CN112251765B - 一种基于铅网的水分解制氢装置及其制备方法和使用方法 - Google Patents

一种基于铅网的水分解制氢装置及其制备方法和使用方法 Download PDF

Info

Publication number
CN112251765B
CN112251765B CN202011188670.2A CN202011188670A CN112251765B CN 112251765 B CN112251765 B CN 112251765B CN 202011188670 A CN202011188670 A CN 202011188670A CN 112251765 B CN112251765 B CN 112251765B
Authority
CN
China
Prior art keywords
lead
anode
cathode
net
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011188670.2A
Other languages
English (en)
Other versions
CN112251765A (zh
Inventor
康帅
陆文强
薛凤娟
付勰
王亮
冯双龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Institute of Green and Intelligent Technology of CAS
Original Assignee
Chongqing Institute of Green and Intelligent Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Institute of Green and Intelligent Technology of CAS filed Critical Chongqing Institute of Green and Intelligent Technology of CAS
Priority to CN202011188670.2A priority Critical patent/CN112251765B/zh
Publication of CN112251765A publication Critical patent/CN112251765A/zh
Application granted granted Critical
Publication of CN112251765B publication Critical patent/CN112251765B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

本发明公开了一种基于铅网的水分解制氢装置及其制备方法和使用方法,水分解制氢装置包括阳极、阴极和隔膜,其使用铅网或者氧化铅薄片覆盖的铅网作为阳极,使用热压铂碳PEM或者镀铂铅网或钛网或合金网作为阴极,使用PEM作为隔膜。本发明提出了用非贵金属制备高效PEM水解装置阳极的方法,***构造简单、价格便宜;并且基于铅网的阳极能够在酸性和高温下(60℃以上)电化学水解反应稳定。

Description

一种基于铅网的水分解制氢装置及其制备方法和使用方法
技术领域
本发明属于电源技术领域,具体涉及一种基于铅网的水分解制氢装置及其制备方法和使用方法。
背景技术
氢气是能量密度最高的物质,可达33.3 kWh/kg,被当作一种二次能源载体,例如可作为火箭燃料。氢元素广泛存在于碳氢化物和水中,是地球上储量最大的元素之一。化石能源重整时会产生大量氢气作为副产物,与此相比,电解水制氢量可忽略。但清洁能源如风能、太阳能可通过电化学反应水解制备高纯度氢气,因此成为非常热门的制氢技术。目前碱性水解装置制氢占主导,然而酸性质子交换膜(PEM)水解装置具有反应快、节能、高集成等优点,因此也得到重视。
目前适用于PEM水解装置的电极主要是贵金属电极,如铂、氧化铂或铂合金作为阴极,钌、铷或其氧化物、合金作为阳极。贵金属储量贫乏、价格贵造成PEM水解装置极高的成本。而非贵金属材料或其化合物,尤其是过渡金属材料或其化合物,在酸性中极不稳定,在高温水解过程中制氢效率迅速衰减。
发明内容
基于现有技术中存在的问题,本发明提供一种基于铅网的水分解制氢装置及其制备方法和使用方法,本发明既可以通过加工铅金属网格,也可以在铅金属网格上生长低维氧化铅片,作为PEM水解装置阳极。并且在本发明中,没有使用贵金属,就可以实现在高温60℃下稳定水解制氢工艺,提高制氢效率且降低成本。
依据本发明技术方案的第一方面,提出一种基于铅网的水分解制氢装置,其包括阳极、阴极和隔膜,其使用铅网或者氧化铅薄片覆盖的铅网作为阳极,使用热压铂碳PEM或者镀铂铅网或钛网或合金网作为阴极,使用PEM作为隔膜。
其中,阳极、隔膜和阴极依序叠置构成水分解制氢装置主体。在阳极的延伸段和阴极的延伸段分别设置有直流电源接口。
优选地,质子交换膜(PEM)为全氟磺酸型质子交换膜、Nafion重铸膜、非氟聚合物质子交换膜或新型复合质子交换膜。阳极使用网格材质,阳极为铅金属、合金或镀铂、钛、氧化锌、氧化钛的复合金属网。
依据本发明技术方案的第二方面,提出基于铅网的水分解制氢装置的制备方法,所述方法包括以下步骤。
步骤1,制备阳极铅网;采购铅箔,并用开孔机或者激光雕刻机在铅箔上开孔,制备成铅网用做阳极。
步骤2,制备阴极,用溅射镀膜机在铅箔上镀一层纳米铂金直接用作阴极。
步骤3,将质子交换膜隔置在阳极和阴极中间,并用外壳保护层和固定夹夹紧上述阳极-隔膜-阴极,制备成了基于铅网的水分解制氢装置。
进一步地,所述步骤1使用溅射镀膜机在铅箔上镀一层纳米铂金直接用作阳极。
更进一步地,所述步骤1把铅网放在装有浓氨水的聚四氟乙烯杯里,在180℃高温高压反应6小时到72小时,在铅网上生长一层氧化铅片用作阳极。
进一步地,所述步骤2直接制作质子交换膜(PEM)燃料电池阳极用的铂碳PEM膜作为阴极和制氢装置的隔膜。
依据本发明技术方案的第三方面,提出一种基于铅网的水分解制氢装置的使用方法,其包括以下步骤。
步骤1,将直流电源接口与直流电源相连接,且阳极与电源正极相连,阴极与电源负极相连。
步骤2,将基于铅网的水分解制氢装置置于酸性水溶液中,将直流电源接口设置在液面上,且避免线路与水溶液相接触。
步骤3,打开电源开关,从2 V开始缓慢升高电压,根据氢气的需求量调整到合适的电压,如氢气需求量大则电压高,氢气需求量小则电压低。
步骤4,气体制备完成后,先把直流电源调整到低电压,然后关闭直流电源,最后断开直流电源接口与直流电源的连接。
与现有技术相比,本发明具有以下有益效果。
第一,本发明提出了一种用非贵金属制备高效PEM水解装置阳极的方法,***构造简单、价格便宜。
第二,本发明提出的基于铅网的阳极能够在酸性和高温下(60 ℃以上)电化学水解反应稳定。
附图说明
图1是依据本发明的基于铅网的水分解制氢装置示意图。
图2是依据本发明的阳极的结构示意图。
图3-1是依据本发明的阴极的结构示意图。
图3-2是依据本发明的制膜工艺示意图。
图4-1为依据本发明的所示的阳极的照片。
图4-2依据本发明的扫描电镜图。
图5是依据本发明的阳极的水解性能曲线。
图6是依据本发明的制氢装置性能曲线。
其中附图标记:“1”指示“阳极”,“2”指示“阴极”、“3”指示“PEM”,“4”指示“直流电源接口”。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。另外地,不应当将本发明的保护范围仅仅限制至下述具体实验方法或具体参数。
本发明从铅基材料在酸性中的稳定性出发,设计了一种基于铅网的水分解制氢装置,其中使用铅网或者氧化铅薄片覆盖的铅网作为阳极,使用热压铂碳PEM或者镀铂铅网(钛网或者合金网)作为阴极,使用PEM作为隔膜。本发明通过加工铅金属网格,也可以在铅金属网格上生长低维氧化铅片,作为PEM水解装置阳极,可达到高温60 ℃下稳定水解制氢的目的,提高制氢效率且降低成本。在本发明中没有使用贵金属。
如图1所示的基于铅网的水分解制氢装置,其包括阳极1、阴极2和隔膜3,隔膜优选使用PEM ,其中以阳极1、隔膜3和阴极2依序叠置构成水分解制氢装置主体,在阳极1的延伸段和阴极2的延伸段分别设置有直流电源接口4。在制氢过程中,直流电源通过直流电源接口4与装置接通,电源负极中流出的电子通过阴极2流入电解液,同时在阴极表面发生还原反应,阴极附近的电解液的氢离子得电子生成氢气;电源正极中流出的空穴通过阳极1流入电解液,同时在阳极电极表面发生氧化反应,阳极附近的电解液中的氢氧根离子失电子产生氧气。此外,在制氢过程中,电源中的电子通过阴极2流入电解液,在阴极电极表面产生氢气。
其化学反应式如下。
阳极:2H2O=O2↑+4H++4e-
阴极:4H++4e-=2H2
总反应式:2H2O = H2↑+O2
根据法拉第电解定律,气体产量与电流成正比。
作为隔膜的PEM(质子交换膜),优选满足以下条件的质子交换膜:良好的质子电导率、水分子在膜中的电渗透作用小、气体在膜中的渗透性尽可能小、电化学稳定性好、干湿转换性能好、具有一定的机械强度、可加工性好。质子交换膜(PEM)与一般化学电源中使用的隔膜有差异,推荐使用全氟磺酸型质子交换膜、Nafion重铸膜、非氟聚合物质子交换膜、新型复合质子交换膜等等。在本发明中,阴极和阳极用PEM隔开,避免阳极和阴极接触直接进行电子传输。
在本发明的基于铅网的水分解制氢装置中,直流电源接口4产生的1.5 V-5 V直流电压。
如图2所示阳极结构,阳极使用网格材质,优选是铅金属、合金或镀其他材料(如铂、钛、氧化锌、氧化钛等)的复合金属网(如图2上)。极片大小与氢气需求量正相关,即极片越大单位时间内同一电压/电流下制备的氢气量越多。在工作过程中,电解液中的电子通过该极流入电源,在电极表面产生氧气。阳极的微观部分优选是原位生长有氧化铅片的分层结构(如图2下)。网格形貌一方面增加了电化学反应面积,有利于气体的制备;另一方面,孔道有利于气体的扩散。
如图3-1所示的阴极结构,阴极主要活性材料是铂金属。阴极结构优选可以是网格状,如图3-1所示的铂金属镀在铅网、钛网或者合金网上,这样的网格形貌一方面增加了电化学反应面积,有利于气体的制备;另一方面,孔道有利于气体的扩散。也可以将铂碳粉末催化剂热压在PEM(质子交换膜)。通过如图3-2所示的制膜工艺,通过铂碳催化剂将2到5纳米铂颗粒负载到10纳米到80纳米的活性炭颗粒上,增加了铂的利用率。极片大小与氢气需求量正相关,即极片越大单位时间内同一电压/电流下制备的氢气量越多。
如图4-1所示的阳极的照片和图4-2所示的扫描电镜图,可明显看到图4-1中的网状结构,有利于电解水产生气体的排除,从而增加制氢效率。可明显看到微观结构上铅网表面的氧化铅片,可大大增加电解水面积,促进反应的进行。
通过图5所示阳极的水解性能曲线可知,采用对电极Ag/AgCl,电解液为0.5M 硫酸,电极面积1 cm2。图6为60℃下制氢装置性能曲线,电解液为0.5M 硫酸;阳极为铅网,电极面积1 cm2;阴极为铂片,电极面积0.7 cm2,可以看到8小时内,制氢装置运行稳定,几乎没有明显衰退。
本发明的基于铅网的水分解制氢装置的制备方法。
步骤1,制备阳极铅网。采购铅箔,并用开孔机或者激光雕刻机在铅箔上开孔,制备成铅网;或者直接采购铅网;铅网可以直接用做阳极。
也可用溅射镀膜机在铅网上镀一层纳米铂金直接用作阳极。
也可把铅网放在装有浓氨水的聚四氟乙烯杯里,在180℃高温高压反应6小时到72小时,在铅网上生长一层氧化铅片用作阳极。
步骤2,制备阴极。用溅射镀膜机在铅箔上镀一层纳米铂金直接用作阴极。
也可直接制作质子交换膜(PEM)燃料电池阳极用的铂碳PEM膜作为阴极和制氢装置的隔膜。
步骤3,将质子交换膜隔置在阳极和阴极中间,并用外壳保护层和固定夹夹紧上述阳极-隔膜-阴极,即制备成了基于铅网的水分解制氢装置。
基于铅网的水分解制氢装置的使用方法,其包括以下步骤。
步骤1,将直流电源接口4与直流电源相连接,且阳极1与电源正极相连,阴极2与电源负极相连。
步骤2,将基于铅网的水分解制氢装置置于酸性水溶液中,将直流电源接口4设置在液面上,且避免线路与水溶液相接触。
步骤3,打开电源开关,从2 V开始缓慢升高电压,根据氢气的需求量调整到合适的电压,如氢气需求量大则电压高,氢气需求量小则电压低。
步骤4,气体制备完成后,先把直流电源调整到低电压,然后关闭直流电源,最后断开直流电源接口4与直流电源的连接。
本发明的基于铅网的水分解制氢装置的设计,且装置能在高温下酸性中稳定运行而无明显衰退;本发明可应用于电催化水分解制氢体系;燃料电池体系;电催化制备氯气;有机小分子催化氧化。还需说明的是,图中各部件的形状和尺寸不反应真实大小和比例,而仅示意本发明实施例的内容。
本发明未详细阐述部分属于本领域技术人员的公知技术。以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种基于铅网的水分解制氢装置,其包括阳极、阴极和隔膜,其特征在于,其使用氧化铅薄片覆盖的铅网作为阳极,使用镀铂铅网或钛网或合金网作为阴极,使用质子交换膜(PEM)作为隔膜。
2.根据权利要求1所述的基于铅网的水分解制氢装置,其特征在于:阳极、隔膜和阴极依序叠置构成水分解制氢装置主体。
3.根据权利要求2所述的基于铅网的水分解制氢装置,其特征在于:在阳极的延伸段和阴极的延伸段分别设置有直流电源接口;在制氢过程中,直流电源通过直流电源接口与基于铅网的水分解制氢装置接通,电源负极中流出的电子通过阴极流入电解液,同时在阴极表面发生还原反应,阴极附近的电解液的氢离子得电子生成氢气。
4.根据权利要求3所述的基于铅网的水分解制氢装置,其特征在于:质子交换膜(PEM)为全氟磺酸型质子交换膜、Nafion重铸膜、非氟聚合物质子交换膜或新型复合质子交换膜。
5.一种基于铅网的水分解制氢装置的制备方法,其特征在于,所述方法包括以下步骤:
步骤1,制备阳极铅网;用溅射镀膜机在铅网上镀一层纳米铂金直接用作阳极;或者把铅网放在装有浓氨水的聚四氟乙烯杯里,在180℃高温高压反应6小时到72小时,在铅网上生长一层氧化铅片用作阳极;
步骤2,制备阴极,用溅射镀膜机在铅箔上镀一层纳米铂金直接用作阴极;
步骤3,将质子交换膜隔置在阳极和阴极中间,并用外壳保护层和固定夹夹紧上述阳极-隔膜-阴极,制备成了基于铅网的水分解制氢装置。
6.根据权利要求5所述的制备方法,其特征在于:
所述步骤2直接制作质子交换膜(PEM)燃料电池阳极用的铂碳PEM膜作为阴极和制氢装置的隔膜。
7.一种依据权利要求1-4之任一所述的基于铅网的水分解制氢装置的使用方法,其包括以下步骤:
步骤1,将直流电源接口与直流电源相连接,且阳极与直流电源正极相连,阴极与直流电源负极相连;
步骤2,将基于铅网的水分解制氢装置置于酸性水溶液中,将直流电源接口设置在液面上,且避免线路与水溶液相接触;
步骤3,打开电源开关,从2 V开始缓慢升高电压,根据氢气的需求量调整到合适的电压,如氢气需求量大则电压高,氢气需求量小则电压低;
步骤4,气体制备完成后,先把直流电源调整到低电压,然后关闭直流电源,最后断开直流电源接口与直流电源的连接。
CN202011188670.2A 2020-10-30 2020-10-30 一种基于铅网的水分解制氢装置及其制备方法和使用方法 Active CN112251765B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011188670.2A CN112251765B (zh) 2020-10-30 2020-10-30 一种基于铅网的水分解制氢装置及其制备方法和使用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011188670.2A CN112251765B (zh) 2020-10-30 2020-10-30 一种基于铅网的水分解制氢装置及其制备方法和使用方法

Publications (2)

Publication Number Publication Date
CN112251765A CN112251765A (zh) 2021-01-22
CN112251765B true CN112251765B (zh) 2023-08-22

Family

ID=74268256

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011188670.2A Active CN112251765B (zh) 2020-10-30 2020-10-30 一种基于铅网的水分解制氢装置及其制备方法和使用方法

Country Status (1)

Country Link
CN (1) CN112251765B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4456666A (en) * 1982-10-13 1984-06-26 Gnb Batteries Inc. Titanium wire reinforced lead composite electrode structure
CN87207164U (zh) * 1987-06-10 1988-12-07 周昌明 立体型铂阳极电解槽
CN105483747A (zh) * 2016-01-22 2016-04-13 清华大学 一种电解水制氢气的方法及装置
CN213570766U (zh) * 2020-10-30 2021-06-29 中国科学院重庆绿色智能技术研究院 一种基于铅网的水分解制氢装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4456666A (en) * 1982-10-13 1984-06-26 Gnb Batteries Inc. Titanium wire reinforced lead composite electrode structure
CN87207164U (zh) * 1987-06-10 1988-12-07 周昌明 立体型铂阳极电解槽
CN105483747A (zh) * 2016-01-22 2016-04-13 清华大学 一种电解水制氢气的方法及装置
CN213570766U (zh) * 2020-10-30 2021-06-29 中国科学院重庆绿色智能技术研究院 一种基于铅网的水分解制氢装置

Also Published As

Publication number Publication date
CN112251765A (zh) 2021-01-22

Similar Documents

Publication Publication Date Title
TWI414636B (zh) 膜反應器
TWI448325B (zh) 二氧化碳電化學還原轉化利用的方法
CN111672514A (zh) 一种双功能电催化材料及其制备方法与应用
CN113136597B (zh) 一种铜锡复合材料及其制备方法和应用
CN110965076A (zh) 一种双功能三维分层核壳结构电解水电极的制备方法
Zhang et al. Hydrogen production by traditional and novel alkaline water electrolysis on nickel or iron based electrocatalysts
CN114402095B (zh) 错流式水电解
CN213570766U (zh) 一种基于铅网的水分解制氢装置
Liu et al. Silver decorated nickel–cobalt (oxy) hydroxides fabricated via surface reconstruction engineering for boosted electrocatalytic oxygen evolution and urea oxidation
CN112251765B (zh) 一种基于铅网的水分解制氢装置及其制备方法和使用方法
CN113802130B (zh) 一种电解水催化剂及其制备方法
CN102456903A (zh) 一种利用甲酸电解制取氢气的方法
CN113416972A (zh) 基于全钒液流氧化还原媒介分步电解水制氢的装置和方法
CN110416585B (zh) 液流电池电解液的制备方法和制备装置
JP3921300B2 (ja) 水素発生装置
WO2023119779A1 (ja) 水溶液電解方法
CN219218176U (zh) 一种电解槽及电解制氢***
CN114457352B (zh) 一种基于酸性电解质分步电解水制氢的装置及方法
CN116240564A (zh) 一种电解海水制氢装置及电解制氢的工艺
Huang et al. A Cu 2 O-assisted photocatalytic microbial hydrogen production system with low energy consumption and high efficiency
CN117661021A (zh) 一种非晶态泡沫镍自支撑Ni(OH)2-Ni3S2/NF复合电极的制备方法和应用
CN115084551A (zh) 一种液流型不对称金属-水燃料电池及其应用
KR20240034845A (ko) 전해조 시스템 및 전극 제조 방법
WO2023037010A2 (en) An electrolyzer electrocatalyst comprising cobalt (co) oxide, zirconium (zr) and a noble metal, an electrode comprising the electrocatalyst and the use of the electrocatalyst in an electrolysis process
CN117552031A (zh) 一种磷掺杂析氢催化电极的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant