CN112285100A - 一种检测次氯酸钠水溶液中自由基浓度的方法 - Google Patents

一种检测次氯酸钠水溶液中自由基浓度的方法 Download PDF

Info

Publication number
CN112285100A
CN112285100A CN202011112589.6A CN202011112589A CN112285100A CN 112285100 A CN112285100 A CN 112285100A CN 202011112589 A CN202011112589 A CN 202011112589A CN 112285100 A CN112285100 A CN 112285100A
Authority
CN
China
Prior art keywords
aqueous solution
free radicals
concentration
absorbance
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011112589.6A
Other languages
English (en)
Inventor
赵学辉
李思沂
***
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Meifu Bochang Environmental Protection Technology Co ltd
Tianjin Polytechnic University
Original Assignee
Tianjin Meifu Bochang Environmental Protection Technology Co ltd
Tianjin Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Meifu Bochang Environmental Protection Technology Co ltd, Tianjin Polytechnic University filed Critical Tianjin Meifu Bochang Environmental Protection Technology Co ltd
Priority to CN202011112589.6A priority Critical patent/CN112285100A/zh
Publication of CN112285100A publication Critical patent/CN112285100A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

本发明公开了一种检测次氯酸钠水溶液中自由基浓度的方法,步骤:(1)在比色管中加入捕获剂、硫酸亚铁水溶液、待测的次氯酸钠水溶液,加水,超声,溶液是否显紫色,显紫色则有自由基,测吸光度;(2)在11支比色管中分别加入捕获剂,再加入梯度为0.1ml的氯化铁水溶液,加水,超声,溶液显紫色梯度,测吸光度,得到吸光度与氯化铁水溶液浓度的对应曲线,由于自由基摩尔浓度与氯化铁水溶液摩尔浓度之比为1:1;得到吸光度与自由基摩尔浓度的标准曲线,将待测的次氯酸钠水溶液的吸光度值代入标准曲线即可得到自由基摩尔浓度。本发明对于组分复杂的***无需分离,自然氧化程度低,产物稳定性高,与自由基浓度线性关系良好,测量范围宽。

Description

一种检测次氯酸钠水溶液中自由基浓度的方法
技术领域
本发明涉及一种检测次氯酸钠水溶液中自由基浓度的方法,属于化学检测领域。
背景技术
随着水质不断恶化、水质标准不断提高,水处理领域中膜分离技术被越来越多的应用。膜分离技术是一种无相变、低能耗的物理分离过程,具有高效、节能、无污染、操作方便等特点,能有效截留污染物、细菌和病毒。但在使用过程中膜表面或膜孔内会吸附、沉积污染物,造成膜孔径变小或堵塞,引发的膜污染问题成为膜技术使用的限制因素。因此为有效减缓膜污染,常用次氯酸钠水溶液作化学清洗剂。此外次氯酸钠水溶液也被用作氧化剂、杀菌剂、消毒剂,在污水处理和饮用水处理领域广泛应用,作为一种能够释放活性氯和活性氧的氧化性药剂,在使用过程中会产生自由基。适量的自由基浓度可有效杀菌、消毒,减缓膜表面污染物,而自由基过量存在则会对膜的结构和性能造成严重损伤,影响膜的使用寿命和截留能力,因此掌握检测和控制次氯酸钠水溶液中自由基浓度的方法是有必要的。
目前水溶液中自由基的检测方法包括电子自旋共振法(ESR),是检测自由基最直接的一种方法,这种方法虽然简单有效,但仪器价格昂贵,定量分析不够准确,针对不同种类自由基需要选取不同的捕获剂;化学发光法(CL)廉价、灵敏度高、反应快速,但选择性差,对组分不能很好定性,实际应用中受到限制;高效液相色谱法(HPLC),其灵敏度高,检出限低,但也存在设备昂贵,反应过程复杂,易产生中间产物等不足。
发明内容
本发明的目的是克服现有技术的不足,提供一种检测次氯酸钠水溶液中自由基浓度的方法。
本发明的技术方案概述如下:
一种检测次氯酸钠水溶液中自由基浓度的方法,包括如下步骤:
(1)在比色管中加入2ml捕获剂、1-3ml浓度为8-10mM硫酸亚铁水溶液、0.5-5ml待测的次氯酸钠水溶液,加去离子水至15ml,超声10-30分钟,37℃水浴加热10-30分钟,观察比色管中溶液是否显紫色,显紫色则有自由基,用分光光度计测量吸光度;
(2)在11支比色管中分别加入2ml捕获剂,再加入范围在0-1ml、梯度为0.1ml的、pH=2-4的8-10mM氯化铁水溶液,加去离子水至15ml,超声10-30分钟,37℃水浴加热10-30分钟,比色管中溶液显紫色梯度,用分光光度计依次测量吸光度,得到吸光度与氯化铁水溶液浓度的对应曲线,由于自由基摩尔浓度与氯化铁水溶液摩尔浓度之比为1:1;得到吸光度与自由基摩尔浓度的标准曲线,将步骤(1)获得的吸光度值代入所述标准曲线即可得到自由基摩尔浓度。
捕获剂按比例由0.1ml无水乙醇、0.9ml去离子水和0.01mmol水杨酸组成。
用分光光度计测量吸光度时波长是510nm。
所述待测的次氯酸钠水溶液的pH范围为1-12。
本发明的优点:
本发明的方法,含水杨酸的捕获剂药品廉价易得,对于组分复杂的***无需分离,自然氧化程度低,产物稳定性高,与自由基浓度线性关系良好,测量范围宽。
附图说明
图1为吸光度与自由基摩尔浓度的标准曲线。
图2(a)为自由基浓度随pH变化规律,(b)次氯酸钠组分随pH变化。
图3为反应前后的紫外吸收光谱图。
具体实施方式
下面通过具体实施例对本发明作进一步的说明。
实施例1
一种检测次氯酸钠水溶液中自由基浓度的方法,包括如下步骤:
(1)在25mL具塞比色管中加入2ml捕获剂、2ml浓度为10mM硫酸亚铁水溶液、3ml待测的次氯酸钠水溶液(pH为7,在空气中暴露),加去离子水至15ml,超声20分钟,37℃水浴加热20分钟,观察比色管中溶液显紫色,显紫色则产生自由基,用分光光度在波长510nm处测量吸光度为0.658;
(2)在11支比色管中分别加入2ml捕获剂,再加入0、0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1ml、pH=3的10mM氯化铁水溶液,加去离子水至15ml(此时比色管中氯化铁水溶液浓度分别为0、0.067、0.133、0.2、0.267、0.333、0.4、0.467、0.533、0.6、0.667mM),超声20分钟,37℃水浴加热20分钟,经0.45μm滤膜滤出后,比色管中溶液显紫色梯度,用10mm比色皿在波长510nm处,以水为参比用分光光度计依次测量吸光度,得到吸光度与氯化铁水溶液浓度的对应曲线,由于自由基摩尔浓度与氯化铁水溶液摩尔浓度之比为1:1,以吸光度为纵坐标,以自由基摩尔浓度为横坐标,绘制吸光度与自由基摩尔浓度的标准曲线如图1所示,将步骤(1)获得的吸光度值代入标准曲线即可得到自由基摩尔浓度为0.476mM。
本发明可以检测的自由基浓度范围为0.05334-0.80004mM,检出限0.00156mM。
捕获剂按比例由0.1ml无水乙醇、0.9ml去离子水和0.01mmol水杨酸组成。
实施例2
一种检测次氯酸钠水溶液中自由基浓度的方法,包括如下步骤:
(1)在25mL具塞比色管中加入2ml捕获剂、1ml浓度为8mM硫酸亚铁水溶液、0.5ml待测的次氯酸钠水溶液(pH为1,在空气中暴露),加去离子水至15ml,超声10分钟,37℃水浴加热10分钟,观察比色管中溶液是否显紫色,显紫色则产生自由基,用分光光度计在波长510nm处测量吸光度为0.281;
(2)在11支比色管中分别加入2ml捕获剂,再加入0、0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1ml、pH=4的8mM氯化铁水溶液,加去离子水至15ml,(此时比色管中氯化铁水溶液浓度分别为0、0.053、0.107、0.16、0.213、0.267、0.32、0.373、0.427、0.48、0.53mM),超声10分钟,37℃水浴加热10分钟,经0.45μm滤膜滤出后,比色管中溶液显紫色梯度,用10mm比色皿在波长510nm处,以水为参比用分光光度计依次测量吸光度,得到吸光度与氯化铁水溶液浓度的对应曲线,由于自由基摩尔浓度与氯化铁水溶液摩尔浓度之比为1:1,以吸光度为纵坐标,以自由基摩尔浓度为横坐标,绘制吸光度与自由基摩尔浓度的标准曲线,将步骤(1)获得的吸光度值代入标准曲线即可得到自由基摩尔浓度为0.182mM。本发明可以检测的自由基浓度范围为0.05334-0.80004mM,检出限0.00156mM。
捕获剂按比例由0.1ml无水乙醇、0.9ml去离子水和0.01mmol水杨酸组成。
实施例3
一种检测次氯酸钠水溶液中自由基浓度的方法,包括如下步骤:
(1)在25mL具塞比色管中加入2ml捕获剂、3ml浓度为8mM硫酸亚铁水溶液、5ml待测的次氯酸钠水溶液(pH为12,在空气中暴露),加去离子水至15ml,超声30分钟,37℃水浴加热30分钟,观察比色管中溶液是否显紫色,显紫色则产生自由基,用分光光度计在波长510nm处测量吸光度为0.573;
(2)在11支比色管中分别加入2ml捕获剂,再加入0、0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1ml、pH=2的10mM氯化铁水溶液,加去离子水至15ml,(此时比色管中氯化铁水溶液浓度分别为0、0.067、0.133、0.2、0.267、0.333、0.4、0.467、0.533、0.6、0.667mM),超声30分钟,37℃水浴加热30分钟,经0.45μm滤膜滤出后,比色管中溶液显紫色梯度,用10mm比色皿在波长510nm处,以水为参比用分光光度计依次测量吸光度,得到吸光度与氯化铁水溶液浓度的对应曲线,由于自由基摩尔浓度与氯化铁水溶液摩尔浓度之比为1:1,以吸光度为纵坐标,以自由基摩尔浓度为横坐标,绘制吸光度与自由基摩尔浓度的标准曲线,将步骤(1)获得的吸光度值代入标准曲线即可得到自由基摩尔浓度为0.376mM。
本发明可以检测的自由基浓度范围为0.05334-0.80004mM,检出限0.00156mM。
捕获剂按比例由0.1ml无水乙醇、0.9ml去离子水和0.01mmol水杨酸组成。
次氯酸钠水溶液中的组分受到pH影响有不同存在形态。pH1-5范围内,次氯酸钠水溶液中的组分是HClO和Cl2,并随着pH增加,次氯酸浓度逐渐增加而氯气浓度逐渐降低,羟基自由基的浓度随之增加。此范围内ClO-是自由基形成的限制性物质,酸性条件下形成的HO·浓度低,反应机理方程式为:
HClO→HO·+Cl·……(1)
Cl·+HClO→HO·+Cl2……(2)
总方程式为:2HClO→2HO·+Cl2……(3)
pH5-9范围内,次氯酸钠水溶液中的组分是HClO和ClO-,两者之间的比率应在降解动力学中起主要作用。其中随着pH增加,次氯酸浓度逐渐降低而次氯酸根离子浓度逐渐增加,产生自由基浓度高。次氯酸钠水溶液会生成羟基自由基与氧氯自由基,反应机理方程式为:
HClO+ClO-→ClO·+Cl-+HO·……(4)
HO·+ClO-→ClO·+OH-……(5)
ClO·+ClO-+OH-→2Cl-+O2+HO·……(6)
总方程式为:HClO+3ClO-→ClO·+HO·+O2+3Cl-……(7)
pH9-12范围内,HClO是自由基形成的限制性物质,其浓度逐渐降低,导致溶液中的自由基浓度明显降低。次氯酸钠溶液pH>12时,会生成Fe(OH)3沉淀,抑制紫色络合物生成。因此水杨酸分光光度法测试自由基的范围在pH1-12,如图2所示。
羟基自由基和氧氯自由基再分别与亚铁离子反应,生成三价铁离子,反应机理方程式为:
Fe2++HO·→Fe3++OH-……(8)
Fe2++ClO·→Fe3++ClO-……(9)
以上可知,自由基摩尔浓度与三价铁离子摩尔浓度之比为1:1。
而后三价铁离子再与水杨酸捕获剂反应生成一种紫色络合物,通过反应前后紫外-可见吸收光谱测定,认为该物质在510nm波长处有最大吸收峰,如图3所示。

Claims (4)

1.一种检测次氯酸钠水溶液中自由基浓度的方法,其特征在于包括如下步骤:
(1)在比色管中加入2ml捕获剂、1-3ml浓度为8-10mM硫酸亚铁水溶液、0.5-5ml待测的次氯酸钠水溶液,加去离子水至15ml,超声10-30分钟,37℃水浴加热10-30分钟,观察比色管中溶液是否显紫色,显紫色则有自由基,用分光光度计测量吸光度;
(2)在11支比色管中分别加入2ml捕获剂,再加入范围在0-1ml、梯度为0.1ml的、pH=2-4的8-10mM氯化铁水溶液,加去离子水至15ml,超声10-30分钟,37℃水浴加热10-30分钟,比色管中溶液显紫色梯度,用分光光度计依次测量吸光度,得到吸光度与氯化铁水溶液浓度的对应曲线,由于自由基摩尔浓度与氯化铁水溶液摩尔浓度之比为1:1;得到吸光度与自由基摩尔浓度的标准曲线,将步骤(1)获得的吸光度值代入所述标准曲线即可得到自由基摩尔浓度。
2.根据权利要求1所述的方法,其特征在于所述捕获剂按比例由0.1ml无水乙醇、0.9ml去离子水和0.01mmol水杨酸组成。
3.根据权利要求1所述的方法,其特征在于,用分光光度计测量吸光度时波长是510nm。
4.根据权利要求1所述的方法,其特征在于所述待测的次氯酸钠水溶液的pH范围为1-12。
CN202011112589.6A 2020-10-16 2020-10-16 一种检测次氯酸钠水溶液中自由基浓度的方法 Pending CN112285100A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011112589.6A CN112285100A (zh) 2020-10-16 2020-10-16 一种检测次氯酸钠水溶液中自由基浓度的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011112589.6A CN112285100A (zh) 2020-10-16 2020-10-16 一种检测次氯酸钠水溶液中自由基浓度的方法

Publications (1)

Publication Number Publication Date
CN112285100A true CN112285100A (zh) 2021-01-29

Family

ID=74497444

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011112589.6A Pending CN112285100A (zh) 2020-10-16 2020-10-16 一种检测次氯酸钠水溶液中自由基浓度的方法

Country Status (1)

Country Link
CN (1) CN112285100A (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020034421A1 (en) * 2000-05-24 2002-03-21 Rutgers University Remediation of contaminates including low bioavailability hydrocarbons
CN101241076A (zh) * 2008-03-12 2008-08-13 江苏大学 一种羟基自由基浓度的测定方法
CN101413896A (zh) * 2008-12-02 2009-04-22 上海理工大学 一种羟基自由基的测定方法
CN101482545A (zh) * 2009-01-20 2009-07-15 广州大学 低温等离子体降解有机废气中oh自由基的测定方法
CN102914506A (zh) * 2012-10-09 2013-02-06 福建省农业科学院食用菌研究所 一种评价灵芝提取物质量的新方法
CN103983592A (zh) * 2014-06-06 2014-08-13 哈尔滨工业大学 一种检测溶液中羟基自由基浓度的方法
CN104062295A (zh) * 2014-07-16 2014-09-24 武汉大学 一种次氯酸高级氧化体系下羟基自由基的测定方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020034421A1 (en) * 2000-05-24 2002-03-21 Rutgers University Remediation of contaminates including low bioavailability hydrocarbons
CN101241076A (zh) * 2008-03-12 2008-08-13 江苏大学 一种羟基自由基浓度的测定方法
CN101413896A (zh) * 2008-12-02 2009-04-22 上海理工大学 一种羟基自由基的测定方法
CN101482545A (zh) * 2009-01-20 2009-07-15 广州大学 低温等离子体降解有机废气中oh自由基的测定方法
CN102914506A (zh) * 2012-10-09 2013-02-06 福建省农业科学院食用菌研究所 一种评价灵芝提取物质量的新方法
CN103983592A (zh) * 2014-06-06 2014-08-13 哈尔滨工业大学 一种检测溶液中羟基自由基浓度的方法
CN104062295A (zh) * 2014-07-16 2014-09-24 武汉大学 一种次氯酸高级氧化体系下羟基自由基的测定方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
STEFAN A.J. ET AL.: "Determination of free radical reaction products and matabolites of salicylic acid using capollary electrophoresis and micellar electrokinetic chromatography", 《JOURNAL OF CHROMATOGRAPHY B》 *
樊琛等: "Fenton羟自由基反应体系的修正", 《湖北农业科学》 *

Similar Documents

Publication Publication Date Title
Bhardwaj et al. A review of emerging trends on water quality measurement sensors
Kanda et al. Chemiluminescent method for continuous monitoring of nitrous acid in ambient air
US20150111304A1 (en) Carbon analysis using ferrate oxidation
US6228325B1 (en) Methods and apparatus for measurement of the carbon and heteroorganic content of water including single-cell instrumentation mode for same
Huang et al. Detecting hydrogen peroxide reliably in water via ion chromatography: a method evaluation update and comparison in the presence of interfering components
Su et al. Rapid, sensitive and on-line measurement of chemical oxygen demand by novel optical method based on UV photolysis and chemiluminescence
Zhu et al. High-efficiency photooxidation vapor generation of osmium for determination by inductively coupled plasma-optical emission spectrometry
CN111948303B (zh) 一种利用探针化合物检测羟基自由基浓度的方法
Ireland et al. Rapid measurement of aqueous hydroxyl radical concentrations in steady-state HO· flux systems
Miró et al. Application of flowing-stream techniques to water analysis: Part II. General quality parameters and anionic compounds: Halogenated, sulphur and metalloid species
CN112285100A (zh) 一种检测次氯酸钠水溶液中自由基浓度的方法
Yang et al. Miniature microplasma carbon optical emission spectrometry for detection of dissolved oxygen in water
Miller et al. Automated iodometric method for determination of trace chlorate ion using flow injection analysis
CN110006833B (zh) 一种空气氮氧化物含量的分析检测方法
CN110174397B (zh) 一种比色探针的应用
Fujimori et al. Electrochemical determination of boric acid using the boric acid–tiron complexation system
CN116106249A (zh) 污水中cod的测定方法
CN101776606A (zh) 一种对液体中总碳和总有机碳进行分析的方法
AU1398588A (en) Method and system for determining organic matter in an aqueous solution
KR20130115524A (ko) 고농도의 인산염 인 농도 검출방법
Costa-Fernández et al. Portable fibre optic oxygen sensor based on room-temperature phosphor escence lifetime
Mizuguchi et al. On-site determination of trace nickel in liquid samples for semiconductor manufacturing by highly sensitive solid-phase colorimetry with α-furil dioxime
Machado et al. Spectrophotometric determination of ozone in ozonized air currents with chemical gas–liquid transfer using a microreactor
Izumi et al. A porous glass-based KI/α-CD chip for ozone sensing: Improvement in the humidity response of the chip through optimizing reagent concentrations in the impregnation process
Asaoka et al. A membrane extraction method for trace level phosphate analysis

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20210129

WD01 Invention patent application deemed withdrawn after publication