CN112287222B - 一种基于异质特征深度残差网络的内容推荐方法 - Google Patents

一种基于异质特征深度残差网络的内容推荐方法 Download PDF

Info

Publication number
CN112287222B
CN112287222B CN202011180629.0A CN202011180629A CN112287222B CN 112287222 B CN112287222 B CN 112287222B CN 202011180629 A CN202011180629 A CN 202011180629A CN 112287222 B CN112287222 B CN 112287222B
Authority
CN
China
Prior art keywords
data
content
depth residual
user
obtaining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011180629.0A
Other languages
English (en)
Other versions
CN112287222A (zh
Inventor
蔡树彬
明仲
周槐枫
彭韬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen University
Original Assignee
Shenzhen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen University filed Critical Shenzhen University
Priority to CN202011180629.0A priority Critical patent/CN112287222B/zh
Priority to PCT/CN2020/136144 priority patent/WO2022088417A1/zh
Publication of CN112287222A publication Critical patent/CN112287222A/zh
Application granted granted Critical
Publication of CN112287222B publication Critical patent/CN112287222B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/90Details of database functions independent of the retrieved data types
    • G06F16/95Retrieval from the web
    • G06F16/953Querying, e.g. by the use of web search engines
    • G06F16/9535Search customisation based on user profiles and personalisation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Computational Linguistics (AREA)
  • Evolutionary Computation (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • Biomedical Technology (AREA)
  • Artificial Intelligence (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

本发明公开了一种基于异质特征深度残差网络的内容推荐方法,所述方法包括:获取待推荐内容的源数据,并对所述源数据进行数据转换处理,得到加权混合嵌入数据;根据所述加权混合嵌入数据和深度残差网络模型,得到预测评分数据;根据所述预测评分数据,得到内容的推荐结果。本发明实施例通过对领域内容的源数据进行处理,并将处理后的数据输入到残差网络模型,得到预测评分数据,接着根据预测评分数据对领域内容进行精准推荐,计算方法效率高,资源占有率低,同时多元化的数据还能避免对新用户进行推荐时出现冷启动。

Description

一种基于异质特征深度残差网络的内容推荐方法
技术领域
本发明涉及通信技术领域,尤其涉及的是一种基于异质特征深度残差网络的内容推荐方法。
背景技术
随着大数据时代的到来,人们对大数据时代中如电影,文章,医疗等领域内容推荐有极大的需求,为了对诸多领域内容进行很好的推荐,现有技术中涌现出许多方法,但是现有技术方法会存在分解举证步骤不确定性,分解后的低维矩阵会增加算法的时间复杂度,使得计算消耗高,效率低,在遇到新用户时会出现冷启动问题,并且,现有技术方法直接在稀疏数据上进行运算,资源占用率高,算法效率低。
因此,现有技术还有待改进和发展。
发明内容
本发明要解决的技术问题在于,针对现有技术的上述缺陷,提供一种基于异质特征深度残差网络的内容推荐方法,旨在解决现有技术中遇到新用户时会出现冷启动问题,并且,现有技术方法直接在稀疏数据上进行运算,资源占用率高,计算方法效率低的问题。
本发明解决问题所采用的技术方案如下:
第一方面,本发明实施例提供一种基于异质特征深度残差网络的内容推荐方法,其中,所述方法包括:
获取待推荐内容的源数据,并对所述源数据进行数据转换处理,得到加权混合嵌入数据;
根据所述加权混合嵌入数据和深度残差网络模型,得到预测评分数据;
根据所述预测评分数据,得到内容的推荐结果。
在一种实现方式中,其中,所述对所述源数据进行数据转换处理,得到加权混合嵌入数据包括:
获取用户与项目的协同关系数据;
提取所述待推荐内容的源数据的特征值,得到特征值数据;
将所述特征值数据和所述用户与项目的协同关系数据进行基于内容的嵌入构造,得到嵌入数据;
生成第一triplet loss训练器,并将所述嵌入数据输入到所述第一triplet loss训练器,得到加权混合嵌入数据。
在一种实现方式中,其中,所述提取所述待推荐内容的源数据的特征值,得到特征值数据包括:
根据映射矩阵,将所述待推荐内容的源数据进行线性降维处理,得到降维矩阵数据;
提取所述降维矩阵数据的特征值,得到特征值数据。
在一种实现方式中,其中,所述根据所述加权混合嵌入数据和深度残差网络模型,得到预测评分数据包括:
根据所述加权混合嵌入数据,提取所述加权混合嵌入数据的异质特征数据;
将所述加权混合嵌入数据和所述异质特征数据进行线性拼接,得到深度残差网络输入数据;
将所述深度残差网络输入数据输入到深度残差网络模型,得到预测评分数据。
在一种实现方式中,其中,所述深度残差网络模型生成方式为:
获取输入样本数据和输出样本数据;
生成第二triplet loss训练器,并根据所述第二triplet loss训练器,生成网络模型;
将所述输入样本数据输入到网络模型得到网络模型输出数据;
当所述网络模型输出数据和所述输出样本数据的平均绝对误差率小于预设值,则停止迭代,得到深度残差网络模型。
在一种实现方式中,其中,所述根据预测评分数据,得到内容的推荐结果包括:
根据Baseline基线算法,得到基线算法结果;
根据所述基线算法结果和所述预测评分数据,得到内容的推荐结果。
在一种实现方式中,其中,所述根据所述基线算法结果和所述预测评分数据,得到内容的推荐结果包括:
根据基线算法结果,得到基线评分数据,用户偏差数据和项目偏差数据;
根据所述基线评分数据,所述用户偏差数据和所述项目偏差数据,调整所述预测评分数据,得到目标预测评分数据;
根据所述目标预测评分数据,得到内容的推荐结果。
在一种实现方式中,其中,所述根据所述目标预测评分数据,得到内容的推荐结果还包括:
当有新用户、新项目引入时,将所述基线评分数据作为目标预测评分数据,得到内容的推荐结果。
第二方面,本发明实施例还提供一种基于异质特征深度残差网络的内容推荐装置,装置包括:
待推荐内容的源数据获取单元,用于获取待推荐内容的源数据,并对所述源数据进行数据转换处理,得到加权混合嵌入数据;
预测评分数据获取单元,用于根据所述加权混合嵌入数据和深度残差网络模型,得到预测评分数据;
内容推荐结果获取单元,用于根据所述预测评分数据,得到内容的推荐结果。
第三方面,本发明实施例还提供一种智能终端,包括有存储器,以及一个或者一个以上的程序,其中一个或者一个以上程序存储于存储器中,且经配置以由一个或者一个以上处理器执行所述一个或者一个以上程序包含用于执行如上述任意一项所述的基于异质特征深度残差网络的内容推荐方法。
第四方面,本发明实施例还提供一种非临时性计算机可读存储介质,当所述存储介质中的指令由电子设备的处理器执行时,使得电子设备能够执行如上述中任意一项所述的基于异质特征深度残差网络的内容推荐方法。
本发明的有益效果:本发明实施例首先获取某个领域的待推荐内容的源数据,并对所述源数据进行数据转换处理,得到加权混合嵌入数据;然后根据加权混合嵌入数据和深度残差网络模型得到该领域的内容预测评分数据;最后根据这个预测的评分数据,就可以给出最终该领域的内容推荐结果。可见,本发明实施例通过对领域内容的源数据进行处理,并将处理后的数据输入到残差网络模型,得到预测评分数据,接着根据预测评分数据对领域内容进行精准推荐,计算方法效率高,资源占有率低,同时多元化的数据还能避免对新用户进行推荐时出现冷启动。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1本发明实施例提供一种基于异质特征深度残差网络的内容推荐方法流程示意图
图2本发明实施例的HRN整体网络结构图
图3本发明实施例的异质特征提取结构图
图4左本发明实施例的向量实验结果RMSE变化趋势图
图4右本发明实施例的向量实验结果LOSS变化趋势图
图5本发明实施例的向量实验结果MAE变化趋势图
图6本发明实施例的深度残差网络MAE的变化图
图7本发明实施例的深度残差网络RMSE的变化图
图8本发明实施例的深度残差网络MAP的变化图
图9本发明实施例的深度残差网络MRR的变化图
图10本发明实施例的深度残差网络NDCG的变化图
图11本发明实施例提供的一种基于异质特征深度残差网络的内容推荐装置的原理框图。
图12本发明实施例提供的智能终端的内部结构原理框图。
具体实施方式
本发明公开了一种基于异质特征深度残差网络的内容推荐方法,为使本发明的目的、技术方案及效果更加清楚、明确,以下参照附图并举实施例对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
本技术领域技术人员可以理解,除非特意声明,这里使用的单数形式“一”、“一个”、“所述”和“该”也可包括复数形式。应该进一步理解的是,本发明的说明书中使用的措辞“包括”是指存在所述特征、整数、步骤、操作、元件和/或组件,但是并不排除存在或添加一个或多个其他特征、整数、步骤、操作、元件、组件和/或它们的组。应该理解,当我们称元件被“连接”或“耦接”到另一元件时,它可以直接连接或耦接到其他元件,或者也可以存在中间元件。此外,这里使用的“连接”或“耦接”可以包括无线连接或无线耦接。这里使用的措辞“和/或”包括一个或更多个相关联的列出项的全部或任一单元和全部组合。
本技术领域技术人员可以理解,除非另外定义,这里使用的所有术语(包括技术术语和科学术语),具有与本发明所属领域中的普通技术人员的一般理解相同的意义。还应该理解的是,诸如通用字典中定义的那些术语,应该被理解为具有与现有技术的上下文中的意义一致的意义,并且除非像这里一样被特定定义,否则不会用理想化或过于正式的含义来解释。
由于现有技术中,内容推荐方法在遇到新用户时会出现冷启动问题,并且,现有技术方法直接在稀疏数据上进行运算,资源占用率高,算法效率低。
为了解决现有技术的问题,本实施例提供了一种基于异质特征深度残差网络的内容推荐方法,先获取待推荐内容的源数据,在拿到用户数据,项目数据,用户项目评分数据后,为了方便后续对数据的处理,对所述源数据进行数据转换处理,得到加权混合嵌入数据;然后根据所述加权混合嵌入数据,抽取出特征,将特征向量化,转换成推荐算法需要用到的嵌入格式,将加权混合嵌入数据和提取的数据输入到深度残差网络模型,得到预测评分数据;最后根据所述预测评分数据,得到内容的推荐结果。本发明实施例中的深度残差网络的核心是HRN,HRN是混合残差网络的中文缩写。HRN基本网络具有四层残差网络结构,h=4表示Principal Network(基本网络)网络深度为4,由四层ResNet(残差网络)堆叠而成。网络接受向量和特征值作为输入,向量和特征值分别进入一个Dense层(全连接层),Dense层均采用tanh(双曲正切函数)作为激活函数,将两个Dense层的输出神经元进行拼接,输入到混合残差网络。
为了更好的提取到数据不同层次的特征,一般都会设计更深层次的网络,此外,更深的网络提取的特征越抽象,更能够捕捉数据隐藏特征。但是,如果简单的仅仅依靠增加神经网络的层数,不仅不能达到目的,而且会导致梯度***。为解决这一问题,***引入ResNet(残差网络),在网络中加入了Dropout(按照一定的概率将神经网络单元从网路中丢弃)层来防止过拟合,引入Batch_Normalization(批规范化)层对输入数据和中间层的数据进行归一化操作,这样可以保证网络在反向传播中采用随机梯度下降,从而让网络达到收敛。
举例说明,本发明实施例可以应用于多种推荐领域,除了电影外还可以有文章甚至医疗等,比如以推荐电影为例,首先需要获取项目如若干电影评分数据,看电影的用户数据,然后将上述若干电影的评分数据和看电影的用户数据进行数据转换处理,经过数据转换处理之后便可以得到与电影内容相关的加权混合嵌入数据,根据这些加权混合嵌入数据,提取出特征值,比如,根据电影的评分数据,提取出N个用户的观影评分数据,将这些数据进行数据转换处理得到加权混合嵌入数据,提取出加权混合嵌入数据的特征值数据,将特征值数据和加权混合嵌入数据输入到深度残差网络,可以得到预测评分数据,也即,可以得到模型A用户和B用户有着许多类似的观影爱好,最后根据预测评分数据,如B用户的观影项目很多,那么可以将A用户没有看过的B用户的观影评分高的项目内容推荐给A用户。
示例性方法
本实施例提供一种基于异质特征深度残差网络的内容推荐方法,该方法可以应用于IT智能终端。具体如图1所示,所述方法包括:
步骤S100、获取待推荐内容的源数据,并对所述源数据进行数据转换处理,得到加权混合嵌入数据。
具体地,获取待推荐内容的源数据,在拿到用户数据,项目数据,用户项目评分数据后,为了方便后续对数据的处理,对所述源数据进行数据转换处理,得到加权混合嵌入数据。例如,根据电影的评分数据,提取出N个用户的观影评分数据,将这些数据进行数据转换处理得到加权混合嵌入数据,得到的数据为后续进行HRN处理做准备。HRN整体网络结构图如图2所示,算法流程如下:1)数据特征提取与向量化;2)构造基于内容的嵌入;3)利用用户项目协同关系增强基于内容的嵌入,构造加权混合嵌入;4)构建异质特征,拼接异质特征和加权混合嵌入;5)搭建深度残差预测网络;6)使用异质特征和加权混合嵌入对残差网络进行训练;7)得到最后的预测结果。
为了得到加权混合嵌入数据,所述对所述源数据进行数据转换处理,得到加权混合嵌入数据包括如下步骤:
S101:获取用户与项目的协同关系数据;
S102:提取所述待推荐内容的源数据的特征值,得到特征值数据;
S103:将所述特征值数据和所述用户与项目的协同关系数据进行基于内容的嵌入构造,得到嵌入数据;
S104:生成第一triplet loss训练器,并将所述嵌入数据输入到所述第一tripletloss训练器,得到加权混合嵌入数据。
具体地,获取用户与项目的协同关系数据,如用户id索引,项目id索引,用户向量,项目向量,用户复现次数,即每个用户为每个项目打分,项目复现次数,即每个项目收到过来自每个用户的评分,基于内容的用户向量,基于内容的项目向量,基于协同过滤的用户向量,基于协同过滤的项目向量。然后提取待推荐内容的源数据的特征值,得到特征值数据。常用的基于统计的特征提取手段有:提取数据集的最值,平均值,标准差/方差等。接着将所述特征值数据和所述用户与项目的协同关系数据进行基于内容的嵌入构造,得到嵌入数据。也即将每个项目收到的来自每个用户的评分,基于内容的用户向量,基于内容的项目向量,基于协同过滤的用户向量,基于协同过滤的项目向量和数据集的最值,平均值,标准差/方差等进行嵌入式构造,得到嵌入数据。最后,生成第一triplet loss训练器并将所述嵌入数据输入到所述第一triplet loss训练器,triplet loss为三元组损失函数。第一TripletLoss模块负责将生成的基于内容的嵌入利用用户项目***关系进行增强,训练成加权混合嵌入,然后在展示的基于内容的嵌入向量中生成模块,负责将输入的用户和项目数据转换成基于内容的嵌入向量。
为了得到合适的特征值数据,所述提取所述待推荐内容的源数据的特征值,得到特征值数据包括如下操作:根据映射矩阵,将所述待推荐内容的源数据进行线性降维处理,得到降维矩阵数据;提取所述降维矩阵数据的特征值,得到特征值数据。
具体地,根据映射矩阵,将所述待推荐内容的源数据进行线性降维处理,降维矩阵采用PCA(主成分分析法),PCA利用正交变换矩阵作为映射矩阵,将初始数据变换为一组各维度线性无关的表示,用于提取数据的主要特征分量,达到以较少特征的数据表达整体数据的目的,是一种线性降维的方法。深度残差网络使用主成分分析方法PCA(PrincipleComponent Analysis)对特征化后的高维矩阵嵌入进行降维,将其映射到低维空间,将高维稀疏嵌入转化为低维稠密嵌入,提高空间利用率,能够解决高内存占用和计算时间长的问题。
本实施例提供一种基于异质特征深度残差网络的内容推荐方法,该方法可以应用于IT智能终端。具体如图1所示,所述方法包括:
S200:根据所述加权混合嵌入数据和深度残差网络模型,得到预测评分数据。
具体地,本发明实施例获得所述加权混合嵌入数据后,会将数据输入到深度残差网络模型,深度残差网络模型的核心为HRN,HRN的设计依据为:1)为了减轻“冷启动”对推荐结果造成的影响,HRN设计了Triplet Loss训练器,训练出同时兼顾了基于内容和基于协同过滤的加权混合嵌入,作为预测网络的输入。2)其次,由于用户和项目的数目巨大,并且与用户有交互的项目的数量只占了极小部分。为了避免在极度稀疏的用户到项目评价矩阵上直接进行运算,HRN利用PCA对嵌入进行降维,用Triplet Loss以用户项目协同关系去增强基于内容的嵌入,将原始的用户和项目数据转换成低维度的,同时保持良好的特征映射的加权混合嵌入向量。将加权混合嵌入数据输入到深度残差网络模型后会得到预测评分数据。
为了得到预测评分数据,所述根据所述加权混合嵌入数据和深度残差网络模型,得到预测评分数据包括如下步骤:
S201:根据所述加权混合嵌入数据,提取所述加权混合嵌入数据的异质特征数据;
S202:将所述加权混合嵌入数据和所述异质特征数据进行线性拼接,得到深度残差网络输入数据;
S203:将所述深度残差网络输入数据输入到深度残差网络模型,得到预测评分数据。
实际中,在获取到加权混合嵌入数据之后,会提取加权混合嵌入数据的异质特征数据,异质特征提取旨在挖掘不同类型特征间的隐含关系。异质信息网络HIN包含有向图,用节点表示实体,边来表示关系,与知识图谱特别相似。受到HIN的异质信息网络的启发,***将学习到的各种特征向量通过线性拼接的方式融合成异质特征向量,将异质特征向量与学习到的同质向量(序列)进行线性拼接,作为深度残差网络的输入。基于此,本文构建了如图3所示的异质特征提取。然后将所述加权混合嵌入数据和所述异质特征数据进行线性拼接,形成的数据作为深度残差网络输入数据;由于深度残差网络模型是建立好的,将所述深度残差网络输入数据输入到深度残差网络模型,就可以得到预测评分数据。
为了使用深度残差网络模型,先要生成深度残差网络模型,深度残差网络模型生成方式为:获取输入样本数据和输出样本数据;生成第二triplet loss训练器,并根据所述第二triplet loss训练器,生成网络模型;将所述输入样本数据输入到网络模型得到网络模型输出数据;当所述网络模型输出数据和所述输出样本数据的平均绝对误差率小于预设值,则停止迭代,得到深度残差网络模型。
实际中,网络模型需要根据一组真实的样本数据来训练模型得到,因此,需要获取输入数据和输出数据,然后生成第二triplet loss训练器,triplet loss为三元组损失函数,Triplet Loss用于学***均绝对误差率,当所述网络模型输出数据和所述输出样本数据的平均绝对误差率小于预设值,说明模型训练成功,则停止迭代,得到的深度残差网络模型就可以被使用。
本发明实施例中深度残差网络训练后,RMSE(均方根误差)随着epoch(一代训练)的增加的变化趋势如图4左所示,LOSS(损失)随着epoch(一代训练)的增加的变化趋势如图4右所示,MAE(平均绝对误差)随着epoch(一代训练)的增加的变化趋势如图5所示。
随着迭代次数的增加,网络的LOSS,RMSE以及MAE都逐渐下降,当epoch达到30时,网络的LOSS,RMSE以及MAE分别从开始的3.6843,0.8995,0.7122下降到3.6234,0.8465,0.6694。可以看到,经过30轮的迭代,深度残差网络的LOSS,RMSE以及MAE都下降到比较低的水平。
从图4左、图4右、图5可以看出,对于各项指标,参与对比的算法大体上分成了三个阵营。其中,Normal(正轨算法)、Baseline(基线算法)、CoClustering(聚类算法)归为一个阵营,SVD(奇异值分解算法)、SVD++(奇异值分解改进算法)算法归为一个阵营,还有就是基于异质特征的深度残差网络,使用加权混合嵌入训练出来的Hybrid_ResNet(HRN)算法,以及同样使用了加权混合嵌入,不过分别使用了SVD和SVD++训练出来的Hybrid_SVD(混合奇异值分解算法)以及Hybrid_SVD++(混合奇异值分解改进算法)算法所构成的阵营。可以看到,随着用户评分数的增大,各个算法的各项指标都变好了,这也说明,用户与项目的交互数据越多,算法确实越能够捕捉到用户的偏好,能够做出更好的预测。通过横向比较,发现用***提出的方法训练出来的三个算法HRN,HSD以及HSD++表现明显优于其他算法如SVD、SVD++算法。其次,Baseline、CoClustering、Normal算法表现较差。SVD++作为SVD的改进版本,在除了***提出的第一阵营外,表现最好,各项指标相较于SVD都有所提升。
对于***提出的三个网络,HRN,HSD,HSD++,是基于同样的融合了基于内容特征和协同过滤特征的加权混合嵌入构建出来的,不同点在于,Hybrid_ResNet相比较后两者,还加入了异质特征,用于挖掘用户项目的隐含特征,将异质特征输入到深度残差网络,对比普通深度网络,残差网络提高了学习效率的同时,更深的网络结构也有助于学习到更抽象的特征,并且同时不会影响网络性能,这也是***选择残差网络的原因。而HSD和HSD++,则是在加权混合嵌入基础上,分别使用SVD和SVD++算法训练网络。从性能比较结果来看,HRN的指标比后两者都要好,证明利用深度残差网络挖掘用户项目隐含特征确实有助于提升网络预测性能。
用户与项目的交互数据越多,推荐算法就越能学***均绝对误差)变化情况,图7给出了RMSE(均方根误差)变化情况,图8给出了MAP(平均精度均值)的变化情况,图9给出了MRR(平均倒数排名)的变化情况,图10给出了NDCG(归一化折损累计增益)的变化情况,随着用户的评分数据越丰富,算法确实更能够捕捉到用户的行为特征偏好,做出更准确的预测。
本实施例提供一种基于异质特征深度残差网络的内容推荐方法,该方法可以应用于IT智能终端。具体如图1所示,所述方法包括:
S300:根据所述预测评分数据,得到内容的推荐结果。
具体地,HRN将加权混合嵌入和异质特征向量作为深度残差网络的输入,经过训练得到预测评分数据。HRN将各种不同性质的特征向量融合成异质特征向量,再对新用户、新项目与其他用户、项目进行相似度评估并据此做出内容的推荐,本发明实施例中的多元化的数据来源能够缓解“冷启动”问题。
为了得到详细的推荐结果,所述根据预测评分数据,得到内容的推荐结果包括如下步骤:
S301:根据Baseline基线算法,得到基线算法结果;
S302:根据所述基线算法结果和所述预测评分数据,得到内容的推荐结果。
在本实施例中,Baseline基线算法是一个独立于深度残差网络的算法,在构建深度残差网络之前,先建立一个Baseline基线算法,最终的推荐结果将是基线算法得到的结果与HRN得到的结果的结合。基线算法的引入,让我们***提出的网络有了对比基线,有助于后续观察算法效果的提升。最后,根据基线算法结果来修正预测评分数据,得到最终的评分数据,根据最终的评分数据,就可以得到领域内容的推荐结果。
具体实施时,所述根据所述基线算法结果和所述预测评分数据,得到内容的推荐结果包括如下操作:根据基线算法结果,得到基线评分数据,用户偏差数据和项目偏差数据;根据所述基线评分数据,所述用户偏差数据和所述项目偏差数据,调整所述预测评分数据,得到目标预测评分数据;根据所述目标预测评分数据,得到内容的推荐结果。
在一种实施方式中,由于Baseline算法的基本思想是:设立基线,引入用户偏差和项目偏差。比如,电影领域的用户偏差为每个用户观影***时的观影习惯,得到内容的推荐结果,决定是否向该用户推荐电影内容。例如,对A用户进行观影评分,电影的观影基线评分是7,而《泰坦尼克号》是部不错的电影,其项目评分增加0.5,但是根据深度残差网络输出的A用户的预测评分普遍比别人低0.3,也即A用户是个苛刻的用户,因此用户评分减去0.3,最后得到A用户对电影《泰坦尼克号》的评分是7.2,再根据实际中A用户一般观看评分多少以上的电影,比如A用户只观看评分6.5以上的电影,此时根据评分7.2的结果,就可以给用户A推荐此电影《泰坦尼克号》。
为了解决当新用户引入时产生冷启动的问题,所述根据所述目标预测评分数据,得到内容的推荐结果还包括如下操作:当有新用户、新项目引入时,将所述基线评分数据作为目标预测评分数据,得到内容的推荐结果。
具体地,根据基线算法,是可以得到基线评分数据的,就是大众对一个电影的观影有一个基准的评分,这样当新用户、新项目引入时,将基线评分数据作为目标预测评分数据,根据目标预测评分数据来进行内容的推荐。如,当新用户引入时,没有关于用户过往的任何信息,无法将用户与其他用户进行相似度评估,这个时候根据基线评分数据来作为目标预测评分数据,根据目标预测评分数据来决定给该新用户推荐何种内容。
示例性设备
如图11中所示,本发明实施例提供一种基于异质特征深度残差网络的内容推荐装置,该装置包括:待推荐内容的源数据获取单元401,预测评分数据获取单元402,内容推荐结果获取单元403;
待推荐内容的源数据获取单元401,用于获取待推荐内容的源数据,并对所述源数据进行数据转换处理,得到加权混合嵌入数据;
预测评分数据获取单元402,根据所述加权混合嵌入数据和深度残差网络模型,得到预测评分数据;
内容推荐结果获取单元403,根据所述预测评分数据,得到内容的推荐结果。
基于上述实施例,本发明还提供了一种智能终端,其原理框图可以如图12所示。该智能终端包括通过***总线连接的处理器、存储器、网络接口、显示屏、温度传感器。其中,该智能终端的处理器用于提供计算和控制能力。该智能终端的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作***和计算机程序。该内存储器为非易失性存储介质中的操作***和计算机程序的运行提供环境。该智能终端的网络接口用于与外部的终端通过网络连接通信。该计算机程序被处理器执行时以实现一种基于异质特征深度残差网络的内容推荐方法。该智能终端的显示屏可以是液晶显示屏或者电子墨水显示屏,该智能终端的温度传感器是预先在智能终端内部设置,用于检测内部设备的运行温度。
本领域技术人员可以理解,图12中的原理图,仅仅是与本发明方案相关的部分结构的框图,并不构成对本发明方案所应用于其上的智能终端的限定,具体的智能终端可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
在一个实施例中,提供了一种智能终端,包括有存储器,以及一个或者一个以上的程序,其中一个或者一个以上程序存储于存储器中,且经配置以由一个或者一个以上处理器执行所述一个或者一个以上程序包含用于进行以下操作的指令:获取待推荐内容的源数据,并对所述源数据进行数据转换处理,得到加权混合嵌入数据;根据所述加权混合嵌入数据和深度残差网络模型,得到预测评分数据;根据所述预测评分数据,得到内容的推荐结果。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本发明所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM)或者外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDRSDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)等。
综上所述,本发明公开了一种基于异质特征深度残差网络的内容推荐方法、智能终端、存储介质,所述方法包括:获取待推荐内容的源数据,并对所述源数据进行数据转换处理,得到加权混合嵌入数据;根据所述加权混合嵌入数据和深度残差网络模型,得到预测评分数据;根据所述预测评分数据,得到内容的推荐结果。本发明实施例通过对领域内容的源数据进行处理,并将处理后的数据输入到残差网络模型,得到预测评分数据,接着根据预测评分数据对领域内容进行精准推荐,计算方法效率高,资源占有率低,同时多元化的数据还能避免对新用户进行推荐时出现冷启动。
应当理解的是,本发明公开了一种基于异质特征深度残差网络的内容推荐方法,应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (8)

1.一种基于异质特征深度残差网络的内容推荐方法,其特征在于,所述方法包括:
获取待推荐内容的源数据,并对所述源数据进行数据转换处理,得到加权混合嵌入数据;
根据所述加权混合嵌入数据和深度残差网络模型,得到预测评分数据;
根据所述预测评分数据,得到内容的推荐结果;
其中,所述对所述源数据进行数据转换处理,得到加权混合嵌入数据包括:
获取用户与项目的协同关系数据,其中,所述用户与项目的协同关系数据包括用户数据、项目数据、用户项目评分数据、基于内容的用户数据、基于内容的项目数据、基于协同过滤的用户数据、基于协同过滤的项目数据;
提取所述待推荐内容的源数据的特征值,得到特征值数据;
将所述特征值数据和所述用户与项目的协同关系数据进行基于内容的嵌入构造,得到嵌入数据;
生成第一tripletloss训练器,并将所述嵌入数据输入到所述第一triplet loss训练器,得到加权混合嵌入数据;
其中,所述深度残差网络模型生成方式为:
获取输入样本数据和输出样本数据;
生成第二triplet loss训练器,并根据所述第二triplet loss训练器,生成网络模型;
将所述输入样本数据输入到网络模型得到网络模型输出数据;
当所述网络模型输出数据和所述输出样本数据的平均绝对误差率小于预设值,则停止迭代,得到深度残差网络模型。
2.根据权利要求1所述的基于异质特征深度残差网络的内容推荐方法,其特征在于,所述提取所述待推荐内容的源数据的特征值,得到特征值数据包括:
根据映射矩阵,将所述待推荐内容的源数据进行线性降维处理,得到降维矩阵数据;
提取所述降维矩阵数据的特征值,得到特征值数据。
3.根据权利要求2所述的基于异质特征深度残差网络的内容推荐方法,其特征在于,所述根据所述加权混合嵌入数据和深度残差网络模型,得到预测评分数据包括:
根据所述加权混合嵌入数据,提取所述加权混合嵌入数据的异质特征数据;
将所述加权混合嵌入数据和所述异质特征数据进行线性拼接,得到深度残差网络输入数据;
将所述深度残差网络输入数据输入到深度残差网络模型,得到预测评分数据。
4.根据权利要求1所述的基于异质特征深度残差网络的内容推荐方法,其特征在于,所述根据所述预测评分数据,得到内容的推荐结果包括:
根据Baseline基线算法,得到基线算法结果;
根据所述基线算法结果和所述预测评分数据,得到内容的推荐结果。
5.根据权利要求4所述的基于异质特征深度残差网络的内容推荐方法,其特征在于,所述根据所述基线算法结果和所述预测评分数据,得到内容的推荐结果包括:
根据基线算法结果,得到基线评分数据,用户偏差数据和项目偏差数据;
根据所述基线评分数据,所述用户偏差数据和所述项目偏差数据,调整所述预测评分数据,得到目标预测评分数据;
根据所述目标预测评分数据,得到内容的推荐结果。
6.根据权利要求5所述的基于异质特征深度残差网络的内容推荐方法,其特征在于,所述根据所述目标预测评分数据,得到内容的推荐结果还包括:
当有新用户、新项目引入时,将所述基线评分数据作为目标预测评分数据,得到内容的推荐结果。
7.一种智能终端,其特征在于,包括有存储器,以及一个或者一个以上的程序,其中一个或者一个以上程序存储于存储器中,且经配置以由一个或者一个以上处理器执行所述一个或者一个以上程序包含用于执行如权利要求1-6中任意一项所述的方法。
8.一种非临时性计算机可读存储介质,其特征在于,当所述存储介质中的指令由电子设备的处理器执行时,使得电子设备能够执行如权利要求1-6中任意一项所述的方法。
CN202011180629.0A 2020-10-29 2020-10-29 一种基于异质特征深度残差网络的内容推荐方法 Active CN112287222B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202011180629.0A CN112287222B (zh) 2020-10-29 2020-10-29 一种基于异质特征深度残差网络的内容推荐方法
PCT/CN2020/136144 WO2022088417A1 (zh) 2020-10-29 2020-12-14 一种基于异质特征深度残差网络的内容推荐方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011180629.0A CN112287222B (zh) 2020-10-29 2020-10-29 一种基于异质特征深度残差网络的内容推荐方法

Publications (2)

Publication Number Publication Date
CN112287222A CN112287222A (zh) 2021-01-29
CN112287222B true CN112287222B (zh) 2023-12-15

Family

ID=74373921

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011180629.0A Active CN112287222B (zh) 2020-10-29 2020-10-29 一种基于异质特征深度残差网络的内容推荐方法

Country Status (2)

Country Link
CN (1) CN112287222B (zh)
WO (1) WO2022088417A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117975764B (zh) * 2024-03-29 2024-06-07 烟台富士智能科技有限公司 一种智能停车场的车位预约方法、设备及介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107832804A (zh) * 2017-10-30 2018-03-23 上海寒武纪信息科技有限公司 一种信息处理方法及相关产品
CN109785062A (zh) * 2019-01-10 2019-05-21 电子科技大学 一种基于协同过滤模型的混合神经网络推荐***
CN111488529A (zh) * 2020-06-28 2020-08-04 腾讯科技(深圳)有限公司 信息处理方法、装置、服务器及存储介质
CN111506811A (zh) * 2020-03-19 2020-08-07 上海理工大学 一种基于深度残差网络的点击率预测方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9886945B1 (en) * 2011-07-03 2018-02-06 Reality Analytics, Inc. System and method for taxonomically distinguishing sample data captured from biota sources
CN109933678B (zh) * 2019-03-07 2021-04-06 合肥工业大学 艺术品推荐方法、装置、可读介质及电子设备
CN110674265B (zh) * 2019-08-06 2021-03-02 上海孚典智能科技有限公司 面向非结构化信息的特征判别与信息推荐***
CN111651613B (zh) * 2020-07-08 2021-07-27 海南大学 一种基于知识图谱嵌入的动态推荐方法及***

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107832804A (zh) * 2017-10-30 2018-03-23 上海寒武纪信息科技有限公司 一种信息处理方法及相关产品
CN109785062A (zh) * 2019-01-10 2019-05-21 电子科技大学 一种基于协同过滤模型的混合神经网络推荐***
CN111506811A (zh) * 2020-03-19 2020-08-07 上海理工大学 一种基于深度残差网络的点击率预测方法
CN111488529A (zh) * 2020-06-28 2020-08-04 腾讯科技(深圳)有限公司 信息处理方法、装置、服务器及存储介质

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Deep Residual Learning for Image Recognition;Kaiming He等;2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR);1-12 *
基于 Resnet&FM 模型的电影个性化推荐研究;简恒;中国优秀硕士学位论文全文数据库 哲学与人文科学辑;2020-01-15;F087-452页 *
深度学习框架下充电桩的个性化推荐算法研究;吴敏;中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑;第C037-207页 *

Also Published As

Publication number Publication date
WO2022088417A1 (zh) 2022-05-05
CN112287222A (zh) 2021-01-29

Similar Documents

Publication Publication Date Title
US20210295162A1 (en) Neural network model training method and apparatus, computer device, and storage medium
CN112270196B (zh) 实体关系的识别方法、装置及电子设备
Wang et al. A general exponential framework for dimensionality reduction
Wang et al. Trust-aware collaborative filtering with a denoising autoencoder
CN114783514A (zh) 一种药物分子与靶标蛋白的结合亲和力预测方法
CN113590815A (zh) 一种层级性多元标签文本分类的方法和***
Zhu et al. Age estimation algorithm of facial images based on multi-label sorting
CN112287222B (zh) 一种基于异质特征深度残差网络的内容推荐方法
Long et al. Trainable subspaces for low rank tensor completion: Model and analysis
CN114861757A (zh) 基于双相关性降低的图深度聚类方法
Tsai et al. Formalizing generalization and robustness of neural networks to weight perturbations
Jing et al. Knowledge-enhanced attentive learning for answer selection in community question answering systems
CN110807693A (zh) 专辑的推荐方法、装置、设备和存储介质
CN113221003B (zh) 一种基于对偶理论的混合过滤推荐方法及***
CN115131803A (zh) 文档字号的识别方法、装置、计算机设备和存储介质
Shi et al. Face-based age estimation using improved Swin Transformer with attention-based convolution
Yang et al. Finding badly drawn bunnies
CN111159450A (zh) 图片分类方法、装置、计算机设备和存储介质
CN115525782A (zh) 自适应图结构的视频摘要生成方法
CN116108363A (zh) 基于标签引导的不完备多视图多标签分类方法和***
Huang et al. ICMiF: Interactive cascade microformers for cross-domain person re-identification
CN116955763A (zh) 内容推荐方法、装置、计算机设备及计算机可读存储介质
CN114491296A (zh) 提案联名人推荐方法、***、计算机设备及可读存储介质
CN114511024A (zh) 节点分类方法、装置、设备、介质和计算机程序产品
CN113268601B (zh) 信息提取方法、阅读理解模型训练方法及相关装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant