CN112185608B - 一种新型双层导电网络结构的柔性透明电极及其制备方法 - Google Patents

一种新型双层导电网络结构的柔性透明电极及其制备方法 Download PDF

Info

Publication number
CN112185608B
CN112185608B CN202011174308.XA CN202011174308A CN112185608B CN 112185608 B CN112185608 B CN 112185608B CN 202011174308 A CN202011174308 A CN 202011174308A CN 112185608 B CN112185608 B CN 112185608B
Authority
CN
China
Prior art keywords
double
solution
conductive
layer
transparent electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011174308.XA
Other languages
English (en)
Other versions
CN112185608A (zh
Inventor
耿宏章
耿文铭
耿文浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carbon Star Technology Tianjin Co ltd
Original Assignee
Carbon Star Technology Tianjin Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carbon Star Technology Tianjin Co ltd filed Critical Carbon Star Technology Tianjin Co ltd
Priority to CN202011174308.XA priority Critical patent/CN112185608B/zh
Publication of CN112185608A publication Critical patent/CN112185608A/zh
Application granted granted Critical
Publication of CN112185608B publication Critical patent/CN112185608B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/042Coating with two or more layers, where at least one layer of a composition contains a polymer binder
    • C08J7/0423Coating with two or more layers, where at least one layer of a composition contains a polymer binder with at least one layer of inorganic material and at least one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/044Forming conductive coatings; Forming coatings having anti-static properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/06Coating with compositions not containing macromolecular substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0026Apparatus for manufacturing conducting or semi-conducting layers, e.g. deposition of metal
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2425/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2425/18Homopolymers or copolymers of aromatic monomers containing elements other than carbon and hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2465/00Characterised by the use of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Derivatives of such polymers

Abstract

本发明公开了一种新型双层导电网络结构的柔性透明电极及其制备方法,包括一种新型的双层网络导电结构,所述一种新型的双层网络导电结构由单宁酸功能化碳纳米管与银纳米线复合组成,底层的功能化碳纳米管导电网络为银纳米线提供导电路径,并且可作为导电粘合剂增加复合薄膜导电稳定性以及银纳米线和基底之间的黏附力,将聚对苯二甲酸乙二醇酯(PET)基底薄膜用蒸馏水和乙醇超声清洗然后烘干,将配好的单宁酸改性碳纳米管溶液(TCNT)。该新型双层导电网络结构的柔性透明电极及其制备方法通过机械按压和喷涂聚3,4‑乙烯二氧噻吩(PEDOT)溶液对导电薄膜进行后处理,得到了黏附力好、表面粗糙度低、导电性高的透明电极。

Description

一种新型双层导电网络结构的柔性透明电极及其制备方法
技术领域
本发明涉及电极制备技术领域,具体为一种新型双层导电网络结构的柔性透明电极及其制备方法。
背景技术
电子器件是指在真空、气体或固体中,利用和控制电子运动规律而制成的器件。分为电真空器件、充气管器件和固态电子器件。在模拟电路中作整流、放大、调制、振荡、变频、锁相、控制、相关等作用;在数字电路中作采样、限幅、逻辑、存储、计数、延迟等用,充气管器件主要作整流、稳压和显示之用。固态电子器件如集成电路在过去几年中,光电器件包括有机发光二极管(OLED)、有机太阳能电池(OSC)和场效应晶体管(FET)得到了充分的发展,对透明导电薄膜(TCFs)的需求变得越来越迫切,现有的透明柔性电极表面粗糙度低,黏附力低,导电性能差。
发明内容
本发明的目的在于提供一种新型双层导电网络结构的柔性透明电极及其制备方法,以解决上述背景技术中提出的问题。
为实现上述目的,本发明提供如下技术方案:一种新型双层导电网络结构的柔性透明电极,包括一种新型的双层网络导电结构,所述一种新型的双层网络导电结构由单宁酸功能化碳纳米管与银纳米线复合组成,底层的功能化碳纳米管导电网络为银纳米线提供导电路径,并且可作为导电粘合剂增加复合薄膜导电稳定性以及银纳米线和基底之间的黏附力,将聚对苯二甲酸乙二醇酯(PET)基底薄膜用蒸馏水和乙醇超声清洗然后烘干,将配好的单宁酸改性碳纳米管溶液(TCNT)、银纳米线(AgNW)分别采用喷涂法与旋涂法逐层涂布在PET薄膜基底上,得到双层导电网络结构的柔性透明电极,后采用机械按压和喷涂聚3,4-乙烯二氧噻吩(PEDOT)溶液对导电薄膜进行后处理,用单宁酸(TA)功能化的单壁碳纳米管(TCNT)作为银纳米线与基底的结合层,构建了TCNT/AgNW双层导电网络结构。富含酚羟基的TA分子通过π-π相互作用吸附在碳纳米管壁上,使功能化碳纳米管(TCNT)表现出亲水性,并有效地提高了与AgNWs的粘附性。此外,细密的导电碳纳米管网络填充了AgNW网络的开口,增加了载流子的传输路径,有效地提高了杂化膜的导电性和电稳定性。机械按压以及喷涂PEDOT:PSS的后处理工艺使薄膜的粗糙度大幅度降低,同时进一步提升了薄膜的导电性,机械性能,以及耐腐蚀性能,在透光率为80%~90%时,面电阻为10~100Ω/sq,表面粗糙度<10nm。
优选的,所采用的原料为银纳米线溶液,其长度为40~60μm,直径为40~70nm,单壁碳纳米管,其纯度>95wt.%,外径1~2nm,长度为5~30μm,单宁酸粉末,AR级,聚3,4-乙烯二氧噻吩溶液为PH1000,固含量为1~1.3%。
优选的,采用超声波分散机制备TCNT分散液的条件,功率100-200W,时间30-80min,分散剂为十二烷基苯磺酸钠,制得的碳纳米管溶液浓度为0.1~0.5mg/ml。
优选的,配置银纳米线水溶液浓度为0.8~1.2mg/ml。
优选的,聚3,4-乙烯二氧噻吩溶液稀释5~20倍然后加入5wt.%二甲基亚砜,搅拌20min以上。
优选的,得到透明导电薄膜的透光度为80%以上,面电阻可以达到50Ω/sq.以下,表面粗糙度在10nm以下。
该发明还提供一种新型双层导电网络结构的柔性透明电极的制备方法:
采用单宁酸功能化碳纳米管(TCNT)溶液的制备如下,将SWCNT与单宁酸以1:1~4的比例分散在去离子水中,然后在60℃水浴加热条件下搅拌24h,之后通过离心,过滤,冷冻干燥收集TCNT粉末,随后,使用SDBS作为分散剂,将一定量的TCNT分散于蒸馏水中,水浴超声30min,然后将溶液放入120W探针超声中继续超声分散40min,随后将混合液在8000rmp下离心20min,并收集90%的上清液,以获得相应浓度的TCNT悬浊液,采用喷涂法将配好的不同量的单宁酸改性碳纳米管(TCNT)溶液喷涂在PET基底上,硝酸浸泡处理20分钟后干燥,随后在TCNT层上以2000转每分的转速旋涂不同浓度的银纳米线溶液,并充分干燥,得到双层导电网络结构的薄膜,最后处理工艺为机械按压以及表面喷涂PEDOT:PSS溶液,将制得的双层导电网络薄膜放置在压片机上,在25MPa压力下按压10min,以使银纳米线相互焊接,随后将3ml的聚3,4-乙烯二氧噻吩(PEDOT)溶液喷涂到按压处理后的薄膜上。
与现有技术相比,本发明的有益效果是:
一、通过机械按压和喷涂聚3,4-乙烯二氧噻吩(PEDOT)溶液对导电薄膜进行后处理,得到了黏附力好、表面粗糙度低、导电性高的透明电极。
二、该透明电极的制备工艺简单、周期短,其双层导电网络结构使得薄膜的结构稳定、黏附力强,经过高效的后处理电极的导电性有了极大的提高,而且粗糙度急剧下降。
三、该高性能透明电极可广泛应用于OLED有机发光器件、显示器、触摸屏、薄膜晶体管以及光伏器件等方面。
四、通过聚3,4-乙烯二氧噻吩(PEDOT)溶液喷涂到按压处理后的薄膜,干燥得到黏附力好、粗糙度低、导电性高的透明电极。
附图说明
图1为本发明单宁酸改性碳纳米管/银纳米线/聚3,4-乙烯二氧噻吩(TCNT/AgNW/PEDOT)透明导电薄膜的示意图;
图2为本发明的单宁酸改性碳纳米管/银纳米线(TCNT/AgNW)薄膜扫描电子显微镜图;
图3为本发明单宁酸改性碳纳米管/银纳米线/聚3,4-乙烯二氧噻吩(TCNT/AgNW/PEDOT)透明导电薄膜扫描电子显微镜图;
图4为本发明单宁酸改性碳纳米管/银纳米线/聚3,4-乙烯二氧噻吩(TCNT/AgNW/PEDOT)透明导电薄膜的面电阻和透光率显示图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,术语“上”、“下”、“内”、“外”“前端”、“后端”、“两端”、“一端”、“另一端”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“设置有”、“连接”等,应做广义理解,例如“连接”,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
请参阅图1-4,本发明提供的一种实施例:一种新型双层导电网络结构的柔性透明电极,包括一种新型的双层网络导电结构,其特征在于:所述一种新型的双层网络导电结构由单宁酸功能化碳纳米管与银纳米线复合组成,底层的功能化碳纳米管导电网络为银纳米线提供导电路径,并且可作为导电粘合剂增加复合薄膜导电稳定性以及银纳米线和基底之间的黏附力,将聚对苯二甲酸乙二醇酯(PET)基底薄膜用蒸馏水和乙醇超声清洗然后烘干,将配好的单宁酸改性碳纳米管溶液(TCNT)、银纳米线(AgNW)分别采用喷涂法与旋涂法逐层涂布在PET薄膜基底上,得到双层导电网络结构的柔性透明电极,后采用机械按压和喷涂聚3,4-乙烯二氧噻吩(PEDOT)溶液对导电薄膜进行后处理。
进一步,所采用的原料为银纳米线溶液,其长度为40~60μm,直径为40~70nm,单壁碳纳米管,其纯度>95wt.%,外径1~2nm,长度为5~30μm,单宁酸粉末,AR级,聚3,4-乙烯二氧噻吩溶液为PH1000,固含量为1~1.3%。
进一步,采用超声波分散机制备TCNT分散液的条件,功率100-200W,时间30-80min,分散剂为十二烷基苯磺酸钠,制得的碳纳米管溶液浓度为0.1~0.5mg/ml。
进一步,配置银纳米线水溶液浓度为0.8~1.2mg/ml。
进一步,聚3,4-乙烯二氧噻吩溶液稀释5~20倍然后加入5wt.%二甲基亚砜,搅拌20min以上。
进一步,得到透明导电薄膜的透光度为80%以上,面电阻可以达到50Ω/sq.以下,表面粗糙度在10nm以下。
该发明还提供一种新型双层导电网络结构的柔性透明电极的制备方法:
采用单宁酸功能化碳纳米管(TCNT)溶液的制备如下,将SWCNT与单宁酸以1:1~4的比例分散在去离子水中,然后在60℃水浴加热条件下搅拌24h,之后通过离心,过滤,冷冻干燥收集TCNT粉末,随后,使用SDBS作为分散剂,将一定量的TCNT分散于蒸馏水中,水浴超声30min,然后将溶液放入120W探针超声中继续超声分散40min,随后将混合液在8000rmp下离心20min,并收集90%的上清液,以获得相应浓度的TCNT悬浊液,采用喷涂法将配好的不同量的单宁酸改性碳纳米管(TCNT)溶液喷涂在PET基底上,硝酸浸泡处理20分钟后干燥,随后在TCNT层上以2000转每分的转速旋涂不同浓度的银纳米线溶液,并充分干燥,得到双层导电网络结构的薄膜,最后处理工艺为机械按压以及表面喷涂PEDOT:PSS溶液,将制得的双层导电网络薄膜放置在压片机上,在25MPa压力下按压10min,以使银纳米线相互焊接,随后将3ml的聚3,4-乙烯二氧噻吩(PEDOT)溶液喷涂到按压处理后的薄膜上。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。

Claims (7)

1.一种新型双层导电网络结构的柔性透明电极,包括一种新型的双层网络导电结构,其特征在于:所述一种新型的双层网络导电结构由单宁酸功能化碳纳米管与银纳米线复合组成,底层的功能化碳纳米管导电网络为银纳米线提供导电路径,并且可作为导电粘合剂增加复合薄膜导电稳定性以及银纳米线和基底之间的黏附力,将聚对苯二甲酸乙二醇酯(PET)基底薄膜用蒸馏水和乙醇超声清洗然后烘干,将配好的单宁酸改性碳纳米管溶液(TCNT)、银纳米线(AgNW)分别采用喷涂法与旋涂法逐层涂布在PET薄膜基底上,得到双层导电网络结构的柔性透明电极,后采用机械按压和喷涂聚3,4-乙烯二氧噻吩(PEDOT)溶液对导电薄膜进行后处理。
2.根据权利要求1所述的一种新型双层导电网络结构的柔性透明电极,其特征在于:所采用的原料为银纳米线溶液,其长度为40~60μm,直径为40~70nm,单壁碳纳米管,其纯度>95wt.%,外径1~2nm,长度为5~30μm,单宁酸粉末,AR级,聚3,4-乙烯二氧噻吩溶液为PH1000,固含量为1~1.3%。
3.根据权利要求1所述的一种新型双层导电网络结构的柔性透明电极,其特征在于:采用超声波分散机制备TCNT分散液的条件,功率100-200W,时间30-80min,分散剂为十二烷基苯磺酸钠,制得的碳纳米管溶液浓度为0.1~0.5mg/ml。
4.根据权利要求1所述的一种新型双层导电网络结构的柔性透明电极,其特征在于:配置银纳米线水溶液浓度为0.8~1.2mg/ml。
5.根据权利要求1所述的一种新型双层导电网络结构的柔性透明电极,其特征在于:聚3,4-乙烯二氧噻吩溶液稀释5~20倍然后加入5wt.%二甲基亚砜,搅拌20min以上。
6.根据权利要求1所述的一种新型双层导电网络结构的柔性透明电极,其特征在于:得到透明导电薄膜的透光度为80%以上,面电阻可以达到50Ω/sq.以下,表面粗糙度在10nm以下。
7.根据权利要求1所述的一种新型双层导电网络结构的柔性透明电极,还包括一种制备方法,其操作步骤如下:
采用单宁酸功能化碳纳米管(TCNT)溶液的制备如下,将SWCNT与单宁酸以1:1~4的比例分散在去离子水中,然后在60℃水浴加热条件下搅拌24h,之后通过离心,过滤,冷冻干燥收集TCNT粉末,随后,使用SDBS作为分散剂,将一定量的TCNT分散于蒸馏水中,水浴超声30min,然后将溶液放入120W探针超声中继续超声分散40min,随后将混合液在8000rmp下离心20min,并收集90%的上清液,以获得相应浓度的TCNT悬浊液,采用喷涂法将配好的不同量的单宁酸改性碳纳米管(TCNT)溶液喷涂在PET基底上,硝酸浸泡处理20分钟后干燥,随后在TCNT层上以2000转每分的转速旋涂不同浓度的银纳米线溶液,并充分干燥,得到双层导电网络结构的薄膜,最后处理工艺为机械按压以及表面喷涂PEDOT:PSS溶液,将制得的双层导电网络薄膜放置在压片机上,在25MPa压力下按压10min,以使银纳米线相互焊接,随后将3ml的聚3,4-乙烯二氧噻吩(PEDOT)溶液喷涂到按压处理后的薄膜上。
CN202011174308.XA 2020-10-28 2020-10-28 一种新型双层导电网络结构的柔性透明电极及其制备方法 Active CN112185608B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011174308.XA CN112185608B (zh) 2020-10-28 2020-10-28 一种新型双层导电网络结构的柔性透明电极及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011174308.XA CN112185608B (zh) 2020-10-28 2020-10-28 一种新型双层导电网络结构的柔性透明电极及其制备方法

Publications (2)

Publication Number Publication Date
CN112185608A CN112185608A (zh) 2021-01-05
CN112185608B true CN112185608B (zh) 2021-11-30

Family

ID=73916090

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011174308.XA Active CN112185608B (zh) 2020-10-28 2020-10-28 一种新型双层导电网络结构的柔性透明电极及其制备方法

Country Status (1)

Country Link
CN (1) CN112185608B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114823931A (zh) * 2022-03-31 2022-07-29 华南理工大学 一种碳纳米管/银纳米线复合薄膜及其砷化镓基异质结太阳电池和制备方法
CN115910432A (zh) * 2022-11-26 2023-04-04 宁波碳源新材料科技有限公司 一种非共价改性碳纳米管柔性透明导电薄膜及其制备方法
CN117497229B (zh) * 2023-12-29 2024-04-16 北京航空航天大学 一种超柔性透明电极、其制备方法及用途

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060097271A (ko) * 2005-03-04 2006-09-14 주식회사 잉크테크 투명 은 잉크 조성물 및 이를 이용한 박막 형성방법
EP2587564A1 (en) * 2011-10-27 2013-05-01 Merck Patent GmbH Selective etching of a matrix comprising silver nanowires or carbon nanotubes
KR20170121996A (ko) * 2016-04-26 2017-11-03 서울대학교산학협력단 중합체 개질용 첨가제 및 그 제조방법
CN107655598A (zh) * 2017-09-12 2018-02-02 电子科技大学 基于碳纳米管和银纳米线复合导电薄膜的柔性应力传感器
CN108165018A (zh) * 2018-02-01 2018-06-15 青岛科技大学 一种电磁屏蔽用硅橡胶/石墨烯/银纳米线纳米复合材料及其制备方法
CN108648857A (zh) * 2018-05-17 2018-10-12 天津宝兴威科技股份有限公司 一种透明导电薄膜的光照烧结处理方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060097271A (ko) * 2005-03-04 2006-09-14 주식회사 잉크테크 투명 은 잉크 조성물 및 이를 이용한 박막 형성방법
EP2587564A1 (en) * 2011-10-27 2013-05-01 Merck Patent GmbH Selective etching of a matrix comprising silver nanowires or carbon nanotubes
KR20170121996A (ko) * 2016-04-26 2017-11-03 서울대학교산학협력단 중합체 개질용 첨가제 및 그 제조방법
CN107655598A (zh) * 2017-09-12 2018-02-02 电子科技大学 基于碳纳米管和银纳米线复合导电薄膜的柔性应力传感器
CN108165018A (zh) * 2018-02-01 2018-06-15 青岛科技大学 一种电磁屏蔽用硅橡胶/石墨烯/银纳米线纳米复合材料及其制备方法
CN108648857A (zh) * 2018-05-17 2018-10-12 天津宝兴威科技股份有限公司 一种透明导电薄膜的光照烧结处理方法

Also Published As

Publication number Publication date
CN112185608A (zh) 2021-01-05

Similar Documents

Publication Publication Date Title
CN112185608B (zh) 一种新型双层导电网络结构的柔性透明电极及其制备方法
Brennan et al. Carbon nanomaterials for dye‐sensitized solar cell applications: a bright future
Li et al. Synthesis and electrochemical applications of the composites of conducting polymers and chemically converted graphene
Wang et al. Conducting polymer nanowire arrays for high performance supercapacitors
Ge et al. Transparent and flexible electrodes and supercapacitors using polyaniline/single-walled carbon nanotube composite thin films
Zhu et al. Anthocyanin-sensitized solar cells using carbon nanotube films as counter electrodes
CN100563043C (zh) 一种聚合物太阳能电池及其制备方法
CN107946470B (zh) 一种异质结太阳能电池及其制备方法
CN109887647B (zh) 一种复合柔性透明导电薄膜及其制备方法
Reddy et al. Organic conjugated polymer-based functional nanohybrids: synthesis methods, mechanisms and its applications in electrochemical energy storage supercapacitors and solar cells
Lee et al. Preparation and characterization of PEDOT: PSS wrapped carbon nanotubes/MnO2 composite electrodes for flexible supercapacitors
Jo et al. Graphene‐based electrodes for flexible electronics
Rahman et al. Prospects of conducting polymer and graphene as counter electrodes in dye-sensitized solar cells
Qiao et al. Characteristics of water-soluble polythiophene: TiO2 composite and its application in photovoltaics
Mathews et al. Oxide nanowire networks and their electronic and optoelectronic characteristics
Xu et al. Electrochemical properties of PEDOT: PSS/V2O5 hybrid fiber based supercapacitors
CN112509729B (zh) 一种柔性透明导电薄膜及其制备方法
Faraji et al. 2.0-V flexible all-solid-state symmetric supercapacitor device with high electrochemical performance composed of MWCNTs-WO 3-graphite sheet
Zhang et al. Poly (o-phenylenediamine)/MWNTs composite film as a hole conductor in solid-state dye-sensitized solar cells
Kausar et al. High-tech graphene oxide reinforced conducting matrix nanocomposites—Current status and progress
Song et al. Dye-sensitized solar cells using nanomaterial/PEDOT–PSS composite counter electrodes: effect of the electronic and structural properties of nanomaterials
Al-bahrani et al. Layer-by-layer deposition of CNT− and CNT+ hybrid films for platinum free counters electrodes of dye-sensitized-solar-cells
CN106319762B (zh) 一种石墨烯掺杂的具有电缆式结构的TiN/C纳米纤维及其制备方法与应用
Gao et al. Conductive polymer/nanocellulose composites as a functional platform for electronic devices: A mini-review
JP2015012261A (ja) 熱電変換素子

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant