CN112242456A - 一种基于光学微带天线非对称集成的二维材料探测器 - Google Patents

一种基于光学微带天线非对称集成的二维材料探测器 Download PDF

Info

Publication number
CN112242456A
CN112242456A CN202010965512.7A CN202010965512A CN112242456A CN 112242456 A CN112242456 A CN 112242456A CN 202010965512 A CN202010965512 A CN 202010965512A CN 112242456 A CN112242456 A CN 112242456A
Authority
CN
China
Prior art keywords
metal
optical
microstrip antenna
dimensional material
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010965512.7A
Other languages
English (en)
Other versions
CN112242456B (zh
Inventor
周靖
郭尚坤
余宇
嵇兆煜
代旭
邓杰
陈效双
蔡清元
储泽世
李方哲
兰梦珂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Technical Physics of CAS
Original Assignee
Shanghai Institute of Technical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Technical Physics of CAS filed Critical Shanghai Institute of Technical Physics of CAS
Priority to CN202010965512.7A priority Critical patent/CN112242456B/zh
Publication of CN112242456A publication Critical patent/CN112242456A/zh
Priority to US17/447,731 priority patent/US20220085228A1/en
Application granted granted Critical
Publication of CN112242456B publication Critical patent/CN112242456B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/1013Devices sensitive to infrared, visible or ultraviolet radiation devices sensitive to two or more wavelengths, e.g. multi-spectrum radiation detection devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/112Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2283Supports; Mounting means by structural association with other equipment or articles mounted in or on the surface of a semiconductor substrate as a chip-type antenna or integrated with other components into an IC package
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种基于光学微带天线非对称集成的二维材料探测器,其结构包括金属反射面、介质间隔层、二维活性材料层,以及顶层源电极和金属栅条集成的漏电极。金属‑二维活性光敏材料‑金属光探测结构的自驱动响应来自二维材料与金属接触之间的肖特基结,光学微带天线的非对称集成打破对称性,通过光学微带天线的高效耦合与光场局域实现二维材料接触结区光吸收大幅增强,同时延长接触结的边界,而在另一电极处的二维材料的光吸收受到距离很近的金属底面的抑制,两个电极附近的光响应对比度高达一百多倍。在泛光照射下,光学微带天线集成二维材料的响应率比传统金属光栅集成二维材料的响应率高出一个数量级以上。

Description

一种基于光学微带天线非对称集成的二维材料探测器
技术领域
本发明涉及一种基于光学微带天线非对称集成的二维材料探测器,具体是指一种实现自驱动光响应增强的基于光学微带天线非对称集成的二维材料探测器及设计方法。
背景技术
目前光电探测器广泛应用于光纤通信、光学成像、遥感、以及生物医学分析***,在日常生活中已成为必不可少的一部分。然而,在众多光电探测器中,每个探测器必须满足一定的要求,才能有针对性的在相关工业以及研究中应用。由于工作波段需求不同,必须仔细选择用于制造光电探测器的半导体材料的能量带隙来匹配相应工作波长。在过去的十年里,新兴的二维层状材料促进了对新型光电探测器的研究。不同的二维材料通常具有不同带隙,从而覆盖了目前传统块状半导体材料所不能达到的几乎所有感兴趣的波长。二维材料超薄的厚度使其静电调控的效果突出,局域栅压能够耗尽绝大多数本征载流子,抑制暗电流。另外,二维材料能够与绝大多数衬底以及其它二维材料进行集成和堆叠,而不用考虑传统材料晶格匹配的苛刻限制。再加上其制造工艺与目前的半导体技术兼容,二维材料在光电探测器中具有很大的应用前景。
针对基于无线传感器网络的室外环境监控探测、可穿戴医疗监测众多应用,为每个设备提供电源是不切实际的,这些只适用于自驱动或超低功耗光电探测器。为了实现自驱动光探测器,提出了各种器件结构,其中研究最多的是基于pn结的光伏器件,因为它可以在不受偏压的状态下通过光伏效应产生自驱动的光电流。对于二维材料,由于到目前为止还没有可靠的掺杂方法,人们或是采用二维材料异质结,或是在沟道中引入双栅结构,对沟道的不同部分分别进行p型或n型的静电掺杂,以获得二维材料的pn结。前者的问题是二维材料异质结受到异质材料不同能带结构以及界面的影响较大,情况复杂,对于载流子的输运特性的有效控制具有一定难度。后者的问题是双栅结构的制备工艺复杂,样品成功率低。金属与二维材料接触能够产生类似肖特基结,也能够分离电子和空穴形成自驱动光响应。但通常的金属-二维材料-金属的器件结构由于具有对称出现的金属-二维材料结,两端产生的自驱动光响应相互抵消,在泛光照射下没有净响应。引入不同的异种金属电极来获得不同的肖特基势垒高度能够获得泛光照射下的自驱动的净响应。然而,异种金属结构需要额外的套刻、沉积、剥离等工艺,流程复杂且容易对二维材料造成污染和损伤,降低器件成功率。因此,发展一种简便、可靠的具有自驱动光响应的二维材料的光电探测器具有重要意义。非对称集成的微纳光学结构能够打破两端金属-二维材料结的对称性,给我们提供了新的思路。另一方面,二维材料超薄的厚度导致其光吸收率较低;很多光被反射或者透射,没有被吸收。因此,非对称集成的微纳光学结构在打破对称性的同时也需要增强二维材料的光吸收。综合以上因素,非对称集成的光学微带天线是一个非常有希望的候选。通过光学微带天线与一端电极融合,利用高效耦合与光场局域实现该电极-二维材料接触结区光吸收显著增强,同时延长接触结的边界,提高光电流接收效率;而在另一电极-二维材料接触结区,利用距离很近的金属底面大幅抑制光吸收,实现两个电极-二维材料接触器的光响应的巨大差异,从而构建出具有显著自驱动光响应的二维材料光探测器件。
发明内容
本文发明的目的在于提出了一种实现自驱动光响应增强的基于光学微带天线非对称集成的二维材料探测器及设计方法,突破经典的金属-石墨烯-金属光电探测器件在泛光照射下没有净的自驱动光响应,以及石墨烯光吸收率低的瓶颈问题。
图1展示了本发明的实现自驱动光响应增强的基于光学微带天线非对称集成的石墨烯探测器的结构。所述探测器结构为:金属反射面1、介质间隔层2、二维活性材料层3、源电极4、金属栅条集成的漏电极5,其结构如图所示。1、2和5一起构成光学微带天线。
所述的金属反射面1是一层厚度为h1的完整的金属反射层,h1不小于电磁波在该金属中趋肤深度的两倍。1采用高导电性的金属。
所述的介质间隔层2是一层厚度为h2的工作波段透明的介质,具体是三氧化二铝,厚度为h2
所述的二维活性材料3为具有原子级纵向尺度的材料。
所述的源电极4以及金属栅条集成的漏电极5,是一层厚度为h3的高导电性的金属。其厚度h3不小于电磁波在该金属中趋肤深度的两倍。通过栅条周期P、栅条线宽W、栅条长度L1和沟道长度L2就能确定其结构,其中L1等于L2/2。P为光波长的四分之一到二分之一,W为P的三分之一到二分之一。
该器件中,通过光学微带天线与石墨烯集成,利用等离激元谐振腔腔共振,实现亚波长局域光子模式的场增强,从而提高石墨烯光吸收和光响应。当光入射到光学微带天线集成的石墨烯探测器时,在顶层和底层金属之间的介质层中形成等离激元波导模式。该模式横向传播,在顶层金属的横向边界所定义的谐振腔内来回反射。当波长与谐振腔长满足干涉相长的条件时,发生类似于法布里-珀罗的谐振腔共振。通过调整金属条栅的周期、介质层厚度等参数调控光学微带天线的阻抗匹配,是体系逼近临界耦合状态,使入射电磁波高效地转化为局域在金属条下方的强光场,实现光与石墨烯充分的相互作用,提高石墨烯的光吸收和光响应。通过光学微带天线与一端电极融合,利用高效耦合与光场局域实现该电极-二维材料接触结区光吸收显著增强,同时延长接触结的边界,提高光电流接收效率;而在另一电极-二维材料接触结区,利用距离很近的金属底面大幅抑制光吸收,实现两个电极-二维材料接触器的光响应的巨大差异,从而构建出具有显著自驱动光响应的二维材料光探测器件。
本发明的优点是:
1、该结构中金属栅条作为漏电极的延伸,由于光学微带天线的高效耦合与光场局域导致在该电极与石墨烯的接触结区大幅增强光吸收,并且延长了接触结的边界,而在源极电极处的石墨烯与底部金属平面距离较近,光场受到抑制,光吸收和光响应被削弱。最终,两个电极与石墨烯接触结的光响应对比度高达一百多倍。金属-石墨烯-金属光电探测器获得了在泛光照射下的净自驱动光响应。
2、利用光学微带天线集成石墨烯探测器相比于传统的用于光吸收增强的金属光栅集成石墨烯探测器响应率提高一个数量级以上。
3、该探测器光学结构与光敏材料集成在一个平面上,工艺兼容性强,便以集成。工艺流程简单,降低成本,实现自驱动性能的同时降低了器件暗电流。
附图说明
图1是光学微带天线非对称集成的石墨烯器件示意图。
图2是激光光斑照射在两个位置(在图1中标记)获得的光电压波形图。
图3是泛光照射下的光学微带天线非对称集成的石墨烯器件示意图。
图4是泛光照射下两种器件的响应光谱。
具体实施方式
本发明所提出的基于光学微带天线非对称集成实现自驱动光响应增强的石墨烯探测器的制备方法与传统半导体工艺相兼容。为了便于说明,下面将以工作在1.55μm的光学微带天线非对称集成的石墨烯探测器为例,结合附图对本发明的具体实施方式作详细说明:
1、首先用丙酮对硅片衬底进行超声清洗,然后用异丙醇冲洗硅片表面去除多余丙酮,接下来用去离子水冲洗硅片,吹干烘干保证硅片衬底表面洁净无污染。
2、在洁净的硅片衬底上,用电子束蒸镀的方法沉积Cr(20nm)/Au(90nm)金属层作为底部金属反射层。
3、利用等离子体增强的原子层沉积(PEALD)在底部金属反射层上沉积一层特定厚度的对工作波段透明的介质间隔层2。
4、利用湿法转移将铜基CVD生长的单层石墨烯转移到介质间隔层2的表面。
5、利用电子束光刻定义图形,并利用电子束光刻胶作为掩膜,保护底层石墨烯,利用氧等离子体轰击样品,轰击去除掉未被光刻胶保护的石墨烯,实现石墨烯图形化处理。
6、通过电子束光刻定义图形,并利用光刻胶作为掩膜,采用电子束蒸镀的方法沉淀Cr/Au,通过剥离最终获得源、漏电极和金属栅条。
实施案例
本实施例的光学微带天线非对称集成的石墨烯探测器针对波长1.65μm,金属采用铬/金。通过设计优化的周期单元的结构尺寸为:P=590nm,W=283nm,L1=5μm,L2=10μm,h1=110nm,h2=30nm,h3=45nm。其中金属反射层1采用Cr(20nm)/Au(90nm),介质间隔层2采用设计厚度的对该工作波段透明的三氧化二铝作为介质层,二维活性材料3为湿法转移的铜基CVD生长的单层石墨烯,源电极4、金属栅条集成的漏电极5采用Cr(5nm)/Au(45nm)。作为对照实验的一般耦合光栅非对称集成的石墨烯器件其顶层光栅周期性结构尺寸与光学微带天线非对称集成的石墨烯探测器相同,但其最底层为500μm厚的硅1,中间介质间隔层2为300nm的二氧化硅。

Claims (1)

1.一种基于光学微带天线非对称集成的二维材料探测器,其特征在于:
所述的探测器结构自下到上依次为金属反射面(1)、介质间隔层(2)、二维活性材料层(3)、源电极(4)、金属栅条集成的漏电极(5);金属栅条集成的漏电极(5)、介质间隔层(2)和金属反射面(1)一起构成光学微带天线;
所述的金属反射面(1)是一层金属反射层,金属反射层的厚度h1不小于电磁波在该金属中趋肤深度的两倍;金属反射面(1)同时可以作为静电栅控石墨烯的栅极;其材质为高导电性的金属;
所述的介质间隔层(2)是一层工作波段透明的介质,介质厚度h2要小于探测波长的四分之一;
所述的二维活性材料(3)为具有原子级纵向尺度的材料;
所述的源电极(4)以及金属栅条集成的漏电极(5),是一层高导电性的金属,金属厚度h3不小于电磁波在该金属中趋肤深度的两倍,通过栅条周期P、栅条线宽W、栅条长度L1和沟道长度L2来确定其结构,其中L1等于L2/2,P为光波长的四分之一到二分之一,W为P的三分之一到二分之一。
CN202010965512.7A 2020-09-15 2020-09-15 一种基于光学微带天线非对称集成的二维材料探测器 Active CN112242456B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202010965512.7A CN112242456B (zh) 2020-09-15 2020-09-15 一种基于光学微带天线非对称集成的二维材料探测器
US17/447,731 US20220085228A1 (en) 2020-09-15 2021-09-15 Two-Dimensional Material Detector Based on Asymmetrically Integrated Optical Microstrip Antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010965512.7A CN112242456B (zh) 2020-09-15 2020-09-15 一种基于光学微带天线非对称集成的二维材料探测器

Publications (2)

Publication Number Publication Date
CN112242456A true CN112242456A (zh) 2021-01-19
CN112242456B CN112242456B (zh) 2023-12-26

Family

ID=74171324

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010965512.7A Active CN112242456B (zh) 2020-09-15 2020-09-15 一种基于光学微带天线非对称集成的二维材料探测器

Country Status (2)

Country Link
US (1) US20220085228A1 (zh)
CN (1) CN112242456B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113517357A (zh) * 2021-04-19 2021-10-19 深圳网联光仪科技有限公司 一种二硫化钼光电探测器及其制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114784125B (zh) * 2022-03-25 2024-04-02 国科大杭州高等研究院 一种非对称性诱导室温高灵敏光电探测器件及其制备方法
CN116207166B (zh) * 2023-02-22 2023-11-07 中国科学院上海技术物理研究所 集成式可配置超高圆偏振消光比光电探测器及制备方法
CN116110985B (zh) * 2023-04-12 2023-08-08 合肥工业大学 集成非对称F-P腔的InSe基日盲紫外光电探测器
CN116137297B (zh) * 2023-04-18 2023-07-25 合肥工业大学 集成非对称F-P腔的GaSe基日盲紫外光电探测器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103117316A (zh) * 2013-01-30 2013-05-22 中国科学院苏州纳米技术与纳米仿生研究所 基于超材料结构的石墨烯晶体管、光探测器及其应用
US20140263945A1 (en) * 2013-03-14 2014-09-18 Nutech Ventures Floating-gate transistor photodetector
CN105789367A (zh) * 2016-04-15 2016-07-20 周口师范学院 非对称电极二维材料/石墨烯异质结级联光电探测器及其制备方法
CN106257692A (zh) * 2016-07-29 2016-12-28 东南大学 一种偏振敏感型光电探测器
CN106653930A (zh) * 2016-09-13 2017-05-10 北京大学 基于半导体纳米材料的等离激元增强光电探测器及其制备方法
CN108400198A (zh) * 2018-01-30 2018-08-14 中国科学院上海技术物理研究所 面内非对称局域场调控的低维纳米光电探测器及制备方法
CN110233182A (zh) * 2019-06-28 2019-09-13 西安交通大学 一种复合结构双吸收层石墨烯探测器及其制备工艺
CN111029416A (zh) * 2019-10-30 2020-04-17 北京大学 一种圆偏振光探测器件及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160172527A1 (en) * 2012-12-03 2016-06-16 Sandia Corporation Photodetector with Interdigitated Nanoelectrode Grating Antenna

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103117316A (zh) * 2013-01-30 2013-05-22 中国科学院苏州纳米技术与纳米仿生研究所 基于超材料结构的石墨烯晶体管、光探测器及其应用
US20140263945A1 (en) * 2013-03-14 2014-09-18 Nutech Ventures Floating-gate transistor photodetector
CN105789367A (zh) * 2016-04-15 2016-07-20 周口师范学院 非对称电极二维材料/石墨烯异质结级联光电探测器及其制备方法
CN106257692A (zh) * 2016-07-29 2016-12-28 东南大学 一种偏振敏感型光电探测器
CN106653930A (zh) * 2016-09-13 2017-05-10 北京大学 基于半导体纳米材料的等离激元增强光电探测器及其制备方法
CN108400198A (zh) * 2018-01-30 2018-08-14 中国科学院上海技术物理研究所 面内非对称局域场调控的低维纳米光电探测器及制备方法
CN110233182A (zh) * 2019-06-28 2019-09-13 西安交通大学 一种复合结构双吸收层石墨烯探测器及其制备工艺
CN111029416A (zh) * 2019-10-30 2020-04-17 北京大学 一种圆偏振光探测器件及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DONGHAI ZHANG等: "Enhanced polarization sensitivity by plasmonic-cavity in grapheme phototransistors", 《JOURNAL OF APPLIED PHYSICS》 *
DONGHAI ZHANG等: "Enhanced polarization sensitivity by plasmonic-cavity in grapheme phototransistors", 《JOURNAL OF APPLIED PHYSICS》, vol. 126, no. 7, 19 August 2019 (2019-08-19), pages 074301 - 4, XP012239978, DOI: 10.1063/1.5109249 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113517357A (zh) * 2021-04-19 2021-10-19 深圳网联光仪科技有限公司 一种二硫化钼光电探测器及其制备方法

Also Published As

Publication number Publication date
US20220085228A1 (en) 2022-03-17
CN112242456B (zh) 2023-12-26

Similar Documents

Publication Publication Date Title
CN112242456B (zh) 一种基于光学微带天线非对称集成的二维材料探测器
Wang et al. Sensing infrared photons at room temperature: from bulk materials to atomic layers
CN111554757A (zh) 一种基于等离激元增强的石墨烯中红外光探测器及制备方法
US6664562B2 (en) Device integrated antenna for use in resonant and non-resonant modes and method
TWI496310B (zh) 以單層或多層石墨烯為基底的測光裝置
CN107316915B (zh) 可见光波段的集成石墨烯二硫化钼的光电探测器及其制备方法
US6835949B2 (en) Terahertz device integrated antenna for use in resonant and non-resonant modes and method
CN102201483B (zh) 硅纳米线光栅谐振增强型光电探测器及其制作方法
CN110212053B (zh) 一种硅基叉指型光电探测器
CN105762281A (zh) 一种铁电局域场增强型二维半导体光电探测器及制备方法
CN106169516A (zh) 一种基于石墨烯的硅基紫外光电探测器及其制备方法
CN107403848A (zh) 一种背照式级联倍增雪崩光电二极管
Mondal et al. A review on device architecture engineering on various 2-D materials toward high-performance photodetectors
Li et al. Review on III–V semiconductor nanowire array infrared photodetectors
CN111211186A (zh) 一种提高光电探测性能的MoS2光电晶体管及其制备方法
CN113097335A (zh) 波导耦合等离增强型Ge基红外光电探测器及其制备方法
CN112838136A (zh) 一种石墨烯超带宽光电探测器
CN110854234A (zh) 一种基于叉指型电极结构的石墨烯光电探测器
CN113517357A (zh) 一种二硫化钼光电探测器及其制备方法
WO2022100053A1 (zh) 含有金属硅化物红外吸收层的石墨烯场效应电荷耦合器件
Zhao et al. Interface engineering by inserting Al2O3 tunneling layer to enhance the performance of graphene/GaAs heterojunction photodetector
US6756651B2 (en) CMOS-compatible metal-semiconductor-metal photodetector
CN107706260B (zh) 一种二硒化钨薄片/氧化铟纳米线复合结构近红外光电探测器及其制备方法
Wang et al. Ag nanoparticles enhanced PbS QDs/graphene/Si near-infrared photodetector
Qu et al. Graphene/GaAs Schottky Junction Near-Infrared Photodetector With a MoS 2 Quantum Dots Absorption Layer

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant