3A CN112375781B (en) 2020-11-08 2020-11-08 Application of pC1300-MAS-Cas9 gene editing system in 84K poplar gene editing

Publications (2)

Publication Number Publication Date
CN112375781A CN112375781A (en) 2021-02-19
CN112375781B true CN112375781B (en) 2023-05-02

Family

ID=74578500

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011235857.3A Active CN112375781B (en) 2020-11-08 2020-11-08 Application of pC1300-MAS-Cas9 gene editing system in 84K poplar gene editing

Country Status (1)

Country Link
CN (1) CN112375781B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113430194B (en) * 2020-11-30 2023-04-07 东北林业大学 White birch gene editing method based on CRISPR/Cas9

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015139008A1 (en) * 2014-03-14 2015-09-17 Cibus Us Llc Methods and compositions for increasing efficiency of targeted gene modification using oligonucleotide-mediated gene repair
WO2017138986A1 (en) * 2016-02-09 2017-08-17 Cibus Us Llc Methods and compositions for increasing efficiency of targeted gene modification using oligonucleotide-mediated gene repair
CN111235177A (en) * 2020-02-07 2020-06-05 中国林业科学研究院 Populus alba PDS gene knocked out by CRISPR/Cas9 system and application thereof
CN111819285A (en) * 2018-01-09 2020-10-23 希博斯美国有限公司 Breakage-proof genes and mutations

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015139008A1 (en) * 2014-03-14 2015-09-17 Cibus Us Llc Methods and compositions for increasing efficiency of targeted gene modification using oligonucleotide-mediated gene repair
WO2017138986A1 (en) * 2016-02-09 2017-08-17 Cibus Us Llc Methods and compositions for increasing efficiency of targeted gene modification using oligonucleotide-mediated gene repair
CN111819285A (en) * 2018-01-09 2020-10-23 希博斯美国有限公司 Breakage-proof genes and mutations
CN111235177A (en) * 2020-02-07 2020-06-05 中国林业科学研究院 Populus alba PDS gene knocked out by CRISPR/Cas9 system and application thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
An Improved CRISPR/Cas9 System for Genome Editing in Populus by Using Mannopine Synthase (MAS) Promoter;Yi An等;《Front. Plant Sci.》;20210712;第1-8页 *
An update and perspectives on the use of promoters in plant genetic engineering;DIVYA KUMMARI等;《J Biosci》;20200921;第45卷(第119期);第1-24页 *
甘露碱合成酶基因启动子研究进展;刘石娟等;《山东农业科学》;20061231(第6期);第96-100页 *

Also Published As

Publication number Publication date
CN112375781A (en) 2021-02-19

Similar Documents

Publication Publication Date Title
Irelan et al. Cytosine methylation associated with repeat-induced point mutation causes epigenetic gene silencing in Neurospora crassa
CN110527737B (en) Positive plasmid molecule pYCID-1905 identified by transgenic rape and transformant of transgenic rape product and application thereof
US5286636A (en) DNA cloning vectors with in vivo excisable plasmids
CN112921054B (en) Lentiviral vector for treating beta-thalassemia and preparation method and application thereof
KR20100085930A (en) System for capturing and modifying large pieces of genomic dna and constructing organisms with synthetic chloroplasts
CN101302520B (en) Transgenic rice TT51-1 transformation event foreign vector integration site complete sequence and use thereof
CN109825520B (en) Novel method for gene assembly by using improved CRISPR-Cpf1
CN105368732B (en) One plant of an industrial strain of S.cerevisiae strain for producing xylitol and construction method
CN112375781B (en) Application of pC1300-MAS-Cas9 gene editing system in 84K poplar gene editing
CN104962576B (en) A kind of flavobacterium columnare gene orientation knocks out plasmid and application
CN112266914B (en) Strong constitutive promoter of bumblebee candida and application thereof
AU759037B2 (en) Method for the induction of pathogen resistance in plants
CN110804559B (en) Recombinant penicillium chrysogenum gene engineering bacterium and construction method and application thereof
KR101203817B1 (en) Packaging cells for recombinant adenovirus
CN107267538B (en) A kind of construction method of plant plastid expression vector and application
CN112779282A (en) Method for creating multiple fruit color materials from tomato background materials by gene editing technology
CN111378684B (en) Application of thermally-induced gene editing system CRISPR-Cas12b in upland cotton
CN112280799B (en) Method for site-directed mutagenesis of hevea brasiliensis or dandelion gene by using CRISPR/Cas9 system
CN110452893B (en) Construction and application of high-fidelity CRISPR/AsCpf1 mutant
GB2475435A (en) Producing a product using shuttle vectors containing essential chloroplast genes
CN110117622B (en) CRISPR/Cas gene editing system and preparation method and application thereof
CN108118007A (en) A kind of method and its genetic engineering bacterium of genetic engineering bacterium production beta carotene
CN112760241B (en) Recombinant penicillium chrysogenum gene engineering bacterium and construction method and application thereof
KR20210118826A (en) Genetically modified Clostridium bacteria, preparation and use thereof
CN113462697B (en) Degradable glyphosate-resistant gene, plant expression vector, cultivation method of degradable glyphosate-resistant transgenic rice and application

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant