CN112301962B - 一种不影响正常供水的大型引调水工程过流能力提升方法 - Google Patents

一种不影响正常供水的大型引调水工程过流能力提升方法 Download PDF

Info

Publication number
CN112301962B
CN112301962B CN202011129373.0A CN202011129373A CN112301962B CN 112301962 B CN112301962 B CN 112301962B CN 202011129373 A CN202011129373 A CN 202011129373A CN 112301962 B CN112301962 B CN 112301962B
Authority
CN
China
Prior art keywords
gate
flow
capacity
type tubular
lift
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011129373.0A
Other languages
English (en)
Other versions
CN112301962A (zh
Inventor
吴德绪
黄会勇
吴永妍
刘少华
张娜
李波
万蕙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changjiang Institute of Survey Planning Design and Research Co Ltd
Original Assignee
Changjiang Institute of Survey Planning Design and Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changjiang Institute of Survey Planning Design and Research Co Ltd filed Critical Changjiang Institute of Survey Planning Design and Research Co Ltd
Priority to CN202011129373.0A priority Critical patent/CN112301962B/zh
Publication of CN112301962A publication Critical patent/CN112301962A/zh
Application granted granted Critical
Publication of CN112301962B publication Critical patent/CN112301962B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B5/00Artificial water canals, e.g. irrigation canals
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B5/00Artificial water canals, e.g. irrigation canals
    • E02B5/08Details, e.g. gates, screens
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03BINSTALLATIONS OR METHODS FOR OBTAINING, COLLECTING, OR DISTRIBUTING WATER
    • E03B5/00Use of pumping plants or installations; Layouts thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Barrages (AREA)

Abstract

本发明公开了一种不影响正常供水的大型引调水工程过流能力提升方法。它通过在输水建筑物的出口检修闸处增设门式贯流泵,实现不影响正常供水和过流的条件下,更显著地提升过流能力;过流能力提升方法,包括如下步骤,步骤一:根据输水渠道过流能力提升需求,推导渠段内的水力坡降;步骤二:根据渠段内水力坡降,利用L、i,估算门式贯流泵具备的最小扬程;步骤三:拟定门式贯流泵扬程值,计算不同扬程条件下,输水渠道过流能力,绘制过流能力~扬程曲线对应关系;步骤四:将门式贯流泵安装在检修闸共用门槽中。本发明具有在不影响正常供水的同时,显著提高过流能力的优点。

Description

一种不影响正常供水的大型引调水工程过流能力提升方法
技术领域
本发明涉及大型输水工程建设运行领域,更具体地说它是一种不影响正常供水的大型引调水工程过流能力提升方法。
背景技术
21世纪以来,我国兴建了多项大型引调水工程,向水资源短缺地区进行城市供水、农业灌溉、生态补水等。随着运行年度的增加,大型引调水工程的渠道过流能力可能达不到设计规模,或难以满足用户日益增长的需水要求,体现在渠道控制在设计或加大水位附近运行时,过流能力远低于原设计水平,或渠道输送设计或加大流量时,渠道实际运行水位超过原设计值,渠道超高不满足安全运行要求。
目前,对大型输水渠道过流能力提升的工程技术主要是渠底清淤或渠道衬砌修复,和原有渠道工程改扩建两大类。渠底清淤或渠道衬砌修复措施,如中国专利CN102852120A,对渠道过流能力提升效果有限,一般仅能恢复原设计水平。渠道工程改扩建措施,如增大输水断面,需要停水检修,对供水保证率高的引调水工程不适用。此外,一些增加渠道水体流速以增加过流能力的装置,如中国专利CN104404921A,因装置布置于渠底而对渠道原水流造成干扰,并且对大型渠道过流能力增加效果有限。
因此,现亟需开发一种提高大型渠道过流能力的方法。
发明内容
本发明的目的是为了提供一种不影响正常供水的大型引调水工程过流能力提升方法,通过增设贯流泵,实现调整渠道内水力坡降,在不影响正常运行条件下,大幅提升大型引调水工程的过流能力,约提升工程的过流能力1.5倍。
为了实现上述目的,本发明的技术方案为:一种不影响正常供水的大型引调水工程过流能力提升方法,其特征在于:通过在输水建筑物的出口检修闸处增设门式贯流泵,实现在不影响正常供水的前提下,显著提升大型引调水工程过流能力;
过流能力提升方法,包括如下步骤,
步骤一:根据输水渠道过流能力提升需求,推导渠段应具备的水力坡降;
步骤二:根据渠段内水力坡降,利用渠段长度L、纵坡i,估算门式贯流泵应具备的最小扬程;
步骤三:拟定多组门式贯流泵扬程值;其中,多组门式贯流泵扬程值中的最小扬程值减小的情形取一组或一组以上、增加的情形取多组,计算不同扬程条件下,输水渠道过流能力,绘制过流能力~扬程曲线对应关系,用于根据过流能力提升需求等条件进行设备选型;
步骤四:步骤三中选用的门式贯流泵应用时,将其安装在检修闸共用门槽中;
当输水渠道已大于设计流量供水时,将门式贯流泵就位在检修门槽中启动工作,通过过流能力~扬程曲线调节过水流量;
当渠道输水流量小于设计流量时,将门式贯流泵提起,仍以现状弧形闸门控制水流。
在上述技术方案中,在步骤一中,渠段内的水力坡降,按公式(1-1)计算,
Figure BDA0002734612740000021
式(1-1)中,i’为新水力坡降;Q为过流流量,单位m3/s;A为过流面积,单位m2;R为水力半径,单位m;n为糙率。
在上述技术方案中,在步骤二中,门式贯流泵具备的最小扬程,按公式(2-1)、(2-2)、(2-3)估算,
H=hL’-hL (2-1)
hL’=L×i’ (2-2)
hL=L×i (2-3)
式(2-1)、(2-2)、(2-3)中,hL、为原水面降;hL’为新水面降;H为扬程,单位m;L为渠段长度,单位m;i为纵坡。
在上述技术方案中,在步骤三中,当门式贯流泵扬程值中的最小扬程值减小时,取一组或一组以上门式贯流泵扬程值;
当门式贯流泵扬程值中的最小扬程值增加时,取多组门式贯流泵扬程值。
在上述技术方案中,在步骤四中,门式贯流泵通过叶片开度或转速调节流量。
本发明中的大型引调水工程为根据水利工程等级划分标准,大(Ⅰ)型年供水量10亿方以上,大(Ⅱ)型年供水量3-10亿方。
本发明具有如下优点:
(1)采用本发明技术可将输水渠道的过流能力提高到设计流量的1.52~1.87倍:对于长距离引调水工程,渠段平均长度按15km计,平均纵坡按1/25000计,当渠道上游端水位提升0.8m时,渠道水力坡降可增加为原水平k=2.32倍;当渠道上游端水位提升1.5m时,渠道水力坡降可增加为原水平k=3.5倍;根据明渠流速与水力坡降关系,渠道水流流速应增加
Figure BDA0002734612740000031
倍;在现状输水断面条件下,输水渠道的过流能力可增加为原水平1.52~1.87倍;
(2)采用本发明技术,可无须对现有输水建筑物进行大规模改造,不改变现有设施的运行条件下,提高输水渠道的过流能力,规避引调水工程长期在大流量下运行时的安全风险;
(3)本发明在输水渠道现状分段条件基础上,在输水建筑物的出口检修闸处增设门式贯流泵,将下游渠段的上游端水位提升,实现渠段内水力坡降增加,从而过流能力增加;
(4)本发明考虑建筑物耗用水头及水头损失等,采用的式贯流泵提升扬程约为0.8~1.5m,本发明采用的门式贯流泵在大流量(70~550m3/s)、低水头条件下均具有良好适用性;
(5)本发明门式贯流泵与现状检修闸共用门槽,与检修门轮换使用;本发明利用检修闸门的门槽固定在输水建筑物的流道运行,通过叶片开度或转速调节流量;当输水渠道已大于设计流量供水时,将贯流机组就位在检修门槽中启动工作;当渠道输水流量小于设计流量时,可将贯流泵提起,仍以现状弧形闸门控制水流;渠道检修时则放下现状检修闸门;
(6)本发明所有的改造工作可在工厂和地面进行,基本无水下工程,不影响正常供水。
附图说明
图1为本发明结构示意图。
图2为本发明实施例中的过流能力~扬程曲线图。
图1中的连续点为省略号,表示省略的渠道。
图1中的扬程表示门式贯流泵提升原水面线的高度,即新水面线与原水面线的间距。
具体实施方式
下面结合附图详细说明本发明的实施情况,但它们并不构成对本发明的限定,仅作举例而已。同时通过说明使本发明的优点更加清楚和容易理解。
参阅附图可知:一种不影响正常供水的大型引调水工程过流能力提升方法,通过在输水建筑物的出口检修闸处增设门式贯流泵,实现在不影响正常供水的前提下,大幅地提升大型引调水工程过流能力;
过流能力提升方法,包括如下步骤,
步骤一:根据输水渠道过流能力提升需求,推导渠段应具备的水力坡降;
步骤二:根据渠段内水力坡降,利用渠段长度L、纵坡i,估算门式贯流泵应具备的最小扬程;
步骤三:拟定选取门式贯流泵扬程值;其中,多组门式贯流泵扬程值中的最小扬程值减小的情形取一组或一组以上、增加的情形取多组,计算不同扬程条件下,输水渠道过流能力,绘制过流能力~扬程曲线对应关系,用于根据过流能力提升需求等条件进行设备选型;
步骤四:步骤三中选用的门式贯流泵应用时,将其安装在现状检修闸共用门槽中;将下游渠段的上游端水位提升,实现渠段内水力坡降增加,从而过流能力增加;
当输水渠道以大于设计流量供水时,将门式贯流泵就位在检修门槽中启动工作,通过过流能力~扬程曲线调节过水流量;
当渠道输水流量小于设计流量时,将门式贯流泵提起,仍以现状弧形闸门控制水流;渠道检修时则放下现状检修闸门(如图1所示)。
进一步地,在步骤一中,渠段内的水力坡降,按公式(1-1)计算,
Figure BDA0002734612740000051
式(1-1)中,i’为新水力坡降,Q为过流流量,单位m3/s;A为过流面积,单位m2;R为水力半径,单位m;n为糙率。
进一步地,在步骤二中,门式贯流泵具备的最小扬程,按公式(2-1)、(2-2)、(2-3)估算,
H=hL’-hL (2-1)
hL’=L×i’ (2-2)
hL=L×i (2-3)
式(2-1)、(2-2)、(2-3)中,hL、为原水面降;hL’为新水面降;H为扬程,单位m;L为渠段长度,单位m;i为纵坡。
进一步地,在步骤四中,检修闸门的门槽固定在输水建筑物的流道运行;门式贯流泵通过叶片开度或转速调节流量。
实施例
现以本发明应用于提升某大型引调水工程过流能力为实施例对本发明进行详细说明,对本发明应用于提升其他大型引调水工程过流能力同样具有指导作用。
以国内某大(Ⅰ)型引调水工程为例说明。输水工程设计最大输水流量420m3/s,以明渠输水为主,总干渠线路长约1196km。沿线布置节制闸60座,将总干渠分为60个渠段。工程经过多年运行后,不可避免地存在淤积、壳菜附着等现象,渠道工程还存在衬砌板破损等现象,对输水工程过流能力可能造成一定影响,增大了以设计最大流量输水的安全风险和调度难度。随着该引调水工程受水区社会经济发展,需水量显著增加,需要长期以最大输水流量引水才能满足受水区新增需求。因此需要对该输水工程的过流能力进行提升。
首先对现有技术做法开展尝试。主要包括清淤以恢复原输水断面、衬砌修复、渠道加高、新增或扩大原输水断面。清淤技术和衬砌修复技术只能使输水工程恢复原设计过流能力;渠道加高技术措施没有从本质上降低运行水位,一方面难以满足长时期大流量输水对原工程结构安全的要求,另一方面需要重新研究输水调度方案;新增或扩大原输水断面(含)所需工程投资过大,并且伴随需要停水检修,对现有正常供水造成影响。因此,采用本发明技术对输水工程的过流能力进行提升;
根据输水渠道过流能力提升需求,推导渠段内应具备的水力坡降。具体方法为:
Figure BDA0002734612740000061
式中,i’为新水力坡降,Q为过流流量,A为过流面积,R为水力半径,n为糙率;
根据渠段内水力坡降,利用渠段长度L、纵坡i,估算门式贯流泵至少应具备扬程。具体方法为原水面降hL=L×i,新水面降hL’=L×i’,则扬程H=hL’-hL
拟定6~8组门式贯流泵扬程值,其中相对最小扬程值减小的情形取1~2组,增加的情形取5~6组;计算不同扬程条件下,输水渠道过流能力,绘制过流能力~扬程曲线对应关系;不同渠段有不同过流能力~扬程曲线关系,本实施例中的过流能力~扬程曲线示意图参见附图2;从图2可知:提升后的过流能力越大,所需扬程越大;
步骤四:将门式贯流泵安装在现状检修闸共用门槽中;将下游渠段的上游端水位提升,实现渠段内水力坡降增加,从而过流能力增加;
当输水渠道已大于设计流量供水时,将门式贯流泵就位在检修门槽中启动工作,参考过流能力~扬程曲线,根据所需过流量要求调节设备;
当渠道输水流量小于设计流量时,将门式贯流泵提起,仍以现状弧形闸门控制水流;渠道检修时则放下现状检修闸门。
结论:本实施例能将下游渠段的上游端水位提升,实现渠段内水力坡降增加,从而增加过流能力;本实施例所有的改造工作可在工厂和地面进行,基本无水下工程,不影响正常供水。
其它未说明的部分均属于现有技术。

Claims (4)

1.一种不影响正常供水的大型引调水工程过流能力提升方法,其特征在于:通过在输水建筑物的出口检修闸处增设门式贯流泵,实现在不影响正常供水的前提下,大幅地提升大型引调水工程过流能力;
过流能力提升方法,包括如下步骤,
步骤一:根据输水渠道过流能力提升需求,推导渠段应具备的水力坡降;
步骤二:根据渠段内水力坡降,利用渠段长度L、纵坡i,估算门式贯流泵应具备的最小扬程;
在步骤二中,门式贯流泵具备的最小扬程,按公式(2-1)、(2-2)、(2-3)估算,
H= hL’-hL(2-1)
hL’=L×i’(2-2)
hL=L×i(2-3)
式(2-1)、(2-2)、(2-3)中,hL、为原水面降;hL’ 为新水面降;H为扬程,单位m;L为渠段长度,单位m;i为纵坡,i’为新水力坡降;
步骤三:拟定门式贯流泵扬程值,计算不同扬程条件下,输水渠道过流能力,绘制过流能力~扬程曲线对应关系,用于根据过流能力提升需求的条件进行设备选型;
步骤四:步骤三中选用的门式贯流泵应用时,将其安装在检修闸共用门槽中;
当输水渠道已大于设计流量供水时,将门式贯流泵就位在检修门槽中启动工作;
当渠道输水流量小于设计流量时,以现状弧形闸门控制水流。
2.根据权利要求1所述的不影响正常供水的大型引调水工程过流能力提升方法,其特征在于:在步骤一中,渠段应具备的水力坡降,按公式(1-1)计算,
Figure 927838DEST_PATH_IMAGE001
(1-1)
式(1-1)中,i’为新水力坡降;Q为过流流量,单位m3/s;A为过流面积,单位m2R为水力半径,单位m;n为糙率。
3.根据权利要求2所述的不影响正常供水的大型引调水工程过流能力提升方法,其特征在于其中,在步骤三中,当门式贯流泵扬程值中的最小扬程值减小时,取一组或一组以上门式贯流泵扬程值;
当门式贯流泵扬程值中的最小扬程值增加时,取多组门式贯流泵扬程值。
4.根据权利要求3所述的不影响正常供水的大型引调水工程过流能力提升方法,其特征在于:在步骤四中,门式贯流泵通过叶片开度或转速调节流量。
CN202011129373.0A 2020-10-21 2020-10-21 一种不影响正常供水的大型引调水工程过流能力提升方法 Active CN112301962B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011129373.0A CN112301962B (zh) 2020-10-21 2020-10-21 一种不影响正常供水的大型引调水工程过流能力提升方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011129373.0A CN112301962B (zh) 2020-10-21 2020-10-21 一种不影响正常供水的大型引调水工程过流能力提升方法

Publications (2)

Publication Number Publication Date
CN112301962A CN112301962A (zh) 2021-02-02
CN112301962B true CN112301962B (zh) 2021-12-17

Family

ID=74326764

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011129373.0A Active CN112301962B (zh) 2020-10-21 2020-10-21 一种不影响正常供水的大型引调水工程过流能力提升方法

Country Status (1)

Country Link
CN (1) CN112301962B (zh)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005188239A (ja) * 2003-12-26 2005-07-14 Toshiba Corp 河川浄化システム
CN104895797B (zh) * 2015-04-20 2016-04-27 扬州大学 大型低扬程泵装置型式的量化比选方法
CN205100175U (zh) * 2015-10-19 2016-03-23 中国电建集团贵阳勘测设计研究院有限公司 一种提供水利水电工程下游河段生态流量的结构
CN105908683A (zh) * 2016-04-15 2016-08-31 西北农林科技大学 一种新型的水轮泵泄水消能方法
CN107958095B (zh) * 2016-10-18 2020-10-16 济南大学 一种二分之五次方抛物线形明渠及其水力最优断面
CN107679317B (zh) * 2017-09-28 2018-08-21 中国水利水电科学研究院 一种一维明渠水动力模型泵站内边界的处理方法
CN108534843B (zh) * 2018-03-02 2019-12-24 武汉大学 一种明渠输水渠道的单闸门流量率定方法与装置
CN109460605B (zh) * 2018-11-08 2019-07-19 河海大学 一种预测大型低扬程水泵流量的方法
CN110647039B (zh) * 2019-10-08 2022-03-25 黄河勘测规划设计研究院有限公司 长距离明渠输水工程同步控制自适应平衡调度方法

Also Published As

Publication number Publication date
CN112301962A (zh) 2021-02-02

Similar Documents

Publication Publication Date Title
CN111723995A (zh) 一种梯级水库联合调度下水库汛期泥沙优化调度方法
CN204185835U (zh) 水电站明满流尾水***
CN112431772A (zh) 圩垸区防汛排涝泵站群优化调度运行方法
CN104179159A (zh) 水电站明满流尾水***
CN112301962B (zh) 一种不影响正常供水的大型引调水工程过流能力提升方法
CN208604556U (zh) 用于特高堆石坝的多功能生态供水洞布置结构
CN202090383U (zh) 双竖井闸控式表层取水设施
WO2021196707A1 (zh) 基于复杂洞室群施工的分阶段通风方法
CN111139800B (zh) 可调式消涡、整流装置及消涡整流方法
CN212077857U (zh) 可调式消涡、整流装置
CN101982620A (zh) 供水工程节能控制方法
CN104265383B (zh) 基于变频泵和倒u型虹吸管的直流循环供水***
WO2020164168A1 (zh) 一种基于轴距的轴流泵叶轮设计方法
CN117513260A (zh) 结合导流洞、泄放洞和竖井式泄洪洞的泄流结构
CN115652872A (zh) 一种多功能溢流坝及其运行方法
CN206298882U (zh) 一种降低闸门井涌浪及通气孔风速的布置结构
CN113389736A (zh) 一种输水干渠径流断面微提升水头加大流速的装置
CN212317036U (zh) 一种利用老坝拆除缺口实现分层取水的新老坝体布置型式
CN208517904U (zh) 一种水利工程排水闸
CN204140145U (zh) 基于变频泵和倒u型虹吸管的直流循环供水***
CN209584994U (zh) 一种用于高水头电站的分层取水独立式进水塔结构
CN113374697A (zh) 一种水动力输水装置
CN105256774B (zh) 一种利用下游水库回水减小上游水电站截流难度的方法
CN110541400A (zh) 一种适用于旱雨季灌溉的泵闸组合***
CN216108294U (zh) 一种一体化泵闸进出水导流结构

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant