CN112342620A - 一种异金属取代Dawson型多酸基晶体材料及其制备方法 - Google Patents

一种异金属取代Dawson型多酸基晶体材料及其制备方法 Download PDF

Info

Publication number
CN112342620A
CN112342620A CN202010961277.6A CN202010961277A CN112342620A CN 112342620 A CN112342620 A CN 112342620A CN 202010961277 A CN202010961277 A CN 202010961277A CN 112342620 A CN112342620 A CN 112342620A
Authority
CN
China
Prior art keywords
polyacid
solution
substituted
dawson
preparing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010961277.6A
Other languages
English (en)
Inventor
赵海燕
刘佳铭
任文强
王利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Minzu University
Original Assignee
Dalian Minzu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Minzu University filed Critical Dalian Minzu University
Priority to CN202010961277.6A priority Critical patent/CN112342620A/zh
Publication of CN112342620A publication Critical patent/CN112342620A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B28/00Production of homogeneous polycrystalline material with defined structure
    • C30B28/04Production of homogeneous polycrystalline material with defined structure from liquids
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/10Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions by application of pressure, e.g. hydrothermal processes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Compounds Of Iron (AREA)

Abstract

一种异金属取代Dawson型多酸基晶体材料及其制备方法,属于无机化学的多酸技术领域。本发明制备的异金属取代Dawson型多酸基晶体材料的化学式为:KH[Fe2La2(H2O)12(α‑P2W16O60)]·21H2O。异金属取代Dawson型多酸基晶体材料的制备方法,首先配制醋酸与醋酸钠缓冲溶液,将FeCl3溶解于上述缓冲溶液中,备用;然后配制浓度为1M的氢氧化钠溶液,备用;再将K12[α‑H2P2W12O48]·24H2O加入水体系中,在不断搅拌条件下,依次向其中加入配制好的FeCl3溶液,K2CO3,1MNaOH溶液以及LaCl3·6H2O或La(NO3)3·6H2O,最后装入反应釜中90‑105℃加热得到的产物经过过滤和蒸馏水洗涤,室温下干燥即得到棕黄色柱状晶体。本发明多酸晶体材料制备方法简单,易操作,重复性好。

Description

一种异金属取代Dawson型多酸基晶体材料及其制备方法
技术领域
本发明属于无机化学的多酸技术领域,具体涉及异金属修饰Dawson型磷钨酸晶体材料的制备方法。
背景技术
多金属氧酸盐,简称多酸(POMs),由于其表面大量的氧原子可以很容易地与大部分的过渡金属或稀土金属结合,形成一系列在电、光、催化和磁性等领域有着潜在应用前景的过渡或稀土金属取代的POMs衍生物,广受多酸化学家的追捧(Coord.Chem.Rev.,2020,414,213260;Nanoscale,2020,12,5705)。迄今为止,大量的过渡金属取代的多酸材料被广泛研究(Coord.Chem.Rev.,2019,3 92,49;Inorg.Chem.2019,58,2372),同时,由于稀土离子本身具有高配位、亲氧性及多重物理、化学性质,稀土取代的多酸衍生物也不断地被报道(Acc.Ch em.Res.,2017,50,9,2205;Nanoscale,2020,12,10842),然而当稀土和过渡金属同时与POMs反应时,经常存在着反应竞争,因此稀土和过渡金属同时取代的多酸衍生物的报道却相对很有限(Coord.Chem.Rev.,2020,143,213271;Chem. Commun.,2016,52,4418)。但同时过渡-稀土异金属多金属氧酸盐衍生物因其复杂多样的阴离子单元、拓扑结构以及在光学、催化和磁性等领域的特殊性能也吸引了越来越多人们的广泛关注。
自从第一例稀土-过渡金属构筑的Keggin型多金属钨酸盐被Müller等人在2 007年报道后(J.Cluster Sci.,2007,18,711),尽管陆续有一些过渡-稀土金属构筑的多金属钨酸盐材料已经被合成,但据文献所知,基于过渡–稀土异金属取代K eggin结构钨氧簇的报道相对较多(Cryst.Growth Des.,2020,20,2706;RSC Ad v.,2019,9,13543;NewJ.Chem.,2019,43,3011;CrystEngComm,2015,17, 5002),而关于异金属修饰Dawson型多酸晶态材料的报道是非常少的(Inorg.Ch em.,2019,58,12534;CrystEngComm,2014,16,2230;Dalton Trans.,2013,42, 16328)。
发明内容
针对上述不足,本发明提供一种异金属取代型多酸基晶体材料及制备方法,所得到的材料结构新颖,制备方法简单易行。
本发明制备的异金属取代Dawson型多酸基晶体材料的化学式为:KH[Fe2L a2(H2O)12(α-P2W16O60)]·21H2O。
晶体属三斜晶系,P-1空间群,晶胞参数如下:
Figure BDA0002680636050000021
Figure BDA0002680636050000022
α=70.251(2)°,β=69.933(2)°,γ=85.273(2)°,
Figure BDA0002680636050000023
Z=2。
本发明同时保护异金属取代Dawson型多酸基晶体材料的制备方法,该方法的步骤如下:
1)配制浓度为0.5M、pH=4.8的醋酸与醋酸钠缓冲溶液,将27-30重量份 FeCl3溶解于上述缓冲溶液中,备用。
2)配制浓度为1M的氢氧化钠溶液,备用。
3)将39-43重量份K12[α-H2P2W12O48]·24H2O加入水体系中,在不断搅拌条件下,依次向其中加入配制好的FeCl3溶液,6-7重量份K2CO3,1MNaOH溶液以及10-13重量份LaCl3·6H2O或La(NO3)3·6H2O,继续搅拌60-180分钟。
4)装入带有聚四氟乙烯内衬的不锈钢反应釜中,密封置于90-105℃的烘箱中加热40-60小时。
5)取出后自然冷却至室温,产物经过过滤和蒸馏水洗涤3-5次,室温下干燥即得到绿色柱状晶体。
进一步的,步骤1)中的缓冲液的加入量为每10ml缓冲液对应加入2.7-3.0gFeCl3
进一步的,步骤3)中H2O的加入量为1g的K12[α-H2P2W12O48]·24H2O加入 15-21mL的水。
进一步的,步骤3)中FeCl3溶液的加入量为1g的K12[α-H2P2W12O48]·24H2O 加入2.0-2.6mL配制好的FeCl3溶液。
进一步的,步骤3)中NaOH溶液的加入量为1g的K12[α-H2P2W12O48]·24H2O 加入2.9-3.2mL配制好的NaOH溶液。
进一步的,[α-H2P2W12O48]12–为K12[α-H2P2W12O48]·24H2O前驱体,稀土和过渡金属盐分别为LaCl3·6H2O和FeCl3,调节PH值所用到的有K2CO3, NaOH,CH3COOH-CH3COONa溶液。
有益效果:
(1)本发明多酸晶体材料制备方法简单,易操作,重复性好。
(2)本发明多酸晶体材料是首例纯无机Fe-La异金属修饰Dawson型多酸化合物,丰富了多酸基晶体材料的类型,在光电催化及磁性等领域有潜在的应用前景。
附图说明
图1为簇合物不对称单元结构示意图
图2为簇合物二聚结构图
图3为簇合物一维链状结构图
图4为簇合物二维层状结构图
图5为簇合物三维网状结构图
具体实施方式
下面结合实施例对本发明作进一步说明。
实施例1
1)配制浓度为0.5M、pH=4.8的醋酸与醋酸钠缓冲溶液,将FeCl3(2.986g) 溶解于上述10mL缓冲溶液中,备用。
2)配制浓度为1M的氢氧化钠溶液,备用。
3)将K12[α-H2P2W12O48]·24H2O(0.391g)加入6mL水体系中,在不断搅拌条件下,依次向其中加入配制好的FeCl3溶液(1mL),K2CO3(0.065g),1MNaOH 溶液(1.25mL)以及LaCl3·6H2O(0.109g),继续搅拌60分钟后装入30mL带有聚四氟乙烯内衬的不锈钢反应釜中,密封并置于100℃的烘箱中加热48小时,取出后自然冷却至室温,产物经过过滤和蒸馏水洗涤,于室温下干燥即得到棕黄色柱状晶体。
对比例1
选择其它稀土元素Sm,Eu,Tb,Dy,Ce的盐类化合物替代本申请的La盐,按照实施例1的反应条件进行实验,均可以获得与实施例1相同结构的产物。
对比例2
用La(NO3)3·6H2O代替LaCl3·6H2O,按照实施例1的反应条件进行实验,可以获得与实施例相同结构的产物。
对比例3
选择其它过渡元素Mn或Co的盐类化合物替代本申请中的Fe盐,按照实施例 1的反应条件进行实验,均未获得与实施例1相同结构的产物。
对比例4
用Na12[α-P2W15O56]·24H2O或K102-P2W17O61]·20H2O代替K12[α-H2P2W12O48]·24H2O(0.0422g),并调整反应物比例范围,未获得与实施例相同结构的产物。
对比例5
实施例1的反应体系中,加入了碳酸根和醋酸根离子,但并没有进入最终晶体结构中,但如果反应体系中不加入四者中的任何一个反应物,都无法得到与实例1相同结构的产物。
对比例6
将反应时间缩短为1天,其它反应条件不变,未获得与实施例1相同结构的产物。
实施例2
1)配制浓度为0.5M、pH=4.8的醋酸与醋酸钠缓冲溶液,将FeCl3(2.780g) 溶解于上述10mL缓冲溶液中,备用。
2)配制浓度为1M的氢氧化钠溶液,备用。
3)将K12[α-H2P2W12O48]·24H2O(0.400g)加入8mL水体系中,在不断搅拌条件下,依次向其中加入配制好的FeCl3溶液(1mL),K2CO3(0.070g),1MNaOH 溶液(1.25mL)以及La(NO3)3·6H2O(0.124g),继续搅拌60分钟后装入30mL带有聚四氟乙烯内衬的不锈钢反应釜中,密封并置于100℃的烘箱中加热48小时,取出后自然冷却至室温,产物经过过滤和蒸馏水洗涤,于室温下干燥即得到棕黄色柱状晶体。
实施例3
1)配制浓度为0.5M、pH=4.8的醋酸与醋酸钠缓冲溶液,将FeCl3(2.986g) 溶解于上述10mL缓冲溶液中,备用。
2)配制浓度为1M的氢氧化钠溶液,备用。
3)将K12[α-H2P2W12O48]·24H2O(0.391g)加入6mL水体系中,在不断搅拌条件下,依次向其中加入配制好的FeCl3溶液(1mL),K2CO3(0.064g),1MNaOH 溶液(1.25mL)以及LaCl3·6H2O(0.119g),继续搅拌60分钟后装入30mL带有聚四氟乙烯内衬的不锈钢反应釜中,密封并置于100℃的烘箱中加热48小时,取出后自然冷却至室温,产物经过过滤和蒸馏水洗涤,于室温下干燥即得到棕黄色柱状晶体。
对本发明制备的产品进行检测,被测多酸基晶态材料不对称分子结构单元中包含一个四核铁嵌入取代四缺位Dawson型[P2W14O54]14-簇块的四个缺位位点,其中四核铁单元中Fe为无序,Fe和W的占有率分别为0.5,因此该簇块分子式为[Fe2(α-P2W16O56)],Fe3+均呈现六配位的八面体构型,Fe-O键的键长范围为
Figure BDA0002680636050000041
Figure BDA0002680636050000051
(表1)。
表1簇合物中部分键长数据表
Figure BDA0002680636050000052
*Symmetry transformations used to generate equivalent atoms:#1=-x+1,-y,-z+ 1;#2=x,y+1,z;#3=-x+1,-y+1,-z;#4=-x+1,-y,-z;#5=x-1,y,z;#6=x+1,y,z;#7=x,y-1,z.
另外,在该化合物中还存在两个晶体学独立的悬挂在[Fe2(α-P2W16O60)]簇块上的稀土镧离子,其均呈九配位构型:La13+与两个来自不同缺位多酸簇块的氧(O 10、O51)以及七个水分子进行配位,而La23+与四个来自不同缺位多酸簇块的氧(O 21、O32、O42和O48)以及五个水分子进行配位(图1),La-O键的键长范围为
Figure BDA0002680636050000053
Figure BDA0002680636050000054
过渡金属取代的[Fe2(α-P2W16O56)]多酸簇块之间通过O10-La1-O51键和Fe- O-Fe键共同连接形成三明治型的夹心簇块(图2)。二聚簇块之间再通过La2-O21 和La2-O32键连接,形成一维链状结构(图3)。链与链之间进一步通过La2-O42 键连,形成了二维层状模式结构(图4)。层与层之间进一步通过La2-O48键连,形成了三维网状结构(图5)。值得注意的是该化合物是少见的La-Fe异金属修饰 Dawson型纯无机的磷钨酸化合物。
本发明工艺参数及路线不局限于以上所列举具体实施方案,以上所列举具体实施方式,仅说明本发明而并非受限于本发明实施例所描述的工艺参数和工艺路线。本领域的研究人员应当理解,在实际应用中可以对本发明进行修改或等价替换,以达到相同的技术效果。只要满足应用需求,都在本发明的保护范围内。

Claims (8)

1.一种异金属取代Dawson型多酸基晶体材料,其特征在于,该晶体材料的化学式为:KH[Fe2La2(H2O)12(α-P2W16O60)]·21H2O;
晶体属三斜晶系,P-1空间群,晶胞参数如下:
Figure FDA0002680636040000011
Figure FDA0002680636040000012
α=70.251(2)°,β=69.933(2)°,γ=85.273(2)°,
Figure FDA0002680636040000013
Z=2。
2.一种权利要求1所述的异金属取代Dawson型多酸基晶体材料的制备方法,其特征在于,该制备方法的步骤如下:
1)配制浓度为0.5M、pH=4.8的醋酸与醋酸钠缓冲溶液,将27-30重量份FeCl3溶解于上述缓冲溶液中,备用;
2)配制浓度为1M的氢氧化钠溶液,备用;
3)将39-43重量份K12[α-H2P2W12O48]·24H2O加入水体系中,在不断搅拌条件下,依次向其中加入配制好的FeCl3溶液,6-7重量份K2CO3,1MNaOH溶液以及10-13重量份LaCl3·6H2O或La(NO3)3·6H2O,继续搅拌60-180分钟;
4)装入带有聚四氟乙烯内衬的不锈钢反应釜中,密封置于烘箱中加热;
5)取出后自然冷却至室温,产物经过过滤和蒸馏水洗涤3-5次,室温下干燥即得到棕黄色柱状晶体。
3.根据权利要求2所述的一种异金属取代Dawson型多酸基晶体材料的制备方法,其特征在于,步骤1)中的缓冲液的加入量为每10ml缓冲液对应加入2.7-3.0gF eCl3
4.根据权利要求2所述的一种异金属取代Dawson型多酸基晶体材料的制备方法,其特征在于,步骤3)中H2O的加入量为1g的K12[α-H2P2W12O48]·24H2O加入15-21mL的水。
5.根据权利要求2所述的一种异金属取代Dawson型多酸基晶体材料的制备方法,其特征在于,步骤3)中FeCl3溶液的加入量为1g的K12[α-H2P2W12O48]·24H2O加入2.0-2.6mL配制好的FeCl3溶液。
6.根据权利要求2所述的一种异金属取代Dawson型多酸基晶体材料的制备方法,其特征在于,步骤3)中NaOH溶液的加入量为1g的K12[α-H2P2W12O48]·24H2O加入2.9-3.2mL配制好的NaOH溶液。
7.根据权利要求2所述的一种异金属取代Dawson型多酸基晶体材料的制备方法,其特征在于,步骤4)中的加热温度为90-105℃,加热时间为40-60小时。
8.根据权利要求2所述的一种异金属取代Dawson型多酸基晶体材料的制备方法,其特征在于,[α-H2P2W12O48]12–为K12[α-H2P2W12O48]·24H2O前驱体,稀土和过渡金属盐分别为LaCl3·6H2O和FeCl3,调节PH值所用到的有K2CO3,NaOH,CH3COOH-CH3COONa溶液。
CN202010961277.6A 2020-09-14 2020-09-14 一种异金属取代Dawson型多酸基晶体材料及其制备方法 Pending CN112342620A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010961277.6A CN112342620A (zh) 2020-09-14 2020-09-14 一种异金属取代Dawson型多酸基晶体材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010961277.6A CN112342620A (zh) 2020-09-14 2020-09-14 一种异金属取代Dawson型多酸基晶体材料及其制备方法

Publications (1)

Publication Number Publication Date
CN112342620A true CN112342620A (zh) 2021-02-09

Family

ID=74357678

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010961277.6A Pending CN112342620A (zh) 2020-09-14 2020-09-14 一种异金属取代Dawson型多酸基晶体材料及其制备方法

Country Status (1)

Country Link
CN (1) CN112342620A (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011130926A1 (zh) * 2010-04-23 2011-10-27 海洋王照明科技股份有限公司 含有金属粒子的稀土离子掺杂镓酸镧盐发光材料及其制备方法
CN103007888A (zh) * 2012-10-30 2013-04-03 河南大学 有机—无机杂化过渡—稀土异金属取代锗钨酸盐晶态储氢材料及其制备方法
CN104086604A (zh) * 2014-07-08 2014-10-08 吉林化工学院 一种苯并三氮唑修饰多酸的结构及制备方法
CN104609475A (zh) * 2015-01-23 2015-05-13 河南大学 铜–铕异金属取代砷钨酸盐及其制备方法和应用
CN104649325A (zh) * 2015-01-06 2015-05-27 河南大学 一种Wells-Dawson型铌钨混配多酸稀土衍生物、其制备方法以及应用
US20190185341A1 (en) * 2016-08-26 2019-06-20 Central South University Preparation method of phosphotungstic acid
CN111087428A (zh) * 2019-12-05 2020-05-01 大连民族大学 一种异金属取代型多酸晶态材料及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011130926A1 (zh) * 2010-04-23 2011-10-27 海洋王照明科技股份有限公司 含有金属粒子的稀土离子掺杂镓酸镧盐发光材料及其制备方法
CN103007888A (zh) * 2012-10-30 2013-04-03 河南大学 有机—无机杂化过渡—稀土异金属取代锗钨酸盐晶态储氢材料及其制备方法
CN104086604A (zh) * 2014-07-08 2014-10-08 吉林化工学院 一种苯并三氮唑修饰多酸的结构及制备方法
CN104649325A (zh) * 2015-01-06 2015-05-27 河南大学 一种Wells-Dawson型铌钨混配多酸稀土衍生物、其制备方法以及应用
CN104609475A (zh) * 2015-01-23 2015-05-13 河南大学 铜–铕异金属取代砷钨酸盐及其制备方法和应用
US20190185341A1 (en) * 2016-08-26 2019-06-20 Central South University Preparation method of phosphotungstic acid
CN111087428A (zh) * 2019-12-05 2020-05-01 大连民族大学 一种异金属取代型多酸晶态材料及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
IBRAHIM, M 等: "Synthesis and Characterization of a Heterometallic Extended Architecture Based on a Manganese(II)-Substituted Sandwich-Type Polyoxotungstate", 《MATERIALS》, vol. 11, no. 1, pages 155 *
李然 等: "基于六缺位Dawson型磷钨酸盐衍生物的研究进展", 《化学研究》, vol. 27, no. 3, pages 269 - 279 *
赵海燕: "含3d-4f异金属的有机-无机杂化钨-氧簇合物的合成及表征", 《中国博士学位论文全文数据库 工程科技Ⅰ辑》, pages 014 - 3 *

Similar Documents

Publication Publication Date Title
Hu et al. d 10 Metal complexes assembled from isomeric benzenedicarboxylates and 3-(2-pyridyl) pyrazole showing 1D chain structures: syntheses, structures and luminescent properties
Ren et al. Distinct structures of coordination polymers incorporating flexible triazole-based ligand: topological diversities, crystal structures and property studies
Niu et al. Zero-or one-dimensional organic− inorganic hybrid polyoxoniobates constructed from decaniobate units and transition-metal complexes
Cai et al. Metal-directed assembly of two 2-D 4d–4f coordination polymers based on elliptical triple-deck cylinders hinged by meso-double helical chains
De Munno et al. Magneto-Structural Effects of the Jahn-Teller Distortions on 2, 2'-Bipyrimidine-,(bpm-) Bridged Dinuclear Copper (II) Complexes: Crystal Structures and Magnetic Properties of [Cu2 (bpm)(H2O) 4 (SO4) 2]. cntdot. 3H2O and [Cu2 (bpm)(H2O) 8](SO4) 2. cntdot. 2H2O
Zhao et al. 0-D and 1-D inorganic–organic composite polyoxotungstates constructed from in-situ generated monocopperII-substituted Keggin polyoxoanions and copperII–organoamine complexes
Wang et al. Three novel indium MOFs derived from dicarboxylate ligands: Syntheses, structures and photoluminescent properties
CN110218333B (zh) 一种吡啶亚甲基膦酸镍配位聚合物及其制备方法和应用
CN112934262B (zh) 一种镍取代钨氧簇有机骨架材料及其制备方法和用途
Tian et al. Highly efficient usage of the hydrothermal technique through the one-pot method to construct four Keggin-based compounds containing pendent ligands
Wang et al. pH-dependent two novel 3D polynuclear cobalt (ii) cluster-based metal–organic frameworks constructed from a tri-pyridyl-bis-amide and a polycarboxylate: assembly, structures and properties
Rochon et al. Study of the aqueous reactions of metallic ions with benzenetetracarboxylate ions: Part 2. Crystal structures of compounds of the type M (H2O) 5 (μ-C6H2 (COO) 4) M (H2O) 5 (M= Mn and Co) and a novel mixed-metallic Mn–Co dimeric compound
Ma et al. Zinc and cadmium 2-pyrazinephosphonates: Syntheses, structures and luminescent properties
Zhu et al. Self-assembly of a snake-like blue photoluminescent coordination polymer from 4, 4′-bis (imidazol-1-ylmethyl) biphenyl and zinc acetate
Natarajan et al. The use of hydrothermal methods in the synthesis of novel open-framework materials
Zheng et al. Second structural directing agent induces the formation of 1D organic templated terbium sulfate
CN112342620A (zh) 一种异金属取代Dawson型多酸基晶体材料及其制备方法
CN111087428A (zh) 一种异金属取代型多酸晶态材料及其制备方法
Wu et al. Two 2D sliver complexes with a symmetric and noncentrosymmetric architecture controlled by the metal–ligand ratio
Mu et al. Syntheses, structures and luminescence of a series of Cd (II)-containing coordination polymers constructed from a long flexible bis-triazole ligand
Cheng et al. A series of novel gallium and indium borates constructed from [B5O8 (OH) 2] 3− clusters and metal complex linkers
Ouyang et al. Construction of metal-organic frameworks through coordination and hydrogen bonding interactions: Syntheses, structures and photoluminescent properties of metal complexes with macrocyclic ligand
Zhang et al. Synthesis and crystal structure of two lanthanide complexes with benzenecarboxylic derivatives
Wang et al. Unprecedented Na I–Cu II–Ln III heterometallic coordination polymers based on 3, 5-pyrazoledicarboxylate with both infinite cationic and anionic chains
Yang et al. Synthesis, Structure, and Luminescence Properties of Zinc (II) and Cadmium (II) Complexes containing the Flexible Ligand of 3, 3′‐Thiodipropionic Acid

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination