CN112345940B - 基于soc预估的车辆复合电源***模糊逻辑控制方法 - Google Patents

基于soc预估的车辆复合电源***模糊逻辑控制方法 Download PDF

Info

Publication number
CN112345940B
CN112345940B CN202011167420.0A CN202011167420A CN112345940B CN 112345940 B CN112345940 B CN 112345940B CN 202011167420 A CN202011167420 A CN 202011167420A CN 112345940 B CN112345940 B CN 112345940B
Authority
CN
China
Prior art keywords
lithium battery
bat
charge
soc
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011167420.0A
Other languages
English (en)
Other versions
CN112345940A (zh
Inventor
冯娜
马铁华
陈昌鑫
王晨斌
高伟涛
孟青
牛慧芳
张文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North University of China
Original Assignee
North University of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North University of China filed Critical North University of China
Priority to CN202011167420.0A priority Critical patent/CN112345940B/zh
Publication of CN112345940A publication Critical patent/CN112345940A/zh
Application granted granted Critical
Publication of CN112345940B publication Critical patent/CN112345940B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

本发明涉及车辆复合电源***能量管理技术领域,基于SOC预估的车辆复合电源***模糊逻辑控制方法,步骤一:建立车辆复合电源动力***模型,包括锂电池和超级电容的模型;步骤二:锂电池预估控制器采用贝叶斯‑蒙特卡洛法对锂电池荷电状态进行预估;步骤三:根据运行工况下的功率需求,基于步骤一建立的车辆复合电源动力***模型,采用模糊逻辑控制器控制复合电源***输出的功率信号。本发明可以有效提高锂电池荷电状态的估算精度,提高复合电源***的工作效率。

Description

基于SOC预估的车辆复合电源***模糊逻辑控制方法
技术领域
本发明涉及车辆复合电源***能量管理技术领域,尤其涉及一种基于SOC预估的车辆复合电源***模糊逻辑控制方法。
背景技术
随着全球能源危机和环境问题的日益凸显,开发新能源汽车成为汽车产业发展的必然趋势。纯电动汽车采用单一动力电源容易出现续航能力弱、加速动力不足、电池寿命短等缺陷,因此混合动力汽车的研发显得尤为重要。将超级电容与蓄电池相结合作为电动汽车的动力电源,可以充分利用超级电容的快速响应特性,降低蓄电池的充放电频率,以延长蓄电池的使用寿命,增大电动汽车的续驶里程。
混合动力汽车的性能与其采用的能量管理策略密切相关,目前最常见的能量管理策略分为两大类,分别是基于规则的能量管理策略和基于优化的能量管理策略。其中,模糊逻辑控制属于模拟人的思维方式制定规则实现能量管理的方法,控制器的隶属度函数和规则的制定基础来源于专家的经验或理论知识,设计简单,易于理解。
在制定模糊控制规则时,需要考虑电池的SOC值,传统的安时积分法由于SOC初值计算、测量仪器误差、电流和温度导致容量变化等得到SOC值不实时,难以用在实际的车辆动力***中。
发明内容
为了解决上述技术问题,本发明提供了一种基于SOC预估的车辆复合电源***模糊逻辑控制方法,以解决锂电池荷电状态估计精度不高,锂电池使用寿命短等问题。
本发明所采用的技术方案是:一种基于SOC预估的车辆复合电源***模糊逻辑控制方法,包括以下步骤:
步骤一:建立车辆复合电源动力***模型,包括锂电池电路模型和超级电容电路模型;
锂电池电路模型
UL=Ubat-ibatRbat
其中,SOCbat是锂电池实时的荷电状态值,SOCbat.ini是锂电池的初始荷电状态值,QN为锂电池的额定容量,ibat表示锂电池的充放电电流,在一段时间内的积分累计值表示锂电池已使用容量,Ubat和Rbat分别为锂电池的开路电压和欧姆内阻,Pbat为锂电池的功率,UL是锂电池负载电压;
超级电容电路模型
其中,SOCsc是超级电容的荷电状态值,Usc.max和Usc.min分别为超级电容的最大和最小电压,Usc为超级电容的实时电压,Isc为超级电容的充放电电流,Rsc和Psc分别为超级电容的内阻和电功率;
步骤二:设计锂电池荷电状态预估控制器,采用贝叶斯-蒙特卡洛法估计得到锂电池的荷电状态SOCbat.e的值;
将贝叶斯-蒙特卡洛方法应用于锂电池荷电状态的估计,通过一组具有相关权重的随机样本来近似概率密度函数:
其中,为锂电池任意k时刻的荷电状态和开路电压所构成的列向量,表示k时刻生成的随机粒子集;Ubat.k表示k时刻锂电池的开路电压,SOCbat.k表示k时刻锂电池的荷电状态;/>表示在Ubat.k条件下,产生随机粒子集/>所服从的概率密度函数;/>是k时刻从概率密度函数/>表示的分布中提取的第i(i=1~Ns)个随机粒子集,Ns表示随机粒子集的个数;/>表示k时刻提取的第i个粒子集的权重;δ(·)表示Dirac函数;
k时刻的权重以正态分布概率密度函数在k-1时刻的权重/>的基础上更新,更新规律的推导式为:
其中,Ubat,k分别为k时刻锂电池开路电压的实测值和模型输出平均值,σ为其标准差,/>表示在满足粒子集/>的条件下Ubat.k所服从的概率密度函数,符合正态分布概率密度函数;
对所有粒子的权重进行归一化处理:
考虑所有粒子总权重后的预估结果可以表示为:
锂电池荷电状态预估控制器中执行贝叶斯-蒙特卡洛算法,将产生的粒子集的权重不断的迭代运算,最后通过粒子加权求和的方式,得到锂电池荷电状态的预估值,即为向量的第一个元素,表示为:
步骤三:将锂电池荷电状态预估控制器的输出SOCbat.e、超级电容荷电状态SOCsc以及不同运行工况下发动机需求功率Preq作为模糊逻辑控制器的输入,经过逻辑关系输出超级电容充放电的控制信号比例因子Ksc,进而得到超级电容充放电控制信Psc=Ksc·Preq,锂电池充放电控制信号Pbat=(1-Ksc)·Preq
步骤三中,模糊逻辑控制器将输入信号SOCbat.e和SOCsc的模糊子集分别设置为:低L、中M、高H;将Preq和输出信号Ksc模糊子集分别设置为:较小TS,小S,中M,大B,较大TB,模糊逻辑控制器输入输出变量的隶属度函数采用梯形和三角形隶属度函数。
本发明的有益效果是:本发明可以有效提高锂电池荷电状态的估算精度,提高复合电源***的工作效率。
附图说明
图1为本发明的***总体结构框图;
图2为本发明的控制***图;
图3为本发明模糊控制器隶属度函数图。
具体实施方式
下面结合附图对本发明作更进一步的说明。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的一种基于SOC预估的车辆复合电源***模糊逻辑控制方法,该基于SOC预估的车辆复合电源***采用锂电池为车辆发动机供电同时采用超级电容对车辆发动机进行辅助供电,将锂电池荷电状态、超级电容荷电状态和发动机功率需求作为输入变量输入模糊逻辑控制器,获得超级电容充放电的控制信号,具体实施步骤如下:
步骤一:建立车辆复合电源动力***模型,包括锂电池电路模型和超级电容电路模型
建立锂电池电路模型:
UL=Ubat-ibatRbat
其中,SOCbat是锂电池实时的荷电状态值,SOCbat.ini是锂电池的初始荷电状态值,QN为锂电池的额定容量,ibat表示锂电池的充放电电流,在一段时间内的积分累计值表示锂电池已使用容量,Ubat和Rbat分别为锂电池的开路电压和欧姆内阻,Pbat为锂电池的功率,UL是锂电池负载电压;
锂电池的负载电压不允许超过开路电压,因此锂电池的最大充放电电流为:
其中,Imax为锂电池的最大充放电电流,电池的充放电电流ibat在输出前必须与最大充放电电流Imax比较,如果充放电电流超过Imax时,则输出Imax
建立超级电容电路模型
其中,SOCsc是超级电容的荷电状态值,Usc.max和Usc.min分别为超级电容的最大和最小电压,Usc为超级电容的实时电压,Isc为超级电容的充放电电流,Rsc和Psc分别为超级电容的内阻和电功率;
步骤二:设计锂电池荷电状态预估控制器,采用贝叶斯-蒙特卡洛法估计得到锂电池的荷电状态SOCbat.e的值
将贝叶斯-蒙特卡洛方法应用于锂电池荷电状态的估计,通过一组具有相关权重的随机样本来近似概率密度函数,
其中,为锂电池任意k时刻的荷电状态和开路电压所构成的列向量,表示k时刻生成的随机粒子集;Ubat.k表示k时刻锂电池的开路电压,SOCbat.k表示k时刻锂电池的荷电状态;/>表示在Ubat.k条件下,产生随机粒子集/>所服从的概率密度函数;/>是k时刻从概率密度函数/>表示的分布中提取的第i(i=1~Ns)个随机粒子集,Ns表示随机粒子集的个数;/>表示k时刻提取的第i个粒子集的权重;δ(·)表示Dirac函数;
k时刻的权重以正态分布概率密度函数在k-1时刻的权重/>的基础上更新,更新规律的推导式为:
其中,Ubat,k分别为k时刻锂电池开路电压的实测值和模型输出平均值,σ为其标准差,/>表示在满足粒子集/>的条件下Ubat.k所服从的概率密度函数,符合正态分布概率密度函数;
对所有粒子的权重进行归一化处理:
考虑所有粒子总权重后的预估结果可以表示为:
锂电池荷电状态预估控制器中执行贝叶斯-蒙特卡洛算法,将产生的粒子集的权重不断的迭代运算,最后通过粒子加权求和的方式,得到锂电池荷电状态的预估值,即为向量的第一个元素,表示为:
步骤三:将锂电池荷电状态预估控制器的输出SOCbat.e、超级电容荷电状态SOCsc以及不同运行工况下发动机需求功率Preq作为模糊逻辑控制器的输入,经过逻辑关系输出超级电容充放电的控制信号比例因子Ksc,进而得到超级电容充放电控制信号Psc
模糊逻辑控制器将输入信号SOCbat.e和SOCsc的模糊子集分别设置为:低L、中M、高H;将Preq和输出信号Ksc模糊子集分别设置为:较小TS,小S,中M,大B,较大TB,模糊逻辑控制器输入输出变量的隶属度函数采用梯形和三角形隶属度函数;根据模糊规则得到模糊逻辑控制器的输出参数为Ksc;超级电容充放电控制信号表示为:Psc=Ksc·Preq,锂电池充放电控制信号表示为:
Pbat=(1-Ksc)·Preq
模糊逻辑控制器输入输出变量的隶属度函数采用梯形和三角形隶属度函数其论域和隶属度函数如图3所示。
模糊逻辑控制器的输入输出逻辑关系采用Mamdami模型推理方法,规则表如下表所示:
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明披露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (2)

1.一种基于SOC预估的车辆复合电源***模糊逻辑控制方法,其特征在于:包括以下步骤:
步骤一:建立车辆复合电源动力***模型,包括锂电池电路模型和超级电容电路模型;
锂电池电路模型
UL=Ubat-ibatRbat
其中,SOCbat是锂电池实时的荷电状态值,SOCbat.ini是锂电池的初始荷电状态值,QN为锂电池的额定容量,ibat表示锂电池的充放电电流,在一段时间内的积分累计值表示锂电池已使用容量,Ubat和Rbat分别为锂电池的开路电压和欧姆内阻,Pbat为锂电池的功率,UL是锂电池负载电压;
超级电容电路模型
其中,SOCsc是超级电容的荷电状态值,Usc.max和Usc.min分别为超级电容的最大和最小电压,Usc为超级电容的实时电压,Isc为超级电容的充放电电流,Rsc和Psc分别为超级电容的内阻和电功率;
步骤二:设计锂电池荷电状态预估控制器,采用贝叶斯-蒙特卡洛法估计得到锂电池的荷电状态SOCbat.e的值;
将贝叶斯-蒙特卡洛方法应用于锂电池荷电状态的估计,通过一组具有相关权重的随机样本来近似概率密度函数:
其中,为锂电池任意k时刻的荷电状态和开路电压所构成的列向量,表示k时刻生成的随机粒子集;Ubat.k表示k时刻锂电池的开路电压,SOCbat.k表示k时刻锂电池的荷电状态;/>表示在Ubat.k条件下,产生随机粒子集/>所服从的概率密度函数;/>是k时刻从概率密度函数/>表示的分布中提取的第i个随机粒子集,i=1~Ns,Ns表示随机粒子集的个数;/>表示k时刻提取的第i个粒子集的权重;δ(·)表示Dirac函数;
k时刻的权重以正态分布概率密度函数在k-1时刻的权重/>的基础上更新,更新规律的推导式为:
其中,Ubat,k分别为k时刻锂电池开路电压的实测值和模型输出平均值,σ为其标准差,/>表示在满足粒子集/>的条件下Ubat.k所服从的概率密度函数,符合正态分布概率密度函数;
对所有粒子的权重进行归一化处理:
考虑所有粒子总权重后的预估结果可以表示为:
锂电池荷电状态预估控制器中执行贝叶斯-蒙特卡洛算法,将产生的粒子集的权重不断的迭代运算,最后通过粒子加权求和的方式,得到锂电池荷电状态的预估值,即为向量的第一个元素,表示为:
步骤三:将锂电池荷电状态预估控制器的输出SOCbat.e、超级电容荷电状态SOCsc以及不同运行工况下发动机需求功率Preq作为模糊逻辑控制器的输入,经过逻辑关系输出超级电容充放电的控制信号比例因子Ksc,进而得到超级电容充放电控制信Psc=Ksc·Preq,锂电池充放电控制信号Pbat=(1-Ksc)·Preq
2.根据权利要求1所述的一种基于SOC预估的车辆复合电源***模糊逻辑控制方法,其特征在于:步骤三中,模糊逻辑控制器将输入信号SOCbat.e和SOCsc的模糊子集分别设置为:低L、中M、高H;将Preq和输出信号Ksc模糊子集分别设置为:较小TS,小S,中M,大B,较大TB,模糊逻辑控制器输入输出变量的隶属度函数采用梯形和三角形隶属度函数。
CN202011167420.0A 2020-10-27 2020-10-27 基于soc预估的车辆复合电源***模糊逻辑控制方法 Active CN112345940B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011167420.0A CN112345940B (zh) 2020-10-27 2020-10-27 基于soc预估的车辆复合电源***模糊逻辑控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011167420.0A CN112345940B (zh) 2020-10-27 2020-10-27 基于soc预估的车辆复合电源***模糊逻辑控制方法

Publications (2)

Publication Number Publication Date
CN112345940A CN112345940A (zh) 2021-02-09
CN112345940B true CN112345940B (zh) 2023-08-22

Family

ID=74358820

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011167420.0A Active CN112345940B (zh) 2020-10-27 2020-10-27 基于soc预估的车辆复合电源***模糊逻辑控制方法

Country Status (1)

Country Link
CN (1) CN112345940B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115071449B (zh) * 2022-07-20 2024-04-19 无锡军工智能电气股份有限公司 一种基于多模糊控制器的复合电源能量管理方法
CN115092012B (zh) * 2022-07-20 2024-04-12 四川轻化工大学 考虑复合电源***多工作模式的等效荷电状态估计方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101256218A (zh) * 2008-04-08 2008-09-03 吉林大学 汽车动力电池荷电状态的测量***
GB201506497D0 (en) * 2015-04-16 2015-06-03 Oxis Energy Ltd And Cranfield University And Imp Innovations Ltd Method and apparatus for determining the state of health and state of charge of lithium sulfur batteries
CN108001261A (zh) * 2017-11-14 2018-05-08 温州大学 基于模糊算法的动力电池荷电状态计算方法及监测装置
CN110126813A (zh) * 2019-05-17 2019-08-16 吉林大学 一种车载燃料电池混合动力***的能量管理方法
CN110320473A (zh) * 2019-07-26 2019-10-11 上海理工大学 一种基于卡尔曼滤波及模糊逻辑汽车锂电池容量估计方法
CN110646739A (zh) * 2019-09-30 2020-01-03 闽江学院 一种多锂电池并联***的soc状态估计方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10209314B2 (en) * 2016-11-21 2019-02-19 Battelle Energy Alliance, Llc Systems and methods for estimation and prediction of battery health and performance

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101256218A (zh) * 2008-04-08 2008-09-03 吉林大学 汽车动力电池荷电状态的测量***
GB201506497D0 (en) * 2015-04-16 2015-06-03 Oxis Energy Ltd And Cranfield University And Imp Innovations Ltd Method and apparatus for determining the state of health and state of charge of lithium sulfur batteries
CN108001261A (zh) * 2017-11-14 2018-05-08 温州大学 基于模糊算法的动力电池荷电状态计算方法及监测装置
CN110126813A (zh) * 2019-05-17 2019-08-16 吉林大学 一种车载燃料电池混合动力***的能量管理方法
CN110320473A (zh) * 2019-07-26 2019-10-11 上海理工大学 一种基于卡尔曼滤波及模糊逻辑汽车锂电池容量估计方法
CN110646739A (zh) * 2019-09-30 2020-01-03 闽江学院 一种多锂电池并联***的soc状态估计方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
纯电动汽车复合电源再生制动控制策略研究;周美兰;刘占华;胡玲玲;;黑龙江大学自然科学学报(03);全文 *

Also Published As

Publication number Publication date
CN112345940A (zh) 2021-02-09

Similar Documents

Publication Publication Date Title
CN112434463B (zh) 一种车辆复合电源能量管理***
Li et al. Battery optimal sizing under a synergistic framework with DQN-based power managements for the fuel cell hybrid powertrain
CN110126813B (zh) 一种车载燃料电池混合动力***的能量管理方法
Wang et al. Research on energy optimization control strategy of the hybrid electric vehicle based on Pontryagin's minimum principle
CN102790407B (zh) 双蓄电池汽车供电***中的充放电控制方法
CN110133507B (zh) 一种基于narx-ukf算法的电池剩余电量估计方法
CN112345940B (zh) 基于soc预估的车辆复合电源***模糊逻辑控制方法
CN109552110B (zh) 基于规则与非线性预测控制的电动汽车复合能量管理方法
CN111308356A (zh) 一种带加权的安时积分的soc估算方法
CN104512266B (zh) 汽车起动过程中的供电管理方法和汽车供电***
CN108020791A (zh) 一种混合动力船舶磷酸铁锂动力电池组荷电状态估计方法
CN112069600A (zh) 一种多动力源混合动力***及其能量管理方法
CN111079349B (zh) 一种锂电池与超级电容复合电源***能量实时优化方法
Jia et al. Energy management strategy of fuel cell/battery hybrid vehicle based on series fuzzy control
Xiao et al. The research of energy management strategy for fuel cell hybrid vehicle
CN104218628B (zh) 蓄电池充电控制方法和基于该方法的汽车电子控制器
CN113076688A (zh) 一种锂离子动力电池效能状态评估方法
CN113352946A (zh) 一种燃料电池汽车动力***的能量管理方法
CN110470993B (zh) 一种启停电池soc算法
Guo et al. Estimating the state of charge for Ni-MH battery in HEV by RBF neural network
CN106647251A (zh) 一种车载***能量管理的自适应模糊控制方法
CN115208026A (zh) 一种电池组间源荷分离的主动能量均衡方法
Xu et al. Equivalent consumption minimization strategies of series hybrid city buses
Li et al. Multi-objective optimal energy management strategy and economic analysis for an range-extended electric bus
Yu et al. Research on the Control Strategy of Hybrid Energy Storage System for Electric Bus

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant