CN112349593A - 一种石墨烯为源漏电极的二维薄膜晶体管及制备方法 - Google Patents

一种石墨烯为源漏电极的二维薄膜晶体管及制备方法 Download PDF

Info

Publication number
CN112349593A
CN112349593A CN202011163303.7A CN202011163303A CN112349593A CN 112349593 A CN112349593 A CN 112349593A CN 202011163303 A CN202011163303 A CN 202011163303A CN 112349593 A CN112349593 A CN 112349593A
Authority
CN
China
Prior art keywords
film
graphene
dimensional
adhesive tape
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011163303.7A
Other languages
English (en)
Other versions
CN112349593B (zh
Inventor
李文武
高彩芳
聂倩帆
李梦姣
胡志高
褚君浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East China Normal University
Original Assignee
East China Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China Normal University filed Critical East China Normal University
Priority to CN202011163303.7A priority Critical patent/CN112349593B/zh
Publication of CN112349593A publication Critical patent/CN112349593A/zh
Application granted granted Critical
Publication of CN112349593B publication Critical patent/CN112349593B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41733Source or drain electrodes for field effect devices for thin film transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78618Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明公开了一种石墨烯为源漏电极的二维薄膜晶体管及制备方法,所述二维晶体管属于底栅顶接触型晶体管。其制备方法首先使用机械剥离法用英格兰蓝色胶带从二维材料块材上剥离薄膜到Gelpak机械剥离专用PF凝胶膜,选择合适厚度且表面均匀的材料转移到硅/二氧化硅衬底上作为N型半导体沟道层。再剥离两块石墨烯薄膜分别转移到半导体层两端作为源、漏电极,最后利用掩模版通过热蒸发法蒸镀金电极,由此制备得到所述二维薄膜晶体管。本发明区别于其他二维器件制备工艺,无需复杂昂贵的电子束光刻,所用材料安全环保,成本低廉,不仅得到了以二维材料为源漏电极和沟道的微电子器件,而且从迁移率、开关比等方面优化了现有的二维晶体管。

Description

一种石墨烯为源漏电极的二维薄膜晶体管及制备方法
技术领域
本发明涉及二维薄膜晶体管制备技术领域,具体地说,是采用二维材料石墨烯作为晶体管的源漏电极,从而优化传统的二维薄膜晶体管。
背景技术
近年来,以二硫化物、石墨烯和黑磷(BP)等为代表的二维层状半导体材料由于具有优异的电学性能受到了广泛关注。科研人员已经研制出基于二维半导体的高性能电子器件,但其实际应用却受到半导体材料自发氧化的严重影响。例如,少层黑磷在室温下具有高的p型载流子迁移率(1000cm2V-1S-1),由于在空气中不稳定,限制了其在电子器件和电路方面的应用。为了解决器件稳定性问题,研究人员已研发出多种方案对沟道材料进行保护以避免自发氧化,包括剥离后的聚甲基丙烯酸甲酯(PMMA)涂层、原子层沉积(ALD)生长的Al2O3涂层、h-BN封装,以及选择使用隔离水氧的手套箱进行材料制备等。当然由于其不稳定问题,导致二维晶体管中半导体层与金属电极之间的接触问题也尤为重要,严重影响了二维器件的进一步发展。
另一方面,HfS2具有独特的结构且带隙可由层数调控,是一种具有超高电学性能的二维材料,有望在电子/光电子器件领域实现应用,尽管二硫化铪具有许多吸引人的电学和光电特性,但是二硫化铪的水氧性很差,在空气中暴露数小时后,二硫化铪薄膜会由于吸附水分和氧而严重的自发氧化,从而致使器件的电学性能出现严重退化。并且由于二维材料与金属电极之间存在接触问题,严重影响到二维薄膜晶体管的电学性能。
发明内容
本发明的目的是提供一种以石墨烯为源/漏电极的N型二维薄膜晶体管及其制备方法。其制备方法适用的二维薄膜晶体管为底栅顶接触结构,晶体管由下至上依次是栅极、介电层、N型半导体有源层、源/漏电极。该方法在二维薄膜晶体管半导体层制备完毕后,通过同样的机械剥离方法制备并转移得到二维材料源/漏电极,通过该方法既可以改善二维材料只能用电子束光刻和尺寸较小的铜网进行掩膜制备的限制,又可以改善二维材料与金电极之间的接触,从而提升了N型二维薄膜半导体的电学性能。
实现本发明目的的具体技术方案是:
一种石墨烯为源漏电极的二维薄膜晶体管的制备方法,该制备方法包括以下具体步骤:
步骤1:二维材料薄膜的制备
A1:二硫化铪半导体薄膜的制备
将二硫化铪晶体块材置于英格兰蓝色胶带上,对折胶带,按压,然后撕开;在撕开的英格兰胶带上会自然黏附一层二硫化铪薄片,将所述胶带在新鲜胶带表面对撕3-5次,减薄二硫化铪薄片后,贴附到附在载玻片上的Gelpak机械剥离专用PF凝胶膜上再轻轻揭起,用光学显微镜观察所述PF凝胶膜,通过颜色判断二硫化铪薄膜的厚度,选择蓝色半透明、厚度为10-15nm、表面均匀且长度15-200μm的材料标记备用;
A2:石墨烯薄膜材料的制备
将石墨烯晶体块材置于英格兰蓝色胶带上,对折胶带,按压,然后撕开;在撕开的英格兰胶带上会自然黏附一层石墨烯薄片,将所述胶带在新鲜胶带表面对撕3-5次,减薄石墨烯薄片后,贴附到附在载玻片上的Gelpak机械剥离专用PF凝胶膜上再轻轻揭起,用光学显微镜观察所述PF凝胶膜,通过颜色判断石墨烯薄膜的厚度,选择厚度5-10nm,表面均匀且长度为50-200μm的两块石墨烯薄膜材料备用,分别记为石墨烯薄膜材料A和石墨烯薄膜材料B;
步骤2:二硫化铪和石墨烯二维薄膜材料的转移
B1:衬底的清洗
选择二氧化硅/硅(SiO2/Si)衬底,其中二氧化硅热氧化层的厚度为300nm,将衬底依次置于丙酮、异丙醇、去离子水中用超声波清洗机依次清洗5分钟,然后用氮***吹干作为目标衬底备用;
B2:二硫化铪薄膜材料的转移
利用二维材料转移***以及配套显微镜将步骤A1制备的PF凝胶膜上的二硫化铪薄膜转移到步骤B1的目标衬底上作为二维晶体管的半导体导电沟道;
B3:石墨烯薄膜材料A、B的转移
利用二维材料转移***以及配套显微镜将步骤A2制备的PF凝胶膜上的石墨烯薄膜材料A及石墨烯薄膜材料B分别转移到步骤B2目标衬底的二硫化铪薄膜的两端,所述石墨烯薄膜材料A、B与二硫化铪薄膜在各自最大长度的方向上呈水平堆叠,且两端重叠5-15μm,石墨烯薄膜材料A、B作为晶体管的二维源、漏电极,中间露的二硫化铪薄膜为半导体导电沟道;
步骤3:源、漏金属电极的制备
C1:固定掩模版
利用二维材料转移***将不锈钢掩模版固定在目标衬底的二硫化铪薄膜上,所述二硫化铪薄膜完全被掩模版掩模部分覆盖且两侧露出石墨烯薄膜材料A和石墨烯薄膜材料B;
C2:蒸镀金属源、漏电极
采用常规的真空热蒸发法利用不锈钢掩模版在石墨烯薄膜材料A和石墨烯薄膜材料B上蒸镀金,得到厚度为50nm的金作为源、漏金属电极;制得所述二维薄膜晶体管。
步骤3中,所述蒸镀金的电流为80-90A,速率为0.1-0.12nm/s。
一种上述方法制得的石墨烯为源漏电极的二维薄膜晶体管。
本发明与现有技术相比,最大的优势在于:本发明没有用到大部分二维器件制备所需的复杂的电子束光刻技术,操作简单,成本低廉;用石墨烯做源漏电极,实现了同时用二维材料做半导体层与半导体沟道层,且由于石墨烯功函数小于二硫化铪功函数,改善了二硫化铪与电极之间的接触,促进了载流子的运输,在一定程度上提升了二维薄膜晶体管的迁移率和开关电流比。
附图说明
图1为本发明所述方法制备的石墨烯为源/漏电极的二维薄膜晶体管的截面结构示意图;
图2为对比例制备的二维薄膜晶体管的截面结构示意图;
图3为本发明有无石墨烯电极层二维薄膜晶体管的转移特性曲线对比图。
具体实施方式
下面结合附图及实施例和对比例对本发明进一步说明。
参阅图1,本发明所述实施例的二维薄膜晶体管为底栅顶接触结构,包括栅电极5、介电层4、半导体层3、二维源/漏电极2及金属电极1;其中,所述栅电极5为硅衬底;所述介电层4为二氧化硅层;所述半导体层3是通过机械剥离法转移得到的二硫化铪半导体材料;所述源漏电极2是通过机械剥离法转移得到的石墨烯材料;所述金属电极1是通过热蒸发的方式形成的金源漏电极。
以下本发明提供优选实施例和对比例,但不应该被认为仅限于在此阐述的实施例。
实施例
石墨烯作为源漏电极的优化二维薄膜晶体管制备方法:
(1)将二硫化铪晶体块材置于英格兰蓝色胶带上,对折胶带,按压,然后撕开。在撕开的英格兰胶带上会自然黏附一层较厚的二硫化铪薄片,将所述胶带在新鲜胶带表面对撕3-5次,贴附到附在载玻片上的Gelpak机械剥离专用PF凝胶膜上再轻轻揭起,用光学显微镜观察所述PF凝胶膜,通过颜色判断二硫化铪薄膜的厚度,选择蓝色半透明、厚度为10-15nm、表面均匀且长度15-200μm的材料标记备用;再将石墨烯晶体块材置于英格兰蓝色胶带上,对折胶带,按压,然后撕开。在撕开的英格兰胶带上会自然黏附一层较厚的石墨烯薄片,将所述胶带在新鲜胶带表面对撕3-5次,贴附到附在载玻片上的Gelpak机械剥离专用PF凝胶膜上再轻轻揭起,用光学显微镜观察,通过颜色判断石墨烯薄膜的厚度,选择厚度5-10nm,表面均匀且长度为50-200μm的两块石墨烯薄膜材料备用,分别记为石墨烯A、石墨烯薄膜材料B;
(2)选择二氧化硅/硅(SiO2/Si)衬底,其中二氧化硅热氧化层的厚度为300nm,将衬底依次置于丙酮、异丙醇、去离子水中用超声波清洗机依次清洗5分钟,然后用氮***吹干作为目标衬底备用;利用二维材料转移***以及配套显微镜将(1)制备的PF凝胶膜上的二硫化铪薄膜转移到目标衬底上作为二维晶体管的半导体导电沟道;利用二维材料转移***以及配套显微镜将(1)制备的PF凝胶膜上的石墨烯薄膜材料A及石墨烯薄膜材料B分别转移到步骤B目标衬底的二硫化铪薄膜的两端,所述石墨烯薄膜材料A、B与二硫化铪薄膜在各自最大长度的方向上呈水平堆叠,且两端重叠5-15μm,石墨烯薄膜材料A、B作为晶体管的二维源漏电极,中间露的二硫化铪薄膜作为半导体导电沟道。
(3)利用二维材料转移***将不锈钢掩模版固定在目标衬底的二硫化铪薄膜上,所述二硫化铪薄膜完全被掩模版掩模部分覆盖且两端露出石墨烯薄膜材料A和石墨烯薄膜材料B;采用常规的真空热蒸发法利用不锈钢掩模版在石墨烯薄膜材料A和石墨烯薄膜材料B上蒸镀得到厚度为50nm的金作为源、漏金属电极;制得所述二维薄膜晶体管。
对比例
单层金属作为源漏电极的传统二维薄膜晶体管制备方法:
(1)将二硫化铪晶体块材置于英格兰蓝色胶带上,对折胶带,按压,然后撕开。在撕开的英格兰胶带上会自然黏附一层较厚的二硫化铪薄片,将所述胶带在新鲜胶带表面对撕3-5次,贴附到附在载玻片上的Gelpak机械剥离专用PF凝胶膜上再轻揭起,用光学显微镜观察所述PF凝胶膜,通过颜色判断二硫化铪薄膜的厚度,选择蓝色半透明、厚度为10-15nm、表面均匀且长度15-200μm的材料标记备用。
(2)选择二氧化硅/硅(SiO2/Si)衬底,其中二氧化硅热氧化层的厚度为300nm,将衬底依次置于丙酮、异丙醇、去离子水中用超声波清洗机依次清洗5分钟,然后用氮***吹干作为目标衬底备用;利用二维材料转移***以及配套显微镜将(1)制备的PF凝胶膜上的二硫化铪薄膜转移到目标衬底上作为二维晶体管的半导体导电沟道。
(3)利用二维材料转移***将不锈钢掩模版固定在目标衬底的二硫化铪薄膜上,所述掩模部分两侧均露出部分二硫化铪薄膜,最后采用常规的真空热蒸发法利用不锈钢掩模版在转移到目标衬底上蒸镀得到厚度为50nm的金作为源、漏金属电极,制得所述二维晶体管。
实施例中所制备的将石墨烯作为源漏电极的二维薄膜晶体管与对比例中制备的传统二维晶体管的电学参数对比如下所示:表1是石墨烯作为源漏电极的二维薄膜晶体管相对于传统二维晶体管的电学参数对比;图3是石墨烯作为源漏电极的二维薄膜晶体管相对于传统二维晶体管的转移特性曲线图。对比表1、图3、可知,在二维半导体与金属电极之间***一层石墨烯作为源漏电极优化的薄膜晶体管,其源漏电流大幅度增加,阈值电压有所减小,电流开关比增加了1个数量级,迁移率从0.01cm2V-1S-1增加了一个数量级到0.1cm2V-1S-1。因此,经本发明制备的以石墨烯作为二维薄膜晶体管的源漏电极,优化了传统二维晶体管的结构,其电学性能得到了显著提升,对以后二维晶体管到全二维晶体管的发展具有非常重要的意义。
二维晶体管中半导体层与金属源漏电极之间存在接触问题,会影响载流子的传输,利用二维材料石墨烯***到半导体层和金属电极之间,由于石墨烯是零带隙半导体,与金属之间载流子传输非[常容易,且石墨烯的功函数为4.6eV,小于二硫化铪的功函数4.9eV,所以在一定程度上对二硫化铪形成了N型电子掺杂,促进了载流子的运输,改善了半导体层和金属电极之间的接触,增大了沟道中载流子浓度,故提升了传统的二维晶体管的电学性能。
因此,通过本发明,利用石墨烯做源漏电极,不用复杂昂贵的电子束光刻技术,操作简单,成本低廉,从而实现半-全二维薄膜晶体管,并且改善二维材料和金属电极之间的接触问题,提升二维晶体管的电学性能,对之后实现全二维晶体管意义重大。
表1
晶体管电学参数 无石墨烯 有石墨烯
开关比 10<sup>4</sup> 10<sup>6</sup>
迁移率(cm<sup>2</sup>V<sup>-1</sup>S<sup>-1</sup>) 0.01 0.1
阈值电压(V) 51 35

Claims (3)

1.一种石墨烯为源漏电极的二维薄膜晶体管的制备方法,其特征在于,该制备方法包括以下具体步骤:
步骤1:二维材料薄膜的制备
A1:二硫化铪半导体薄膜的制备
将二硫化铪晶体块材置于英格兰蓝色胶带上,对折胶带,按压,然后撕开;在撕开的英格兰胶带上会自然黏附一层二硫化铪薄片,将所述胶带在新鲜胶带表面对撕3-5次,减薄二硫化铪薄片后,贴附到附在载玻片上的Gelpak机械剥离专用PF凝胶膜上再轻轻揭起,用光学显微镜观察所述PF凝胶膜,通过颜色判断二硫化铪薄膜的厚度,选择蓝色半透明、厚度为10-15 nm、表面均匀且长度15-200 μm的材料标记备用;
A2:石墨烯薄膜材料的制备
将石墨烯晶体块材置于英格兰蓝色胶带上,对折胶带,按压,然后撕开;在撕开的英格兰胶带上会自然黏附一层石墨烯薄片,将所述胶带在新鲜胶带表面对撕3-5次,减薄石墨烯薄片后,贴附到附在载玻片上的Gelpak机械剥离专用PF凝胶膜上再轻轻揭起,用光学显微镜观察所述PF凝胶膜,通过颜色判断石墨烯薄膜的厚度,选择厚度5-10 nm,表面均匀且长度为50-200 μm的两块石墨烯薄膜材料备用,分别记为石墨烯薄膜材料A和石墨烯薄膜材料B;
步骤2:二硫化铪和石墨烯二维薄膜材料的转移
B1:衬底的清洗
选择二氧化硅/硅衬底,其中二氧化硅热氧化层的厚度为300 nm,将衬底依次置于丙酮、异丙醇、去离子水中用超声波清洗机依次清洗5分钟,然后用氮***吹干作为目标衬底备用;
B2:二硫化铪薄膜材料的转移
利用二维材料转移***以及配套显微镜将步骤A1制备的PF凝胶膜上的二硫化铪薄膜转移到步骤B1的目标衬底上作为二维晶体管的半导体导电沟道;
B3:石墨烯薄膜材料A、B的转移
利用二维材料转移***以及配套显微镜将步骤A2制备的PF凝胶膜上的石墨烯薄膜材料A及石墨烯薄膜材料B分别转移到步骤B2目标衬底的二硫化铪薄膜的两端,所述石墨烯薄膜材料A、B与二硫化铪薄膜在各自最大长度的方向上呈水平堆叠,且两端重叠5-15 μm,石墨烯薄膜材料A、B作为晶体管的二维源、漏电极,中间露的二硫化铪薄膜为半导体导电沟道;
步骤3:源、漏金属电极的制备
C1:固定掩模版
利用二维材料转移***将不锈钢掩模版固定在目标衬底的二硫化铪薄膜上,所述二硫化铪薄膜完全被掩模版掩模部分覆盖且两侧露出石墨烯薄膜材料A和石墨烯薄膜材料B;
C2:蒸镀金属源、漏电极
采用常规的真空热蒸发法利用不锈钢掩模版在石墨烯薄膜材料A和石墨烯薄膜材料B上蒸镀金,得到厚度为50 nm的金作为源、漏金属电极;制得所述二维薄膜晶体管。
2.根据权利要求1所述的制备方法,其特征在于,步骤3中,所述蒸镀金的电流为80-90A,速率为0.1-0.12 nm/s。
3.一种权利要求1所述方法制得的石墨烯为源漏电极的二维薄膜晶体管。
CN202011163303.7A 2020-10-27 2020-10-27 一种石墨烯为源漏电极的二维薄膜晶体管及制备方法 Active CN112349593B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011163303.7A CN112349593B (zh) 2020-10-27 2020-10-27 一种石墨烯为源漏电极的二维薄膜晶体管及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011163303.7A CN112349593B (zh) 2020-10-27 2020-10-27 一种石墨烯为源漏电极的二维薄膜晶体管及制备方法

Publications (2)

Publication Number Publication Date
CN112349593A true CN112349593A (zh) 2021-02-09
CN112349593B CN112349593B (zh) 2023-02-03

Family

ID=74359086

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011163303.7A Active CN112349593B (zh) 2020-10-27 2020-10-27 一种石墨烯为源漏电极的二维薄膜晶体管及制备方法

Country Status (1)

Country Link
CN (1) CN112349593B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113097074A (zh) * 2021-04-06 2021-07-09 南京大学 一种二维材料的图形化电极集成与表面钝化方法
CN113299558A (zh) * 2021-05-24 2021-08-24 华东师范大学 一种二硫化铪为沟道的浮栅结构晶体管及其制备方法
CN113488373A (zh) * 2021-07-07 2021-10-08 湖南大学 一种干法制备单层二维半导体阵列的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160284811A1 (en) * 2013-11-04 2016-09-29 Massachusetts Institute Of Technology Electronics including graphene-based hybrid structures
CN107017303A (zh) * 2016-01-06 2017-08-04 台湾积体电路制造股份有限公司 半导体装置结构
CN107634099A (zh) * 2017-08-11 2018-01-26 上海集成电路研发中心有限公司 一种二维晶体材料场效应管及其制备方法
WO2018092025A1 (en) * 2016-11-16 2018-05-24 King Abdullah University Of Science And Technology Lateral heterojunctions between a first layer and a second layer of transition metal dichalcogenide
CN110556376A (zh) * 2018-05-30 2019-12-10 格芯公司 包含二维半导电性材料的纳米片场效晶体管
CN111430354A (zh) * 2020-03-12 2020-07-17 复旦大学 一种低功耗半浮栅存储器及其制备方法
CN111490045A (zh) * 2020-04-27 2020-08-04 复旦大学 一种基于二维材料的半浮栅存储器及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160284811A1 (en) * 2013-11-04 2016-09-29 Massachusetts Institute Of Technology Electronics including graphene-based hybrid structures
CN107017303A (zh) * 2016-01-06 2017-08-04 台湾积体电路制造股份有限公司 半导体装置结构
WO2018092025A1 (en) * 2016-11-16 2018-05-24 King Abdullah University Of Science And Technology Lateral heterojunctions between a first layer and a second layer of transition metal dichalcogenide
CN107634099A (zh) * 2017-08-11 2018-01-26 上海集成电路研发中心有限公司 一种二维晶体材料场效应管及其制备方法
CN110556376A (zh) * 2018-05-30 2019-12-10 格芯公司 包含二维半导电性材料的纳米片场效晶体管
CN111430354A (zh) * 2020-03-12 2020-07-17 复旦大学 一种低功耗半浮栅存储器及其制备方法
CN111490045A (zh) * 2020-04-27 2020-08-04 复旦大学 一种基于二维材料的半浮栅存储器及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李梦姣: "二维层状半导体材料的光电器件性能与应用研究", 《中国优秀博硕士学位论文全文数据库(博士)》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113097074A (zh) * 2021-04-06 2021-07-09 南京大学 一种二维材料的图形化电极集成与表面钝化方法
CN113097074B (zh) * 2021-04-06 2024-02-09 南京大学 一种二维材料的图形化电极集成与表面钝化方法
CN113299558A (zh) * 2021-05-24 2021-08-24 华东师范大学 一种二硫化铪为沟道的浮栅结构晶体管及其制备方法
CN113488373A (zh) * 2021-07-07 2021-10-08 湖南大学 一种干法制备单层二维半导体阵列的方法
CN113488373B (zh) * 2021-07-07 2023-07-25 湖南大学 一种干法制备单层二维半导体阵列的方法

Also Published As

Publication number Publication date
CN112349593B (zh) 2023-02-03

Similar Documents

Publication Publication Date Title
CN112349593B (zh) 一种石墨烯为源漏电极的二维薄膜晶体管及制备方法
US8530886B2 (en) Nitride gate dielectric for graphene MOSFET
US5596208A (en) Article comprising an organic thin film transistor
KR101927579B1 (ko) 전이금속 디칼코게나이드 박막 트랜지스터 및 그 제조방법
KR101298017B1 (ko) N-형 유기-무기 나노복합 초격자 투명 반도체 박막, 상기의 제조 방법 및 전자 기기적 용도
CN112582542A (zh) 一种基于二维范德华异质结构的单分子场效应晶体管及其制备方法
CN111063731B (zh) Cnt-igzo薄膜异质结双极晶体管及其制备方法和应用
CN107919396B (zh) 基于WO3/Al2O3双层栅介质的零栅源间距金刚石场效应晶体管及制作方法
CN111446288B (zh) 基于二维材料的ns叠层晶体管及其制备方法
CN101267020A (zh) 有机薄膜晶体管及其制造方法
KR101904383B1 (ko) 원자층 증착을 이용한 이차원 반도체의 도핑방법 및 그를 포함하는 cmos 소자의 제조방법
Mohammadian et al. Low-voltage IGZO TFTs using solution-deposited OTS-modified Ta 2 O 5 dielectric
Han et al. Indium-Tin-Oxide Thin-Film Transistors with High Field-Effect Mobility (129.5 cm 2/V· s) and Low Thermal Budget (150° C)
CN111430244B (zh) 氮化镓二硫化钼混合尺度pn结的制备方法
WO2023216852A1 (zh) 一种通过点击化学反应调控二维材料掺杂特性的方法及应用
CN111490161A (zh) 一种有机薄场效应晶体管及其制备方法
Shang et al. Low-Voltage Organic Field-Effect Transistor With PMMA/$\hbox {ZrO} _ {2} $ Bilayer Dielectric
Nourbakhsh et al. Serially connected monolayer MoS 2 FETs with channel patterned by a 7.5 nm resolution directed self-assembly lithography
Okamoto et al. Electrical characteristics of Ge-based metal-insulator-semiconductor devices with Ge3N4 dielectrics formed by plasma nitridation
CN112447858B (zh) 结型场效应晶体管及其制备方法
CN107768519A (zh) 反相器及其制备方法
CN109301067B (zh) 一种六甲基二硅氮烷修饰有机薄膜晶体管及其制备方法
Wang et al. Aluminum oxide/fluoride self-assembled monolayer double gate dielectric for solution-processed indium oxide thin-film transistors
CN105789283A (zh) 基于新型High-K材料的GeSn沟道场效应晶体管
CN114784130B (zh) 一种静电自掺杂二极管及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant