CN112150813A - 一种针对高速公路长距离下游瓶颈路段入口匝道控制方法 - Google Patents

一种针对高速公路长距离下游瓶颈路段入口匝道控制方法 Download PDF

Info

Publication number
CN112150813A
CN112150813A CN202011038572.0A CN202011038572A CN112150813A CN 112150813 A CN112150813 A CN 112150813A CN 202011038572 A CN202011038572 A CN 202011038572A CN 112150813 A CN112150813 A CN 112150813A
Authority
CN
China
Prior art keywords
traffic flow
fuzzy
traffic
ramp
highway
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011038572.0A
Other languages
English (en)
Inventor
赵玲
程灿
陈爱英
邵妍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuxi Municipal Design Institute Co Ltd
Original Assignee
Wuxi Municipal Design Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuxi Municipal Design Institute Co Ltd filed Critical Wuxi Municipal Design Institute Co Ltd
Priority to CN202011038572.0A priority Critical patent/CN112150813A/zh
Publication of CN112150813A publication Critical patent/CN112150813A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0125Traffic data processing
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0137Measuring and analyzing of parameters relative to traffic conditions for specific applications
    • G08G1/0145Measuring and analyzing of parameters relative to traffic conditions for specific applications for active traffic flow control

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)

Abstract

本发明公开了一种针对高速公路长距离下游瓶颈路段入口匝道控制方法,属于智能交通技术领域。包括:在高速公路上等距离设置多个交通流检测器,根据读取的高速公路各路段交通流数据,判断交通流状态,实时输出交通流数据。针对该场景下的交通流特征,采用模糊自适应比例‑积分‑微分(PID)控制策略,该控制策略由比例‑积分‑微分(PID)控制和模糊控制组成。解决了现有入口匝道控制策略难以消除因为时间延迟带来的控制效果降低的问题,本发明对于提高长距离下游瓶颈的通行能力、提高高速公路整体运行效率具有重要的意义。

Description

一种针对高速公路长距离下游瓶颈路段入口匝道控制方法
技术领域
本发明涉及智能交通技术领域,具体涉及一种针对高速公路长距离下游瓶颈路段入口匝道控制方法。
背景技术
在机动车保有量不断增长,高速公路资源有限的情况下出现了交通拥堵、交通事故等问题,为了提高高速公路通行效率,减少交通事故,高速公路主动交通流控制策略的研究也在日益发展,运用比较广泛的是入口匝道控制。当高速公路上的交通流处于拥堵时,通过匝道调节率来计算信号配时,控制匝道进入主线的交通流,可以避免交通拥堵加剧,快速消除拥堵,降低延误。
近年来对于高速公路瓶颈路段的研究较多,主要是针对入口匝道与主线汇合处交通流特性进行研究,但是针对高速公路长距离下游瓶颈的研究较少。高速公路长距离下游瓶颈是指在许多实际的场景中,由于入口匝道有一定距离的下游存在上坡、弯道、隧道、桥梁以及车道减少等瓶颈,下游通行能力较小制约着路段交通流效率。此情况下,在汇合处控制区域的动作及其对长距离下游瓶颈位置处的交通流动力学的影响之间存在不可忽略的时间延迟,带延迟特性的被控***的控制难度随滞后程度的增加而加大。这种情况对控制策略应对时间延迟的能力具有较高要求,在高速公路主动交通流控制中值得重点关注。目前研究的交通流控制策略是把控制区域作为主要的考量,难以消除因为时间延迟带来的控制效果降低。
发明内容
[技术问题]
现有高速公路长距离下游瓶颈交通流量控制方法为考虑时间延迟带来的影响,控制效果降低。
[技术方案]
本发明提供一种针对高速公路长距离下游瓶颈路段入口匝道控制方法,包括如下步骤:
步骤一:设置交通流检测器,在长距离下游瓶颈的高速公路上等距离设置交通流检测器,按照从下游到上游的方向记录每个检测器的桩号,采集高速公路路段内的交通流数据;
步骤二:基于交通流检测器采集的交通流量数据,选取反馈控制;根据长距离下游瓶颈的迟滞性,搭建模糊自适应PID控制***,获取交通流检测器采集高速公路路段内的交通流数据,输入至模糊自适应PID控制***;
步骤三:模糊自适应PID控制***的输入信号为k时刻的预期流量密度ρd(k),即输入信号rin(k)=ρd(k);***的的输出信号是实际流量密度ρ(k+1),即输出信号yout(k+1)=ρ(k+1),***的控制变量为匝道调节率r(k),通过匝道调节率来控制匝道进入主线的交通流量,r(k)由以下公式确定:
Figure BDA0002705878020000021
其中kp、ki、kd分别为由模糊控制确定的参数,e(k)=rin(k)-yout(k+1)是误差信号,T为信号周期。
步骤四:通过交通流检测器监测路段各断面的实时交通流数据,当相邻两桩号的交通流检测器对应的占有率斜累计曲线均出现拐点时,则高速公路路段出现拥堵排队现象,模糊自适应PID控制***检测到占有率累计曲线出现拐点时,调整入口匝道控制器中的参数kp、ki、kd,从而输出匝道调节率,通过匝道的信号灯调节来控制匝道车辆进入主线的流量。
在本发明的一种实施方式中,所述等距设置交通流检测器的相邻两个间距不大于300米。
在本发明的一种实施方式中,所述交通流数据包括:各断面交通流流量、密度、速度、排队长度以及占有率数据。
在本发明的一种实施方式中,所述步骤三还包括:从交警部门获取自交通流检测器安装以后该高速公路长距离下游瓶颈的历史交通拥堵数据,所述历史交通拥堵数据用于确定模糊自适应PID控制逻辑模糊规则;所述历史交通拥堵数据包括拥堵路段的流量、密度、速度以及占有率数据。
在本发明的一种实施方式中,还包括:通过模糊自适应PID控制***在参数kp,ki,kd和e(k),ec之间找到模糊逻辑规则,所述e(k)是是预期流量密度与实际流量密度之间的差值,ec是误差率,PID控制在运行期间连续检测e(k)和ec,使用实际流量密度ρ(k+1)作为PID控制***的输出,r(k)作为控制变量。
在本发明的一种实施方式中,通过在e、ec和kp、ki、kd之间建立模糊规则,使用模糊自适应控制器中的模糊推理来调整kp、ki、kd的值;调整过程中考虑kp、ki、kd在不同时间的变化,基于在线实时模糊自适应PID控制,通过计算e和ec来使用模糊逻辑规则。
在本发明的一种实施方式中,基于e和ec的范围,得到kp、ki、kd的增量变化,e和ec隶属度函数,分别被描述为较大负值(NB),中等负值(NM),较小负值(NS),零值(Z),较小正值(PS),中等正值(PM),较大正值(PB)。
在本发明的一种实施方式中,所述拐点确定方法如下:拐点前后三分钟以内,以该拐点为交点分别绘制的两条占有率斜累计曲线的线性拟合直线,使得斜累计曲线上偏离该两条直线的所有的占有率偏离值的总方差和最小。
在本发明的一种实施方式中,所述线性拟合直线以最小二乘法确定。
本发明所述方法应用于交通流量控制装置。
[有益效果]
在许多实际的高速公路场景中,距离入口匝道一定距离的下游可能存在上游、弯道、隧道、桥梁以及车道减少等现象,本发明是针对高速公路长距离下游瓶颈的入口匝道控制,对具有迟滞性、非线性、高阶大惯性的受控对象有良好的控制效果。
在高速公路上等距离设置多个交通流检测器,基于实时自动检测获取的高速公路各路段交通流数据,判断高速公路各路段拥堵情况,基于模糊自适应PID入口匝道控制策略,实时控制匝道进入主线的交通流量,对于缓解高速公路拥堵、提高通行效率、保障通行安全具有十分重要的现实意义。
附图说明
图1为实施例1的高速公路长距离下游瓶颈入口匝道控制流程图;
图2为实施例1的长距离下游瓶颈交通流检测器和入口匝道信号控制的设置方法示意图;
图3为实施例1的模糊自适应PID入口匝道控制器的结构图。
图4为实施例2的无控制情况下交通流示意图。
图5为实施例2的在模糊自适应PID入口匝道控制下交通流示意图。
具体实施方式
下面结合附图和实施例对本发明作进一步详细说明。
实施例1
如图1-3所示,本实施例提供一种针对高速公路长距离下游瓶颈路段入口匝道控制方法,包括以下几个步骤:
步骤一:设置交通流检测器,采集高速公路路段内的交通流数据,具体步骤为:
a1、在长距离下游瓶颈的高速公路上等距离设置交通流检测器,前后两个交通流检测器的间距不大于300米,按照从下游到上游的方向记录每个检测器的桩号;
a2、交通流检测器每30秒同时检测一次各断面交通流流量、密度、速度、排队长度以及占有率等数据,并且输出至控制平台;
a3、从交警部门获取自交通流检测器安装以后该高速公路长距离下游瓶颈的历史交通拥堵数据,拥堵路段的流量、密度、速度以及占有率等数据。
步骤二:模糊自适应PID入口匝道控制算法的搭建,具体步骤为:
a1、在高速公路长距离下游瓶颈的控制中,入口匝道的最优求解算法主要针对局部区域,因此选取反馈控制,是基于交通流检测器的测量值,保持高速公路交通状况接近预先的设定值;
a2、根据长距离下游瓶颈的迟滞性,选择可以适应非线性、迟滞性的模糊自适应PID控制,并将其运用至入口匝道控制策略;
a3、确定PID控制器的结构,将给定输入与实际输出的偏差的比例(P),积分(I)和微分(D)线性组合,然后通过组合的控制量来控制对象。
a4、确定模糊自适应PID控制器的控制策略,所述控制策略中,包括以下几个参数:μ是控制对象的控制变量,e是误差信号,ec是误差率,kp,ki,kd是PID参数。模糊自适应PID控制器在参数kp,ki,kd和e,ec之间找到模糊逻辑规则。它在运行期间连续检测e和ec,并使用PID的增量Δkp,Δki和Δkd作为控制器的输出,并将u输出到对象。在确定模糊逻辑规则时,还需要定义模糊集合:在从域U到[0,1]区间的任何图形映射到μA上,
μA:U→[0,1]
A是U的模糊子集,μA是A的隶属函数,μA(x)称为x与A的隶属关系。μA(x)表示集合U中的元素x属于模糊子集A的程度或水平。它可以在[0,1]闭合区间内连续获取值。μA(x)的值越接近1,则x属于A的程度越高;μA(x)越接近0,则属于A的程度越低。
a5、确定模糊自适应PID入口匝道控制的整体结构,***的输入信号为预期流量密度ρd(k),即rin(k)=ρd(k)。它的输出信号是实际流量密度ρ(k+1),yout(k+1)=ρ(k+1),***的控制变量为匝道调节率r(k)(即控制对象的控制变量μ),通过匝道调节率来控制匝道进入主线的交通流量,其中r(k)由以下公式确定:
Figure BDA0002705878020000041
其中kp、ki、kd分别为由模糊控制确定的参数,e(k)=rin-yout是误差信号。
预期交通密度ρd(k)是输入,而e是期望密度与实际密度之间的差值。e和ec的隶属度函数被描述为较大负值(NB),中等负值(NM),较小负值(NS),零值(Z),较小正值(PS),中等正值(PM),较大正值(PB)。模糊集的使用为处理模糊和不精确的概念提供了***的方法。特别是,模糊集可以用来表示语言变量。模糊逻辑规则的指定是基于专家经验,操作经验和***知识的;分别被描述为较大负值(NB),中等负值(NM),较小负值(NS),零值(Z),较小正值(PS),中等正值(PM),较大正值(PB)。kp,ki,kd的模糊逻辑规则如表一所示。
表一
Figure BDA0002705878020000051
a6、通过与交通流检测器数据平台的交互来实时调整入口匝道控制参数,从而为之后制定控制策略提供平台支撑。
步骤三:监测路段各断面的实时交通流数据,当相邻两桩号的交通流检测器对应的占有率斜累计曲线均出现拐点时,则高速公路路段出现拥堵排队现象;否则继续监测;
步骤四:步骤三中若出现拥堵排队现象,立刻反馈至控制平台,调整入口匝道控制器中的参数,从而输出匝道调节率,通过信号灯调节来控制匝道车辆进入主线的流量。
可选地,在Matlab中实现模糊自适应PID控制器的设计,利用模糊规则对PID控制器的参数Kp、Ki和Kd进行自适应整定。
实施例2
首先,在元胞传输模型中对本技术进行了实时仿真,首先使用真实高速公路上收集的环路检测器数据来校准元胞传输模型中的参数,从而使仿真结果接近实际情况。经过校准,元胞传输模型中自由流的速度为105千米/小时,拥堵密度为137辆/千米/车道,临界密度为16.63辆/千米/车道。
预期交通密度ρd(k)是输入,而e是期望密度与实际密度之间的差值。在实例中,拥堵密度为137辆/千米/车道。为了控制密度并简化计算,e和ec都选择-69至+69辆/千米/车道的值。e和ec的隶属度函数被描述为较大负值(NB),中等负值(NM),较小负值(NS),零值(Z),较小正值(PS),中等正值(PM),较大正值(PB)。
在基于入口匝道控制的模糊自适应PID控制中,通过在e、ec和kp、ki、kd之间建立模糊规则,使用模糊自适应控制器中的模糊推理来调整kp、ki、kd的值。调整过程应考虑kp、ki、kd在不同时间的变化,基于在线实时模糊自适应PID控制,可以通过计算当前***误差e和ec来使用模糊逻辑规则。
根据规则,基于e和ec的范围,可以得到kp、ki、kd的增量变化,介于-510到+510之间,它们的隶属度函数被描述为“NB”,“NM”,“NS”,“Z”,“PS”和”PB“。
拥堵情况通过占有率累计曲线来判定,基于k与k+1交通流检测器获取的占有率数据绘制曲线,拐点按照以下原则来确定:拐点前后三分钟以内,以该拐点为交点分别绘制的两条占有率斜累计曲线的线性拟合直线,使得斜累计曲线上偏离该两条直线的所有的占有率偏离值的总方差和最小,所述线性拟合直线以最小二乘法确定。
当拥堵出现时,反馈至模糊自适应PID入口匝道控制平台,根据e和ec的范围,确定kp、ki、kd每次增量的变化,调整迭代参数,计算匝道调节率,通过在入口匝道设置信号灯,控制匝道进入主线的交通流量。
在高速公路下游距离汇合处1.6千米处设置了车道减少,进行了2小时的仿真,仿真结果如图4-5所示。在无控制情况下出现了拥堵,而在模糊自适应PID入口匝道控制下交通流稳定运行。
本发明的保护范围并不仅局限于上述实施例,凡是在本发明构思的精神和原则之内,本领域的专业人员能够做出的任何修改、等同替换和改进等均应包含在本发明的保护范围之内。

Claims (10)

1.一种针对高速公路长距离下游瓶颈路段入口匝道控制方法,其特征在于:包括如下步骤:
步骤一:在长距离下游瓶颈的高速公路上等距离设置交通流检测器,按照从下游到上游的方向记录每个检测器的桩号,采集高速公路路段内的交通流数据,在匝道的一侧设有信号灯;
步骤二:基于交通流检测器采集的交通流量数据,选取反馈控制;根据长距离下游瓶颈的迟滞性,搭建模糊自适应PID控制***,获取交通流检测器采集高速公路路段内的交通流数据,输入至模糊自适应PID控制***;
步骤三:模糊自适应PID控制***的输入信号为k时刻的预期流量密度ρd(k),即输入信号rin(k)=ρd(k);***的输出信号是实际流量密度ρ(k+1),即输出信号yout(k+1)=ρ(k+1),***的控制变量为匝道调节率r(k),通过匝道调节率来控制匝道进入主线的交通流量,r(k)由以下公式确定:
Figure FDA0002705878010000011
其中kp、ki、kd分别为由模糊控制确定的参数,e(k)=rin(k)-yout(k+1)是误差信号,T为信号周期。
步骤四:通过交通流检测器监测路段各断面的实时交通流数据,当相邻两桩号的交通流检测器对应的占有率斜累计曲线均出现拐点时,则高速公路路段出现拥堵排队现象,模糊自适应PID控制***检测到占有率累计曲线出现拐点时,调整入口匝道控制器中的参数kp、ki、kd,从而输出匝道调节率,通过匝道的信号灯调节来控制匝道车辆进入主线的流量。
2.如权利要求1所述的方法,其特征在于,所述等距设置交通流检测器的相邻两个间距不大于300米。
3.如权利要求1所述的方法,其特征在于,所述交通流数据包括:各断面交通流流量、密度、速度、排队长度以及占有率数据。
4.如权利要求1所述的方法,其特征在于,所述步骤三还包括:从交警部门获取自交通流检测器安装以后该高速公路长距离下游瓶颈的历史交通拥堵数据,所述历史交通拥堵数据用于确定模糊自适应PID控制逻辑模糊规则;所述历史交通拥堵数据包括拥堵路段的流量、密度、速度以及占有率数据。
5.如权利要求1所述的方法,其特征在于,还包括:通过模糊自适应PID控制***在参数kp,ki,kd和e(k),ec之间找到模糊逻辑规则,所述e(k)是是预期流量密度与实际流量密度之间的差值,ec是误差率,PID控制在运行期间连续检测e(k)和ec,使用实际流量密度ρ(k+1)作为PID控制***的输出,r(k)作为控制变量。
6.如权利要求5所述的方法,其特征在于,通过在e、ec和kp、ki、kd之间建立模糊规则,使用模糊自适应控制器中的模糊推理来调整kp、ki、kd的值;调整过程中考虑kp、ki、kd在不同时间的变化,基于在线实时模糊自适应PID控制,通过计算e和ec来使用模糊逻辑规则。
7.如权利要求6所述的方法,其特征在于,基于e和ec的范围,得到kp、ki、kd的增量变化,e和ec隶属度函数,分别被描述为较大负值、中等负值、较小负值、零值、较小正值、中等正值、较大正值。
8.如权利要求1所述的方法,其特征在于,所述拐点确定方法如下:拐点前后三分钟以内,以该拐点为交点分别绘制的两条占有率斜累计曲线的线性拟合直线,使得斜累计曲线上偏离该两条直线的所有的占有率偏离值的总方差和最小。
9.如权利要求8所述的方法,其特征在于,所述线性拟合直线以最小二乘法确定。
10.权利要求1-9任一项所述的方法,其特征在于,所述方法应用于交通流量控制装置。
CN202011038572.0A 2020-09-28 2020-09-28 一种针对高速公路长距离下游瓶颈路段入口匝道控制方法 Pending CN112150813A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011038572.0A CN112150813A (zh) 2020-09-28 2020-09-28 一种针对高速公路长距离下游瓶颈路段入口匝道控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011038572.0A CN112150813A (zh) 2020-09-28 2020-09-28 一种针对高速公路长距离下游瓶颈路段入口匝道控制方法

Publications (1)

Publication Number Publication Date
CN112150813A true CN112150813A (zh) 2020-12-29

Family

ID=73894871

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011038572.0A Pending CN112150813A (zh) 2020-09-28 2020-09-28 一种针对高速公路长距离下游瓶颈路段入口匝道控制方法

Country Status (1)

Country Link
CN (1) CN112150813A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101299298A (zh) * 2008-06-30 2008-11-05 上海电科智能***股份有限公司 一种道路自适应入口匝道汇入控制设备与方法
JP2009037337A (ja) * 2007-07-31 2009-02-19 Mitsubishi Heavy Ind Ltd 交通状態表示装置
CN101789183A (zh) * 2010-02-10 2010-07-28 北方工业大学 一种入口匝道的自适应控制***及方法
CN103927887A (zh) * 2014-03-18 2014-07-16 西北工业大学 结合离散速度模型的阵列式fpga交通状态预测及控制***
CN108510758A (zh) * 2018-05-24 2018-09-07 金陵科技学院 基于视频实时信息的城市快速路入口匝道信号控制方法
CN109410599A (zh) * 2017-08-17 2019-03-01 南京洛普股份有限公司 一种交通事件下高速公路匝道的协调诱控方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009037337A (ja) * 2007-07-31 2009-02-19 Mitsubishi Heavy Ind Ltd 交通状態表示装置
CN101299298A (zh) * 2008-06-30 2008-11-05 上海电科智能***股份有限公司 一种道路自适应入口匝道汇入控制设备与方法
CN101789183A (zh) * 2010-02-10 2010-07-28 北方工业大学 一种入口匝道的自适应控制***及方法
CN103927887A (zh) * 2014-03-18 2014-07-16 西北工业大学 结合离散速度模型的阵列式fpga交通状态预测及控制***
CN109410599A (zh) * 2017-08-17 2019-03-01 南京洛普股份有限公司 一种交通事件下高速公路匝道的协调诱控方法
CN108510758A (zh) * 2018-05-24 2018-09-07 金陵科技学院 基于视频实时信息的城市快速路入口匝道信号控制方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
刘祥鹏: "快速路交通入口匝道的智能学习控制方法", 《中国优秀硕士学位论文全文数据库工程科技Ⅱ辑》 *
姜涛: "高速公路入口匝道控制研究", 《中国优秀硕士学位论文全文数据库工程科技Ⅱ辑》 *

Similar Documents

Publication Publication Date Title
CN112498366B (zh) 自动驾驶车辆、控制方法、装置、设备及存储介质
Chen et al. Freeway ramp control using fuzzy set theory for inexact reasoning
CN103927887B (zh) 结合离散速度模型的阵列式fpga交通状态预测及控制***
CN105023433B (zh) 一种高速公路交通异常事件影响范围预估方法
CN113591269B (zh) 基于交通仿真的拥堵路段智能网联车辆专用道控制方法
CN105913675A (zh) 一种同时面向通行效率改善与交通安全提升的多目标可变限速控制方法
Kotsialos et al. Optimal coordinated ramp metering with advanced motorway optimal control
CN109410599B (zh) 一种交通事件下高速公路匝道的协调诱控方法
Abuamer et al. Local ramp metering strategy ALINEA: microscopic simulation based evaluation study on Istanbul freeways
CN103150894B (zh) 消除交通拥堵的高速公路主线收费站通过流量控制方法
CN113744527A (zh) 一种面向高速公路合流区的智能靶向疏堵方法
CN111815953B (zh) 一种面向交通事件的高速公路交通管控效果评价方法
CN102819956B (zh) 一种基于单截面环形线圈检测器的道路交通事件检测方法
CN115063990A (zh) 一种混合交通流环境高速公路瓶颈路段动态限速控制方法
Suh et al. Vehicle speed prediction for connected and autonomous vehicles using communication and perception
Lu et al. Novel algorithm for variable speed limits and advisories for a freeway corridor with multiple bottlenecks
CN112373487A (zh) 自动驾驶车辆、控制方法、装置、设备及存储介质
Gregurić et al. The use of cooperative approach in ramp metering
CN112150813A (zh) 一种针对高速公路长距离下游瓶颈路段入口匝道控制方法
CN114913684B (zh) 一种融合多模型与数据驱动的瓶颈路段交通流控制方法
JPH0714093A (ja) 交通信号制御方法
Ozbay et al. Comprehensive evaluation of feedback-based freeway ramp-metering strategy by using microscopic simulation: Taking ramp queues into account
CN116110218A (zh) 一种特长隧道交通事故拥堵排队动态预测及控制方法
JP3473478B2 (ja) 流入ランプ制御装置および流入ランプ制御方法
Greguric et al. A neuro-fuzzy based approach to cooperative ramp metering

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20201229

RJ01 Rejection of invention patent application after publication