CN112126610A - Engineering bacterium for producing hydroxytyrosol - Google Patents

Engineering bacterium for producing hydroxytyrosol Download PDF

Info

Publication number
CN112126610A
CN112126610A CN201910554741.7A CN201910554741A CN112126610A CN 112126610 A CN112126610 A CN 112126610A CN 201910554741 A CN201910554741 A CN 201910554741A CN 112126610 A CN112126610 A CN 112126610A
Authority
CN
China
Prior art keywords
engineered bacterium
hydroxytyrosol
derived
dehydrogenase
tyrosol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910554741.7A
Other languages
Chinese (zh)
Inventor
赵华
张婷
宋田青
蒋发现
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fengyang Biological Research And Development Nanjing Co ltd
Original Assignee
Fengyang Biological Research And Development Nanjing Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fengyang Biological Research And Development Nanjing Co ltd filed Critical Fengyang Biological Research And Development Nanjing Co ltd
Priority to CN201910554741.7A priority Critical patent/CN112126610A/en
Priority to PCT/CN2020/098056 priority patent/WO2020259569A1/en
Publication of CN112126610A publication Critical patent/CN112126610A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0055Oxidoreductases (1.) acting on diphenols and related substances as donors (1.10)
    • C12N9/0057Oxidoreductases (1.) acting on diphenols and related substances as donors (1.10) with oxygen as acceptor (1.10.3)
    • C12N9/0059Catechol oxidase (1.10.3.1), i.e. tyrosinase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/22Preparation of oxygen-containing organic compounds containing a hydroxy group aromatic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y110/00Oxidoreductases acting on diphenols and related substances as donors (1.10)
    • C12Y110/03Oxidoreductases acting on diphenols and related substances as donors (1.10) with an oxygen as acceptor (1.10.3)
    • C12Y110/03001Catechol oxidase (1.10.3.1), i.e. tyrosinase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y114/00Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
    • C12Y114/14Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14) with reduced flavin or flavoprotein as one donor, and incorporation of one atom of oxygen (1.14.14)
    • C12Y114/140094-Hydroxyphenylacetate 3-monooxygenase (1.14.14.9)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention discloses an engineering bacterium for producing hydroxytyrosol, which simultaneously expresses hydroxylase catalyzing tyrosol to generate hydroxytyrosol and NAD+Coenzyme for generating NADH is reduced, and a NAD coenzyme cyclic regeneration system is constructed. The engineering bacteria are used for producing the hydroxytyrosol by taking the tyrosol as a substrate, the process and the extraction method are simple, the product is single, the yield and the productivity are obviously improved, and the engineering bacteria have good industrial application prospect.

Description

Engineering bacterium for producing hydroxytyrosol
Technical Field
The invention belongs to the technical field of bioengineering, and particularly relates to an engineering bacterium for producing hydroxytyrosol.
Background
Hydroxytyrosol (HT), a chinese alias: 3, 4-dihydroxyphenethyl alcohol. The molecular formula is as follows: c8H10O3Molecular weight: 154.1632.
hydroxytyrosol is a natural polyphenol compound with fat solubility, water solubility and biological activity, and is mainly in the form of esterified oleuropein which exists in each part of olive, and free hydroxytyrosol can be obtained after oleuropein is hydrolyzed. The research shows that: hydroxytyrosol is the strongest natural antioxidant discovered so far, has great benefits for human health, such as activities of cancer chemoprevention, atherosclerosis resistance, DNA oxidative damage inhibition, skin photodamage protection, anti-inflammation and the like, and is deeply valued by the biological and medical fields in recent years. Capsules, tablets and powder products of hydroxytyrosol have been made abroad one after another.
At present, hydroxytyrosol is mainly obtained by a plant extraction method and a chemical synthesis method. The chemical synthesis of hydroxytyrosol has the advantages of low degradation yield, complex reaction process, expensive catalyst, high toxicity of chemical reagents and serious environmental pollution, and is not suitable for industrial production. At present, hydroxytyrosol used in food additives and health care products in the market is mainly obtained by a plant extraction method, for example, the Chinese invention patent application CN20161083391.5 discloses an olive leaf hydroxytyrosol extraction method, and the Chinese invention patent application CN201710195462.7 discloses a method for extracting hydroxytyrosol from olive leaves, but the plant extraction is limited by plant resources and content, so that the price is high, and the large-scale application cannot be realized. Compared with the method for obtaining hydroxytyrosol by plant extraction and chemical synthesis, the method for synthesizing hydroxytyrosol by using a biological method has the advantages of stability, safety, no pollution, low cost and the like. Therefore, the biosynthesis of hydroxytyrosol has been widely focused by constructing a completely new biosynthesis pathway in engineered microorganisms using synthetic biology techniques.
The production of hydroxytyrosol by microbiological methods has been partially reported. Chinese patent application CN201510242626.8 discloses a monooxygenase gene cluster HpaBC from Escherichia coli over-expressed in Escherichia coli, which takes glucose as a substrate to synthesize hydroxytyrosol from the beginning, and the final yield of the hydroxytyrosol is 349.05mg/L and is only 0.017mol/mol due to the toxicity of the hydroxytyrosol to the gene.
Satoh Y, et al, 2012,14(6) proposed the Metabolic synthesis of hydroxytyrosol from tyrosine as a substrate under the combined action of tyrosine hydroxylase, L-dopa decarboxylase and tyramine oxidase (Engineering of L-tyrosine oxidation in Escherichia coli and microbial production of hydroxybutanols [ J ]. Metabolic Engineering, 2012). In this method, 1mM tyrosine (0.18g/L) produced only 0.19mM (0.029g/L) hydroxytyrosol, with a yield of 19%; 1mM L-DOPA (0.19g/L) produced only 0.74mM (0.11g/L) hydroxytyrosol, with a yield of 74%. And the key genes expressed in the escherichia coli host bacteria are mainly from mice and people, and the situation that heterologous host expression is incompatible exists, so that the utilization rate of the substrate is low, and industrial production is difficult to realize.
Chinese patent application CN107586794A discloses a method for producing tyrosol or hydroxytyrosol by escherichia coli heterometabolism. The scheme expresses Aminotransferase (amino transferase), ketoacid decarboxylase (ketoacid decarboxylase) and Alcohol dehydrogenase (Alcohol dehydrogenase) in a host efficiently to produce tyrosol, and then produces hydroxytyrosol under the action of 4-hydroxyphenylacetic acid hydroxylase. The scheme has the disadvantages that the yield of hydroxytyrosol can reach 1243 +/-165 mg/L (8mM) when 6g/L (33mM) tyrosine is taken as a substrate, the yield is only 0.24mol/mol, the scheme needs to add a plurality of expensive coenzyme pyridoxal phosphate (PLP) and reduced coenzyme I (NADH), the efficiency of adding hydroxyl on a benzene ring is obviously reduced, the yield of hydroxytyrosol is low, and the intermediate metabolite tyrosol is accumulated in a large quantity.
Based on the defects of the existing methods, the research of an engineering bacterium capable of industrially producing hydroxytyrosol is especially necessary.
Disclosure of Invention
The invention provides an engineering bacterium for producing hydroxytyrosol, which can produce high-yield and high-yield hydroxytyrosol and has a good industrial application prospect.
In order to realize the purpose of the invention, the invention adopts the following technical scheme to realize:
the invention provides an engineering bacterium for producing hydroxytyrosol, which expresses hydroxylase catalyzing tyrosol to generate hydroxytyrosol and NAD+Reducing the coenzyme to NADH.
In some embodiments of the invention, the hydroxylase that catalyzes the production of hydroxytyrosol from tyrosol is tyrosinase or 4-hydroxyphenylacetate 3-monooxygenase (HpaBC).
In some embodiments of the invention, the hydroxylase that catalyzes the production of hydroxytyrosol from tyrosol is tyrosinase.
In some embodiments of the invention, the tyrosinase is derived from stenotrophomonas maltophilia (smtyrosinase), Bacillus megaterium (bmystinase), Bacillus thuringiensis (bttyrosinase), Bacillus endophyticus (betapyronase), bifidobacterium Diplocarpon rosae (drtyrosinase), or ralstonia solanacearum (rstenylase).
In some embodiments of the invention, the amino acid sequence of the betanin ase is accession No. WP _063592733.1 on NCBI.
In some embodiments of the invention, the drtyrosinase has the amino acid sequence access No. PBP28426.1 on NCBI.
In some embodiments of the invention the amino acid sequence of smtyrosinase is ACCESSION NO. AAC16658.1 on NCBI and the nucleotide sequence encoding smtyrosinase is SEQ ID NO. 5.
In some embodiments of the invention, the amino acid sequence of the bmtyrosinase is ACC86108.1 at NCBI and the nucleotide sequence encoding bmtyrosinase is SEQ ID NO. 4.
In some embodiments of the invention, the amino acid sequence of the bttyrosinase is AAR88107.1 on NCBI and the nucleotide sequence encoding the bttyrosinase is SEQ ID NO 6.
In some embodiments of the invention, the amino acid sequence of rstyrrosinase is accession No. AFR68815.1 at NCBI and the nucleotide sequence encoding rstyrrosinase is SEQ ID NO 7.
In some embodiments of the invention, the hydroxylase that catalyzes the production of hydroxytyrosol from tyrosol is HpaBC, HpaBC and NAD+The coenzyme reduced to NADH constitutes a NAD coenzyme cyclic regeneration system.
In some embodiments of the invention, the HpaBC is derived from escherichia coli BL21(DE3) (ecHpaBC) or Pseudomonas aeruginosa BAR65782 (paHpaBC).
In some embodiments of the invention, the nucleotide sequence derived from echpaBC is accession No. NC-012892 REGION:4498782..4500874 at NCBI; the nucleotide sequence derived from paHpaBC is SEQ ID NO: 3.
in some embodiments of the invention, the hydroxylase catalyzing the production of hydroxytyrosol from tyrosol is derived from a natural or protein engineered microorganism, e.g. from a bacterium or a fungus.
In some embodiments of the invention, the NAD is+The coenzyme which is reduced to NADH is Formate Dehydrogenase (FDH), Alcohol Dehydrogenase (ADH), Glucose Dehydrogenase (GDH) or Phosphite Dehydrogenase (PDH).
In some embodiments of the invention, the NAD is+The coenzyme which is reduced to NADH is Formate Dehydrogenase (FDH) or Alcohol Dehydrogenase (ADH).
In some embodiments of the invention, the NAD is+The coenzyme which is reduced to NADH is Formate Dehydrogenase (FDH).
In some embodiments of the invention, the FDH is derived from Candida boidinii (CbFDH), Saccharomyces cerevisiae (ScFDH) or Mycobacterium Intracellulare (MiFDH).
In some embodiments of the invention, the amino acid sequence of CbFDH is accession No. AF004096 at NCBI and the nucleotide sequence encoding CbFDH is SEQ ID NO 9.
In some embodiments of the invention, the amino acid sequence of ScFDH is accession No. NM-001183808.1 at NCBI and the nucleotide sequence encoding ScFDH is SEQ ID NO. 8.
In some embodiments of the invention, the amino acid sequence of the MiFDH is accession No. WP-009957650 at NCBI and the nucleotide sequence encoding MiFDH is SEQ ID NO. 10.
In some embodiments of the invention, the NAD is+The coenzyme which is reduced to NADH is Alcohol Dehydrogenase (ADH)
In some embodiments of the invention, the ADH is derived from Lactobacillus brevis (LbADH).
In some embodiments of the invention, the amino acid sequence of the LbADH is accession No. WP _107696682 on NCBI, and the nucleotide sequence encoding the LbADH is SEQ ID NO. 11.
In a further aspect, the present invention provides an engineered bacterium for the production of hydroxytyrosol, which is obtained by transforming the plasmid pETDuet-1, which carries the hydroxylase gene catalyzing tyrosol to hydroxytyrosol and NAD, into the host Escherichia coli BL21(DE3)+Coenzyme gene for generating NADH by reduction.
In some embodiments of the invention, the genes on E.coli BL21(DE3) that break down phenolic compounds are knocked out.
In some embodiments of the invention, the genes that decompose phenolic compounds are hpaD and/or hpaE.
In some embodiments of the invention, the genes that decompose phenolic compounds are hpaD and hpaE.
In some embodiments of the invention, the hpaD has an amino acid sequence accession NO at the NCBI of: ACT 46009.1; the amino acid sequence access NO on the NCBI of the hpaE is: ACT 46010.1.
In some embodiments of the invention, the hydroxylase that catalyzes the production of hydroxytyrosol from tyrosol is tyrosinase or 4-hydroxyphenylacetate 3-monooxygenase (HpaBC).
In some embodiments of the invention, the hydroxylase that catalyzes the production of hydroxytyrosol from tyrosol is tyrosinase.
In some embodiments of the invention, the tyrosinase is derived from Stenotrophomonas maltophilia (smtyrosinase), Bacillus megaterium (bmystinase), Bacillus thuringiensis (bttyrosinase), Bacillus endophyticus (betapyranose), bifidobacterium diplocarpus roseus (drtyrosinase) or Ralstonia solanacearum (rstyrosinase).
In some embodiments of the invention, the amino acid sequence of the betanin ase is accession No. WP _063592733.1 on NCBI.
In some embodiments of the invention, the drtyrosinase has the amino acid sequence access No. PBP28426.1 on NCBI.
In some embodiments of the invention the amino acid sequence of smtyrosinase is ACCESSION NO. AAC16658.1 on NCBI and the nucleotide sequence encoding smtyrosinase is SEQ ID NO. 5.
In some embodiments of the invention, the amino acid sequence of the bmtyrosinase is ACC86108.1 at NCBI and the nucleotide sequence encoding bmtyrosinase is SEQ ID NO. 4.
In some embodiments of the invention, the amino acid sequence of the bttyrosinase is AAR88107.1 on NCBI and the nucleotide sequence encoding the bttyrosinase is SEQ ID NO 6.
In some embodiments of the invention, the amino acid sequence of rstyrrosinase is accession No. AFR68815.1 at NCBI and the nucleotide sequence encoding rstyrrosinase is SEQ ID NO 7.
In some embodiments of the invention, the hydroxylase that catalyzes the production of hydroxytyrosol from tyrosol is HpaBC, HpaBC and NAD+The coenzyme reduced to NADH constitutes a NAD coenzyme cyclic regeneration system.
In some embodiments of the invention, the HpaBC is derived from escherichia coli BL21(DE3) (ecHpaBC) or Pseudomonas aeruginosa BAR65782 (paHpaBC).
In some embodiments of the invention, the nucleotide sequence derived from echpaBC is accession No. NC-012892 REGION:4498782..4500874 at NCBI; the nucleotide sequence derived from paHpaBC is SEQ ID NO: 3.
in some embodiments of the invention, the hydroxylase catalyzing the production of hydroxytyrosol from tyrosol is derived from a natural or protein engineered microorganism, e.g. from a bacterium or a fungus.
In some embodiments of the invention, the NAD is+Reduction to NADHThe enzyme is Formate Dehydrogenase (FDH), Alcohol Dehydrogenase (ADH), Glucose Dehydrogenase (GDH), or Phosphite Dehydrogenase (PDH).
In some embodiments of the invention, the NAD is+The coenzyme which is reduced to NADH is Formate Dehydrogenase (FDH) or Alcohol Dehydrogenase (ADH).
In some embodiments of the invention, the NAD is+The coenzyme which is reduced to NADH is Formate Dehydrogenase (FDH).
In some embodiments of the invention, the FDH is derived from Candida boidinii (CbFDH), Saccharomyces cerevisiae (ScFDH) or Mycobacterium Intracellulare (MiFDH).
In some embodiments of the invention, the amino acid sequence of CbFDH is accession No. AF004096 at NCBI and the nucleotide sequence encoding CbFDH is SEQ ID NO 9.
In some embodiments of the invention, the amino acid sequence of ScFDH is accession No. NM-001183808.1 at NCBI and the nucleotide sequence encoding ScFDH is SEQ ID NO. 8.
In some embodiments of the invention, the amino acid sequence of the MiFDH is accession No. WP-009957650 at NCBI and the nucleotide sequence encoding MiFDH is SEQ ID NO. 10.
In some embodiments of the invention, the NAD is+The coenzyme which is reduced to NADH is Alcohol Dehydrogenase (ADH)
In some embodiments of the invention, the ADH is derived from Lactobacillus brevis (LbADH).
In some embodiments of the invention, the amino acid sequence of the LbADH is accession No. WP _107696682 on NCBI, and the nucleotide sequence encoding the LbADH is SEQ ID NO. 11.
The term "OD 600" refers to the absorbance of a solution at a wavelength of 600 nm.
The term "yield" refers to the ratio of the yield of the target product (hydroxytyrosol) actually obtained by consuming a unit amount of substrate (tyrosol) to the theoretically calculated yield of the target product in the catalytic process. For example: consumption of 1mM tyrosol would theoretically yield 1mM hydroxytyrosol, and actual yield of 0.6mM hydroxytyrosol would yield 0.6mM/1mM, i.e. 0.6 mol/mol.
The invention has the beneficial effects that:
the invention provides an engineering bacterium for producing hydroxytyrosol, which simultaneously expresses hydroxylase catalyzing tyrosol to generate hydroxytyrosol and NAD+Coenzyme for generating NADH is reduced, and a NAD coenzyme cyclic regeneration system is constructed. Furthermore, the genes related to the decomposition of phenolic compounds on host Escherichia coli are knocked out. The engineering bacteria of the invention are used for producing hydroxytyrosol by taking tyrosol as a substrate, the process is simple, the product is single, the yield and the productivity are obviously improved, the industrial production is promoted, and the extraction method is simple and has good industrial application prospect.
Detailed Description
1. The invention relates to a strain and a plasmid
pETDuet-1 plasmid, Escherichia coli BL21(DE3), Escherichia coli DH 5. alpha. from Novagen.
2. Selection of enzymes
(1) Selection of tyrosol hydroxylase (hydroxylase catalyzing tyrosol to hydroxytyrosol)
Various sources of tyrosinase, as well as various sources of HpaBC enzyme (4-hydroxyphenylacetate 3hydroxylase), were selected herein. The selected tyrosinases are derived from Stenotrophomonas maltophilia (smtyrosinase), Bacillus megaterium (bmtyrosinase), Bacillus thuringiensis (bttyrosinase) and Ralstonia solanacearum (rstyrosinase), respectively; the HpaBC selected were derived from E.coli BL21(DE3) (echpaBC) and Pseudomonas aeruginosa BAR65782(paHpaBC), respectively.
(2) Reducible NAD+Selection of coenzymes
Need to consume NADH in the reduction process of tyrosol hydroxylase and enhance the expression of Escherichia coli NAD+The key enzyme of the synthetic pathway can improve the intracellular NADH level and is beneficial to the synthesis of the hydroxytyrosol. The genes selected were FDH and ADH. NCBIThe amino acid sequence of (A) is: AF004096, NM-001183808.1, WP-009957650, WP-107696682.
3. Construction of Co-expression System and culture of cells
The tyrosol hydroxylase and reducible NAD selected above+Coenzymes, from which one enzyme is selected, are co-expressed. Co-expression of the Dual Gene, pETDuet-1 loaded with tyrosol hydroxylase and reducible NAD, Using pETDuet-1 plasmid+The gene is transferred into Escherichia coli BL21(DE3) competent cells at the same time, and a positive transformant is obtained by screening Ampicillin (Ampicillin) -containing resistant plates, so that the recombinant Escherichia coli is obtained.
And (3) culturing the cells: according to the classical recombinant Escherichia coli culture and induced expression scheme, the recombinant Escherichia coli is transferred into TB culture medium (10 g/L peptone and 5g/L, NaCl 10g/L yeast powder) according to the volume ratio of 1%, when the OD600 of the cells reaches 0.6-0.8, isopropyl-beta-D-thiogalactopyranoside (IPTG) with the final concentration of 0.2mM is added, and the induced expression culture is carried out for 18h at 18 ℃. After the induction expression was completed, the cells were collected by centrifugation at 8000rpm for 20min at 4 ℃.
4. Cell catalytic synthesis of hydroxytyrosol compounds
The cell catalytic system is as follows: the tyrosol concentration is 0.5-50g/L, the optional coenzyme substrate concentration is 0.5-50g/L, the pH is adjusted to be 4.0-8.0, the thallus OD600 is 10-600, and the conversion is carried out for 0.5-60h at the temperature of 15-40 ℃. And (3) measuring the yield of the hydroxytyrosol by liquid chromatography after the conversion is finished.
5. Detection analysis of samples
Quantitative analysis of hydroxytyrosol: the conversion solution is detected and analyzed by an Agilent 1260 high performance liquid chromatograph under the chromatographic conditions that: the mobile phase was 0.1% formic acid water and methanol, using an Agilent C18 column (Agilent Polaris C18-A4.6X 100mm,3.5 μm), with a flow rate of 0.8mL/min, a column temperature of 35 ℃, a sample size of 5 μ L, and a detection wavelength of 280 nm.
The present invention will be described in detail with reference to examples. It should be noted that the specific embodiments described herein are only for explaining the present invention and are not used to limit the present invention.
Example 1 plasmid construction
(1) Synthesis of primers
Primers were designed for PCR amplification.
Primer name Primer 5 '-3' Sequence numbering
ecHpaBC-F gatgaaaccagaagatttccgcg SEQ ID NO:1
ecHpaBC-R ttaaatcgcagcttccatttccagcacta SEQ ID NO:2
(2) PCR amplification
Genomic DNA of a wild strain in the logarithmic growth phase was extracted according to the instruction manual of Genomic DNA Purification Kit of Takara, and PCR amplification was carried out using the primers shown in Table 1 and the genome extracted from the corresponding strain as a template. The amplification system is as follows: prime STARHS DNA Polymerase (2.5U/. mu.L) 0.5. mu.L, 10 XPrime STAR Buffer 10. mu.L, dNTP mix (2.5mM each) 4. mu.L, template DNA 1. mu. L, Up primer (20. mu.M) 1. mu. L, Down primer (20. mu.M) 1. mu. L, ddH2O make up to 50. mu.L. The amplification procedure was: 15sec at 98 ℃; 98 ℃ for 10 sec; 55 ℃ for 30 sec; 30 cycles at 72 ℃ for 2 min; 72 ℃ for 10 min. The PCR product was subjected to gene sequencing by Biotech Ltd, Kingkunshire, Nanjing.
4 tyrosinase from different sources and 2 HpaBC enzymes from different sources are selected, wherein the echHpaBC from escherichia coli is not subjected to codon optimization, and in addition, 5 genes are optimized according to the codon preference of the escherichia coli by using JCAT online codon optimization software (http// www.jcat.de) in combination with an OPTIMIZER online codon optimization tool (http:// genes. uv. es/OPTIMIZER /), so as to design a tyrosinase gene and a paHpaBC gene.
The optimized gene sequence numbers are as follows:
name of Gene Sequence numbering
paHpaBC SEQ ID NO:3
bmtyrosinase SEQ ID NO:4
smtyrosinase SEQ ID NO:5
bttyrosinase SEQ ID NO:6
rstyrosinase SEQ ID NO:7
The key genes, formate dehydrogenase and alcohol dehydrogenase genes, are preferably transformed based on a cofactor regeneration system, and the codon preference is optimized in E.coli using JCAT online codon optimization software (http:// www.jcat.de) in combination with the OPTIMIZER online codon optimization tool (http:// genes. urv. es/OPTIMIZER /), to design full-length FDH and ADH genes. The optimized gene sequence numbers are as follows:
name of Gene Sequence numbering
ScFDH SEQ ID NO:8
CbFDH SEQ ID NO:9
MiFDH SEQ ID NO:10
LbADH SEQ ID NO:11
(3) Construction of pETDuet-1 monogene plasmid
The pETDuet-1 plasmid, HpaBC genes from 2 sources and tyrosinase products from 4 sources are placed in a water bath condition at 37 ℃ for enzyme digestion for 1 h. The enzyme cutting system is as follows: 10 Xcut buffer 5. mu.L, DNA 10. mu.L, restriction enzyme SacI and restriction enzyme SalI each 1. mu.L, sterile water 33. mu.L. Then respectively recovering enzyme digestion products, connecting the enzyme digestion products for 12h-16h in a water bath at the temperature of 16 ℃, and carrying out enzyme digestion connection on pETDuet and rstyrosine, bmtyrosinase, smtyrosinase, bttyrosinase, paHpaBC and echPaBC respectively, wherein the connecting body is as follows: 10 XDNA ligase buffer 2.5. mu.L, DNA fragment 8. mu.L, vector DNA 2. mu.L, T4DNA ligase 1. mu.L, sterile water 11.5. mu.L for a total of 25. mu.L. The following recombinant plasmids were obtained: pETDuet-rstyrrosinase, pETDuet-bmtyrosinase, pETDuet-smtyrosinase, pETDuet-bttyrosinase, pETDuet-echPaBC, and pETDuet-paHpaBC.
EXAMPLE 2 screening of tyrosol hydroxylase
A variety of recombinant engineered bacteria containing tyrosol hydroxylase genes were obtained from example 1 and expressed in Escherichia coli BL21(DE 3). The induction expression method comprises the following steps: transferring the recombinant Escherichia coli into TB fermentation medium at a volume ratio of 1%, adding isopropyl-beta-D-thiogalactopyranoside (IPTG) with a final concentration of 0.2mM when the OD600 of the cells reaches 0.6-0.8, and performing induced expression culture at 18 ℃ for 12 h. After the induction expression was completed, the cells were collected by centrifugation at 8000rpm for 20min at 20 ℃. The recombinant strains were compared for catalysis by the addition of the 10mM substrate tyrosol, as shown in Table 1.
Table 1: comparing the catalytic behavior of tyrosol hydroxylase from different sources
Figure BDA0002106556320000071
Figure BDA0002106556320000081
As can be seen from Table 1, the host strain containing the HpaBC gene of E.coli (pETDuet-echHpaBC) exhibited the best catalytic effect.
Example 3 Gene knockout
According to the literature Multigene Editing in the Escherichia coli Genome via the CRISPR-Cas9System [ J ]. Appl Environ Microbiol, 2016, 82 (12): 3693 the hpaD and hpaE were knocked out by the method described in Escherichia coli BL21(DE3) using the primers shown in Table 2. The plasmid for gene knockout is pCasRed, pCRISPR-gDNA (hpaED sgRNA) and a homology arm (hpaED donor) are introduced into Escherichia coli BL21(DE3), Cas9/sgRNA induces double strand breaks of a host at hpaD and hpaE gene sites, recombinase Red integrates the hpaED donor to the hpaD and hpaE genes, gene knockout is realized, and sequencing verification is carried out.
Table 2: PCR primer
Figure BDA0002106556320000082
A solution of pH 6.5 was prepared, 30mM tyrosol was added, OD600 was 20, and catalysis was carried out at 30 ℃ for 48 hours. The hydroxytyrosol was measured by liquid chromatography after the completion of the conversion, and the amounts of produced hydroxytyrosol before and after the removal of Escherichia coli HpaE and HpaD in the reaction system are shown in Table 3.
Table 3: hydroxytyrosol yield before and after knocking out HpaE and HpaD
Figure BDA0002106556320000083
As can be seen from Table 3, after the HpaE and HpaD are knocked out, the yield of hydroxytyrosol is improved by 43.7%, and the yield is improved by 55.2%.
Also, Table 3 shows that tyrosol is not completely consumed by the addition of 30mM tyrosol, mainly due to the catalytic process consuming the intracellular cofactor NADH to NAD+In the absence of NADH regeneration, the catalytic reaction is difficult to continue, i.e.higher concentrations of substrate are not consumed. Thus, if a catalytic reaction at a higher substrate concentration is to be achieved, it is necessary to provide the cofactor NADH required for the catalytic reaction continuously in the cell, which can be achieved by introducing a cofactor-regenerating enzyme, i.e.NAD+Reducing to NADH.
Example 4 reducible NAD+Coenzyme selection and high yield hydroxytyrosol production
The pETDuet-echPaBC plasmid and the recovered products of MiFDH, CbFDH, ScFDH and LbADH in the step (2) of example 1 were subjected to double digestion for 1h in a water bath at 37 ℃. The enzyme cutting system is as follows: 10 Xcut buffer 5. mu.L, DNA 10. mu.L, restriction enzymes Nde I and Xho I each 1. mu.L, sterile water 33. mu.L. Then respectively recovering enzyme digestion products, connecting for 12h-16h in water bath at 16 ℃, and carrying out enzyme digestion connection on pETDuet-echPaBC and MiFDH, CbFDH, ScFDH and LbADH respectively, wherein the connecting body is as follows: 10 XDNA ligase buffer 2.5. mu.L, DNA fragment 8. mu.L, vector DNA 2. mu.L, T4DNA ligase 1. mu.L, sterile water 11.5. mu.L for a total of 25. mu.L.
Subsequently, 25. mu.L of the ligation solution was transferred to 100. mu.L of DH 5. alpha. competent cells and ice-cooled for 30 min. Placing into preheated 42 deg.C water bath, standing for 90s for heat shock treatment, and immediately ice-cooling for 2 min. 1mL of LB medium containing no antibiotic was added and cultured at 37 ℃ for 1 hour to recover the cells. And finally, uniformly coating the cells containing the pETDuet-1 recombinant plasmid on an LB (Langmuir-Blodgett) plate containing ampicillin, selecting a single colony for culturing for 12h, then extracting the plasmid, verifying whether the plasmid is correct by double enzyme digestion, simultaneously carrying out gene sequencing to ensure the accuracy of the plasmid, and finally storing a correct transformant to obtain the following plasmids: recombinant plasmids pETDuet-echPaBC-MiFDH, pETDuet-echPaBC-CbFDH, pETDuet-echPaBC-ScFDH and pETDuet-echPaBC-LbADH containing tyrosol hydroxylation gene.
The 4 recombinant plasmids were expressed in Escherichia coli BL21(DE3) after HpaE and HpaD knockout. The induction expression method comprises the following steps: the recombinant Escherichia coli is transferred into TB culture medium according to the volume ratio of 1%, when the OD600 of the cells reaches 0.6-0.8, isopropyl-beta-D-thiogalactopyranoside (IPTG) with the final concentration of 0.2mM is added, and the cells are induced to express and cultured for 8h at the temperature of 30 ℃. After the induction expression was completed, the cells were collected by centrifugation at 30 ℃ and 8000rpm for 20 min. 120mM (16.5g/L) tyrosol and 120mM (7.56g/L) ammonium formate were added and catalyzed for 48 hours, and hydroxytyrosol was measured by liquid chromatography after the conversion was completed, comparing the catalysis of the above 4 engineering strains in shake flasks, as shown in Table 4.
Table 4: comparison of catalytic results under different coenzyme conditions
Figure BDA0002106556320000091
Figure BDA0002106556320000101
As can be seen from the table, the yield and the yield of hydroxytyrosol are improved after the coenzyme is added, particularly under the condition that the concentration of the hydroxytyrosol is kept at the same high concentration, the consumption of the tyrosol by adding the coenzymes ScFDH and MiFDH is higher, the produced hydroxytyrosol is also higher, particularly when the coenzyme MiFDH is added, 15.1g/L of hydroxytyrosol is produced, the yield reaches 0.99mol/mol and is far beyond the yield and the yield of the hydroxytyrosol reported in the prior art.
Sequence information
SEQ ID NO:1ecHpaBC-F
atgaaaccagaagatttccgcg
SEQ ID NO:2ecHpaBC-R
ttaaatcgcagcttccatttccagcatca
Nucleotide sequence of SEQ ID NO 3 coding paHpaBC
atgaaaccggaagacttccgtgcttctgctacccgtccgttcaccggtgaagaatacctggcttctctgcgtgacgaccgtgaaatctacatctacggtgaccgtgttaaagacgttacctctcacccggctttccgtaacgctgctgcttctatggctcgtctgtacgacgctctgcacgacccgcagtctaaagaaaaactgtgctgggaaaccgacaccggtaacggtggttacacccacaaattcttccgttacgctcgttctgctgacgaactgcgtcagcagcgtgacgctatcgctgaatggtctcgtctgacctacggttggatgggtcgtaccccggactacaaagctgctttcggttctgctctgggtgctaacccgggtttctacggtcgtttcgaagacaacgctaaaacctggtacaaacgtatccaggaagcttgcctgtacctgaaccacgctatcgttaacccgccgatcgaccgtgacaaaccggttgaccaggttaaagacgttttcatctctgttgacgaagaagttgacggtggtatcgttgtttctggtgctaaagttgttgctaccaactctgctctgacccactacaacttcgttggtcagggttctgctcagctgctgggtgacaacaccgacttcgctctgatgttcatcgctccgatgaacaccccgggtatgaaactgatctgccgtccgtcttacgaactggttgctggtatcgctggttctccgttcgactacccgctgtcttctcgtttcgacgaaaacgacgctatcctggttatggacaaagttttcatcccgtgggaaaacgttctgatctaccgtgacttcgaacgttgcaaacagtggttcccgcagggtggtttcggtcgtctgttcccgatgcagggttgcacccgtctggctgttaaactggacttcatcaccggtgctctgtacaaagctctgcagtgcaccggttctctggaattccgtggtgttcaggctcaggttggtgaagttgttgcttggcgtaacctgttctggtctctgaccgacgctatgtacggtaacgcttctgaatggcacggtggtgctttcctgccgtctgctgaagctctgcaggcttaccgtgttctggctccgcaggcttacccggaaatcaaaaaaaccatcgaacaggttgttgcttctggtctgatctacctgccgtctggtgttcgtgacctgcacaacccgcagctggacaaatacctgtctacctactgccgtggttctggtggtatgggtcaccgtgaacgtatcaaaatcctgaaactgctgtgggacgctatcggttctgaattcggtggtcgtcacgaactgtacgaaatcaactacgctggttctcaggacgaaatccgtatgcaggctctgcgtcaggctatcggttctggtgctatgaaaggtatgctgggtatggttgaacagtgcatgggtgactacgacgaaaacggttggaccgttccgcacctgcacaacccggacgacatcaacgttctggaccgtatccgtcagtaacgcagcaggaggttaagatgtctcagctggaaccgcgtcagcaggctttccgtaacgctatggctcacctgtctgctgctgttaacgttatcacctctaacggtccggctggtcgttgcggtatcaccgctaccgctgtttgctctgttaccgactctccgccgaccctgatgctgtgcatcaaccgtaactctgaaatgaacaccgttttcaaagctaacggtcgtctgtgcgttaacgttctgtctggtgaacacgaagaagttgctcgtcacttcgctggtatgaccgaagttccgatggaacgtcgtttcgctctgcacgactggcgtgaaggtctggctggtctgccggttctgcacggtgctctggctaacctgcagggtcgtatcgctgaagttcaggaaatcggtacccactctgttctgctgctggaactggaagacatccaggttctggaacagggtgacggtctggtttacttctctcgttctttccaccgtctgcagtgcccgcgtcgtgctgcttaa
Nucleotide sequence of SEQ ID NO. 4 encoding bmtyrosinase
atggaatctaacaaataccgtgttcgtaaaaacgttctgcacctgaccgacaccgaaaaacgtgacttcgttcgtaccgttctgatcctgaaagaaaaaggtatctacgaccgttacatcgcttggcacggtgctgctggtaaattccacaccccgccgggttctgaccgtaacgctgctcacatgtcttctgctttcctgccgtggcaccgtgaatacctgctgcgtttcgaacgtgacctgcagtctatcaacccggaagttaccctgccgtactgggaatgggaaaccgacgctcagatgcaggacccgtctcagtctcagatctggtctgctgacttcatgggtggtaacggtaacccgatcaaagacttcatcgttgacaccggtccgttcgctgctggtcgttggaccaccatcgacgaacagggtaacccgtctggtggtctgaaacgtaacttcggtgctaccaaagaagctccgaccctgccgacccgtgacgacgttctgaacgctctgaaaatcacccagtacgacaccccgccgtgggacatgacctctcagaactctttccgtaaccagctggaaggtttcatcaacggtccgcagctgcacaaccgtgttcaccgttgggttggtggtcagatgggtgttgttccgaccgctccgaacgacccggttttcttcctgcaccacgctaacgttgaccgtatctgggctgtttggcagatcatccaccgtaaccagaactaccagccgatgaaaaacggtccgttcggtcagaacttccgtgacccgatgtacccgtggaacaccaccccggaagacgttatgaaccaccgtaaactgggttacgtttacgacatcgaactgcgtaaatctaaacgttcttcttaa
SEQ ID NO 5 nucleotide sequence coding for smtyrosinase
atggaccgtggtgttaacgttgctaaacagatgaaattcaccaacgctccggacttctctggtgctctgaacgttgaataccgtaccgaactggcttctgctggtaacctgtctgctcgtgtttcttactcttaccagtctgaagtttggccgaccaccgacctgtctccggttatccgtcaggacggttacggtctggttaacgctggtgttatctggaaactggacgacgcttggaccttctctctgcagggtaccaacctggctgacaaagaataccgtaccaccggttacaacatcccggctgttggtaccctgatcggtttctacggtccgccgcgtcagtacacctctgcttctgttaccatctctcgtaaccgtctgcacgacaccgttctgcgtctgatctgcaccggtaaagttactatggtttgcgcttgcatgcgtgctatcatgccgcaggctcgtgactctcacccggttgctcgttggtctgcttctcgtgcttaa
Nucleotide sequence of SEQ ID NO 6 coding for bttyrosinase
atgggtatccgtaaaaaccaggcttgcctgaccgacgaagaaaaagctgctttcgttgacgctatccaggaactgaaacgtaacggtgaataccagccgtacgttgacgttcaccgtaaacacttcttccacccgatccaccagtctgctatgttcctgccgtggcaccgtgaattcctgcacaaattcgaaatcgaactgcagaaagttgaccgtaacgttaccatcccgtactgggactggaccgttgacaactctatcacctcttctatctggcgtggtaacttcatgggtgctttcaccggtctgaaccgtcagctgggtgctaacccgttcctgccgacccgtacccaggttaaagaagctatcgacaccaccccgtacgacaccgctccgtggcgtcaggttacctctggtttccgttctgctctggaagaactgcacaacggtccgcacaactgggttggtggtgttatggctggtgctggttctccggaagacccggttttctggctgcaccactctaacatcaaccgtctgtgggctatctggcagcgtgaacacctgaacgaaccgtacctgccgacctctggtaccaccggtgctgacgaactgggtctggacgacccgatgcacgaattccgtgaaggtgaaaaaaacaccctgaccccgaaagacgttctggaccacacctctctgggttaccagtacgacaactactctctggacccggttgactgctaa
Nucleotide sequence of SEQ ID NO 7 encoding rstyrrosinase
ttgttcgtcgtaccgttctgaaagctatcgctggtacctctgttgctaccgttttcgctggtaaactgaccggtctgtctgctgttgctgctgacgctgctccgctgcgtgttcgtcgtaacctgcacggtatgaaaatggacgacccggacctgtctgcttaccgtgaattcgttggtatcatgaaaggtaaagaccagacccaggctctgtcttggctgggtttcgctaaccagcacggtaccctgaacggtggttacaaatactgcccgcacggtgactggtacttcctgccgtggcaccgtggtttcgttctgatgtacgaacgtgctgttgctgctctgaccggttacaaaaccttcgctatgccgtactggaactggaccgaagaccgtctgctgccggaagctttcaccgctaaaacctacaacggtaaaaccaacccgctgtacgttccgaaccgtaacgaactgaccggtccgtacgctctgaccgacgctatcgttggtcagaaagaagttatggacaaaatctacgctgaaaccaacttcgaagttttcggtacctctcgttctgttgaccgttctgttcgtccgccgctggttcagaactctctggacccgaaatgggttccgatgggtggtggtaaccagggtatcctggaacgtaccccgcacaacaccgttcacaacaacatcggtgctttcatgccgaccgctgcttctccgcgtgacccggttttcatgatgcaccacggtaacatcgaccgtgtttgggctacctggaacgctctgggtcgtaaaaactctaccgacccgctgtggctgggtatgaaattcccgaacaactacatcgacccgcagggtcgttactacacccagggtgtttctgacctgctgtctaccgaagctctgggttaccgttacgacgttatgccgcgtgctgacaacaaagttgtttctaacgctcgtgctgaacacctgctggctctgttcaaaaccggtgactctgttaaactggctgaccacatccgtctgcgttctgttctgaaaggtgaacacccggttgctaccgctgttgaaccgctgaactctgctgttcagttcgaagctggtaccgttaccggtgctctgggtgctgacgttggtaccggttctaccaccgaagttgttgctctgatcaaaaacatccgtatcccgtacaacgttatctctatccgtgttttcgttaacctgccgaacgctaacctggacgttccggaaaccgacccgcacttcgttacctctctgtctttcctgacccacgctgctggtcacgaccaccacgctctgccgtctactatggttaacctgaccgacaccctgaaagctctgaacatccgtgacgacaacttctctatcaacctggttgctgttccgcagccgggtgttgctgttgaatcttctggtggtgttaccccggaatctatcgaagttgctgttatctaa
Nucleotide sequence of SEQ ID NO 8 encoding ScFDH
atgtctaaaggtaaagttctgctggttctgtacgaaggtggtaaacacgctgaagaacaggaaaaactgctgggttgcatcgaaaacgaactgggtatccgtaacttcatcgaagaacagggttacgaactggttaccaccatcgacaaagacccggaaccgacctctaccgttgaccgtgaactgaaagacgctgaaatcgttatcaccaccccgttcttcccggcttacatctctcgtaaccgtatcgctgaagctccgaacctgaaactgtgcgttaccgctggtgttggttctgaccacgttgacctggaagctgctaacgaacgtaaaatcaccgttaccgaagttaccggttctaacgttgtttctgttgctgaacacgttatggctaccatcctggttctgatccgtaactacaacggtggtcaccagcaggctatcaacggtgaatgggacatcgctggtgttgctaaaaacgaatacgacctggaagacaaaatcatctctaccgttggtgctggtcgtatcggttaccgtgttctggaacgtctggttgctttcaacccgaaaaaactgctgtactacgactaccaggaactgccggctgaagctatcaaccgtctgaacgaagcttctaaactgttcaacggtcgtggtgacatcgttcagcgtgttgaaaaactggaagacatggttgctcagtctgacgttgttaccatcaactgcccgctgcacaaagactctcgtggtctgttcaacaaaaaactgatctctcacatgaaagacggtgcttacctggttaacaccgctcgtggtgctatctgcgttgctgaagacgttgctgaagctgttaaatctggtaaactggctggttacggtggtgacgtttgggacaaacagccggctccgaaagaccacccgtggcgtaccatggacaacaaagaccacgttggtaacgctatgaccgttcacatctctggtacctctctggacgctcagaaacgttacgctcagggtgttaaaaacatcctgaactcttacttctctaaaaaattcgactaccgtccgcaggacatcatcgttcagaacggttcttacgctacccgtgcttacggtcagaaaaaataa
Nucleotide sequence of SEQ ID NO 9 encoding CbFDH
atgaaaatcgttctggttctgtacgacgctggtaaacacgctgctgacgaagaaaaactgtacggttgcaccgaaaacaaactgggtatcgctaactggctgaaagaccagggtcacgaactgatcaccacctctgacaaagaaggtgaaacctctgaactggacaaacacatcccggacgctgacatcatcatcaccaccccgttccacccggcttacatcaccaaagaacgtctggacaaagctaaaaacctgaaactggttgttgttgctggtgttggttctgaccacatcgacctggactacatcaaccagaccggtaaaaaaatctctgttctggaagttaccggttctaacgttgtttctgttgctgaacacgttgttatgaccatgctggttctggttcgtaacttcgttccggctcacgaacagatcatcaaccacgactgggaagttgctgctatcgctaaagacgcttacgacatcgaaggtaaaaccatcgctaccatcggtgctggtcgtatcggttaccgtgttctggaacgtctgctgccgttcaacccgaaagaactgctgtactacgactaccaggctctgccgaaagaagctgaagaaaaagttggtgctcgtcgtgttgaaaacatcgaagaactggttgctcaggctgacatcgttaccgttaacgctccgctgcacgctggtaccaaaggtctgatcaacaaagaactgctgtctaaattcaaaaaaggtgcttggctggttaacaccgctcgtggtgctatctgcgttgctgaagacgttgctgctgctctggaatctggtcagctgcgtggttacggtggtgacgtttggttcccgcagccggctccgaaagaccacccgtggcgtgacatgcgtaacaaatacggtgctggtaacgctatgaccccgcactactctggtaccaccctggacgctcagacccgttacgctgaaggtaccaaaaacatcctggaatctttcttcaccggtaaattcgactaccgtccgcaggacatcatcctgctgaacggtgaatacgttaccaaagcttacggtaaacacgacaaaaaataa
SEQ ID NO 10 nucleotide sequence encoding MiFDH
Tactgctaaatggcttacgtcgctcgctcgcttagctcgctcgctcgctggctcgctcgctcgctggctcgctggctcgctggctggctcgctggctggctggctcgctggctcgctggctggctcgctggctggctggctcgctggctggctggctggctggctggctggctggctggctggctggctggctggctggctggctggctggctggctggctggctggctggctcgctggctggctggctggctggctggctggctggctggctggctggctggctggctggctcgctggctggctggctggctggctggctggctggctggctggctggctggctggctggctggctggctggctggctggctggctggctggctggctcgctggctggctggctggctggctggctcgctggctggctggctggctggctggctggctggctggctggctcgctggctggctggctggctggctggctggctggctcgctggctggctggctggctcgctggctggctggctggctggctggctggctggctggctcgctggctcgctggctggctggctggctggctggctggctggctggctggctggctcgctggctggctggctggctggctggctggctggctggctcgctggctggctcgctggctcgctggctcgctggctggctggctggctggctggctggctggctggctggctggctggctggctggctcgctcgctggctggctggctggcgcgcgcgctcgctggcgcgcgctggctggcgcgctggctcgctggctggctcgcgcgcgctggctggctggctggctggctcgctggctggctggctggctggctcgctggctggctggctggctggctggcgctggctggctggcgctggctggctggctcgctcgctcgctggctggctggctggctggctggctggctggctcgctggctggctggctggctggctggctggcgctcgctcgctggctggctggctggctggctggcgcgcgcgcgcgcgcgcgcgcgctcgcgcgcgctggctggctggctggctggctggctggctggctggctggctggctggctggctggctggctggctggctggctggctggctggctcgctcgcgctggctggctggctggctggctggctggctggctggctggcgcgcgcgctggctggctggctggcgcgctcgctggctggctggctcgcgcgcgcgctggctggcgcgcgcgcgcgcgcgctggctggcgcgcgcgcgctggcgcgcgcgcgcgcgcgcgcgcgcgctggctggctggctggctggctggctggctggctcgctggctggctggctggctggctggctggctggctggctggctggctggctggctggctggctggctggctggctg
atgcagatcaaaaccgctttctctgacggtacctctgaacagctgaaaatcatcgacgctaccctggacgaaccgaaagctaacgaagttctgatcaaaatggttgctaccggtgtttgccacaccgacaccgctggtcgtgacggtctgaccaccccgctgccggtttctctgggtcacgaaggtgctggtatcgttgaacaggttggttcttctgttatggacctgcagccgggtgaccacgttgttctgtctttcgcttactgcggtcgttgccagcactgcctgaccggtcacccgggtatgtgcgaacacttcaacgaactgaacttcgctggtcacaacttcgacggttctcaccgtatccacaccctggacggtcagccgatctctaccttcttcggtcagtcttctttctctacccacaccgttgttgaccagcacaacgttatcaaagttgacccgaccgttgacctgcgtctgctgggtccgctgggttgcggtatccagaccggtgctggtaccatcctgaactacctgcagccgaaattcggtgaatctctggttatcttcggtaccggtgctgttggtctgtctgctatcatggctgctaaaatcaccggtgctaaccacatcatcgctatcgacatcttcgacaaccgtctggctctggctaaagaactgggtgctaccgaagttatcaactctcaccaggctgacgttgaagctaccctgaaagaaatcctgccgaccggtgctgactacgctatcgacaccaccggtgtttctccggttgttatgaacgctctgcacgctctgaaaccgggtggtgaatgcgctgttgttggtatgggtcgtggtctgaccttcaacctgatggacgacctgatggctgaaggtaaaaaaatctctggtgttatcgaaggtgacgctatcccgcagctgttcatcccgaaactggttgactactacaaacagggtcgtttcccgttcgacaaactgatcaaattctacgacttcgaccagatcaacgacggtttcgctgcttctaaagacggttctgttctgaaaccggttatcaccttctaa
SEQ ID NO:12HpaE-homo-F
tagtgaacggcaggtatatgtgatgggttaaaaaggatccgcccaaacaatattgcatacatgc
SEQ ID NO:13HpaE-FRT-R
ggttccttacgcgggcagaagttcctattctctagaaagtataggaacttcttttttcatttcgctgtttcctcactc
SEQ ID NO:14FRT-HpaD-F
aaacagcgaaatgaaaaaagaagttcctatactttctagagaataggaacttctgcccgcgtaaggaacc
SEQ ID NO:15HpaD-sgRNA-R
cttaagcatatggcgatcagggtgtgggtg
SEQ ID NO:16HpaD-sgRNA-F
accctgatcgccatatgcttaagctggatccttgacag
Sequence listing
<110> Pterocarya stenoptera biological research & development (Nanjing) Co., Ltd
<120> an engineering bacterium for producing hydroxytyrosol
<160> 16
<170> SIPOSequenceListing 1.0
<210> 1
<211> 23
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 1
gatgaaacca gaagatttcc gcg 23
<210> 2
<211> 29
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 2
ttaaatcgca gcttccattt ccagcacta 29
<210> 3
<211> 2093
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 3
atgaaaccgg aagacttccg tgcttctgct acccgtccgt tcaccggtga agaatacctg 60
gcttctctgc gtgacgaccg tgaaatctac atctacggtg accgtgttaa agacgttacc 120
tctcacccgg ctttccgtaa cgctgctgct tctatggctc gtctgtacga cgctctgcac 180
gacccgcagt ctaaagaaaa actgtgctgg gaaaccgaca ccggtaacgg tggttacacc 240
cacaaattct tccgttacgc tcgttctgct gacgaactgc gtcagcagcg tgacgctatc 300
gctgaatggt ctcgtctgac ctacggttgg atgggtcgta ccccggacta caaagctgct 360
ttcggttctg ctctgggtgc taacccgggt ttctacggtc gtttcgaaga caacgctaaa 420
acctggtaca aacgtatcca ggaagcttgc ctgtacctga accacgctat cgttaacccg 480
ccgatcgacc gtgacaaacc ggttgaccag gttaaagacg ttttcatctc tgttgacgaa 540
gaagttgacg gtggtatcgt tgtttctggt gctaaagttg ttgctaccaa ctctgctctg 600
acccactaca acttcgttgg tcagggttct gctcagctgc tgggtgacaa caccgacttc 660
gctctgatgt tcatcgctcc gatgaacacc ccgggtatga aactgatctg ccgtccgtct 720
tacgaactgg ttgctggtat cgctggttct ccgttcgact acccgctgtc ttctcgtttc 780
gacgaaaacg acgctatcct ggttatggac aaagttttca tcccgtggga aaacgttctg 840
atctaccgtg acttcgaacg ttgcaaacag tggttcccgc agggtggttt cggtcgtctg 900
ttcccgatgc agggttgcac ccgtctggct gttaaactgg acttcatcac cggtgctctg 960
tacaaagctc tgcagtgcac cggttctctg gaattccgtg gtgttcaggc tcaggttggt 1020
gaagttgttg cttggcgtaa cctgttctgg tctctgaccg acgctatgta cggtaacgct 1080
tctgaatggc acggtggtgc tttcctgccg tctgctgaag ctctgcaggc ttaccgtgtt 1140
ctggctccgc aggcttaccc ggaaatcaaa aaaaccatcg aacaggttgt tgcttctggt 1200
ctgatctacc tgccgtctgg tgttcgtgac ctgcacaacc cgcagctgga caaatacctg 1260
tctacctact gccgtggttc tggtggtatg ggtcaccgtg aacgtatcaa aatcctgaaa 1320
ctgctgtggg acgctatcgg ttctgaattc ggtggtcgtc acgaactgta cgaaatcaac 1380
tacgctggtt ctcaggacga aatccgtatg caggctctgc gtcaggctat cggttctggt 1440
gctatgaaag gtatgctggg tatggttgaa cagtgcatgg gtgactacga cgaaaacggt 1500
tggaccgttc cgcacctgca caacccggac gacatcaacg ttctggaccg tatccgtcag 1560
taacgcagca ggaggttaag atgtctcagc tggaaccgcg tcagcaggct ttccgtaacg 1620
ctatggctca cctgtctgct gctgttaacg ttatcacctc taacggtccg gctggtcgtt 1680
gcggtatcac cgctaccgct gtttgctctg ttaccgactc tccgccgacc ctgatgctgt 1740
gcatcaaccg taactctgaa atgaacaccg ttttcaaagc taacggtcgt ctgtgcgtta 1800
acgttctgtc tggtgaacac gaagaagttg ctcgtcactt cgctggtatg accgaagttc 1860
cgatggaacg tcgtttcgct ctgcacgact ggcgtgaagg tctggctggt ctgccggttc 1920
tgcacggtgc tctggctaac ctgcagggtc gtatcgctga agttcaggaa atcggtaccc 1980
actctgttct gctgctggaa ctggaagaca tccaggttct ggaacagggt gacggtctgg 2040
tttacttctc tcgttctttc caccgtctgc agtgcccgcg tcgtgctgct taa 2093
<210> 4
<211> 897
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 4
atggaatcta acaaataccg tgttcgtaaa aacgttctgc acctgaccga caccgaaaaa 60
cgtgacttcg ttcgtaccgt tctgatcctg aaagaaaaag gtatctacga ccgttacatc 120
gcttggcacg gtgctgctgg taaattccac accccgccgg gttctgaccg taacgctgct 180
cacatgtctt ctgctttcct gccgtggcac cgtgaatacc tgctgcgttt cgaacgtgac 240
ctgcagtcta tcaacccgga agttaccctg ccgtactggg aatgggaaac cgacgctcag 300
atgcaggacc cgtctcagtc tcagatctgg tctgctgact tcatgggtgg taacggtaac 360
ccgatcaaag acttcatcgt tgacaccggt ccgttcgctg ctggtcgttg gaccaccatc 420
gacgaacagg gtaacccgtc tggtggtctg aaacgtaact tcggtgctac caaagaagct 480
ccgaccctgc cgacccgtga cgacgttctg aacgctctga aaatcaccca gtacgacacc 540
ccgccgtggg acatgacctc tcagaactct ttccgtaacc agctggaagg tttcatcaac 600
ggtccgcagc tgcacaaccg tgttcaccgt tgggttggtg gtcagatggg tgttgttccg 660
accgctccga acgacccggt tttcttcctg caccacgcta acgttgaccg tatctgggct 720
gtttggcaga tcatccaccg taaccagaac taccagccga tgaaaaacgg tccgttcggt 780
cagaacttcc gtgacccgat gtacccgtgg aacaccaccc cggaagacgt tatgaaccac 840
cgtaaactgg gttacgttta cgacatcgaa ctgcgtaaat ctaaacgttc ttcttaa 897
<210> 5
<211> 510
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 5
atggaccgtg gtgttaacgt tgctaaacag atgaaattca ccaacgctcc ggacttctct 60
ggtgctctga acgttgaata ccgtaccgaa ctggcttctg ctggtaacct gtctgctcgt 120
gtttcttact cttaccagtc tgaagtttgg ccgaccaccg acctgtctcc ggttatccgt 180
caggacggtt acggtctggt taacgctggt gttatctgga aactggacga cgcttggacc 240
ttctctctgc agggtaccaa cctggctgac aaagaatacc gtaccaccgg ttacaacatc 300
ccggctgttg gtaccctgat cggtttctac ggtccgccgc gtcagtacac ctctgcttct 360
gttaccatct ctcgtaaccg tctgcacgac accgttctgc gtctgatctg caccggtaaa 420
gttactatgg tttgcgcttg catgcgtgct atcatgccgc aggctcgtga ctctcacccg 480
gttgctcgtt ggtctgcttc tcgtgcttaa 510
<210> 6
<211> 744
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 6
atgggtatcc gtaaaaacca ggcttgcctg accgacgaag aaaaagctgc tttcgttgac 60
gctatccagg aactgaaacg taacggtgaa taccagccgt acgttgacgt tcaccgtaaa 120
cacttcttcc acccgatcca ccagtctgct atgttcctgc cgtggcaccg tgaattcctg 180
cacaaattcg aaatcgaact gcagaaagtt gaccgtaacg ttaccatccc gtactgggac 240
tggaccgttg acaactctat cacctcttct atctggcgtg gtaacttcat gggtgctttc 300
accggtctga accgtcagct gggtgctaac ccgttcctgc cgacccgtac ccaggttaaa 360
gaagctatcg acaccacccc gtacgacacc gctccgtggc gtcaggttac ctctggtttc 420
cgttctgctc tggaagaact gcacaacggt ccgcacaact gggttggtgg tgttatggct 480
ggtgctggtt ctccggaaga cccggttttc tggctgcacc actctaacat caaccgtctg 540
tgggctatct ggcagcgtga acacctgaac gaaccgtacc tgccgacctc tggtaccacc 600
ggtgctgacg aactgggtct ggacgacccg atgcacgaat tccgtgaagg tgaaaaaaac 660
accctgaccc cgaaagacgt tctggaccac acctctctgg gttaccagta cgacaactac 720
tctctggacc cggttgactg ctaa 744
<210> 7
<211> 1487
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 7
ttgttcgtcg taccgttctg aaagctatcg ctggtacctc tgttgctacc gttttcgctg 60
gtaaactgac cggtctgtct gctgttgctg ctgacgctgc tccgctgcgt gttcgtcgta 120
acctgcacgg tatgaaaatg gacgacccgg acctgtctgc ttaccgtgaa ttcgttggta 180
tcatgaaagg taaagaccag acccaggctc tgtcttggct gggtttcgct aaccagcacg 240
gtaccctgaa cggtggttac aaatactgcc cgcacggtga ctggtacttc ctgccgtggc 300
accgtggttt cgttctgatg tacgaacgtg ctgttgctgc tctgaccggt tacaaaacct 360
tcgctatgcc gtactggaac tggaccgaag accgtctgct gccggaagct ttcaccgcta 420
aaacctacaa cggtaaaacc aacccgctgt acgttccgaa ccgtaacgaa ctgaccggtc 480
cgtacgctct gaccgacgct atcgttggtc agaaagaagt tatggacaaa atctacgctg 540
aaaccaactt cgaagttttc ggtacctctc gttctgttga ccgttctgtt cgtccgccgc 600
tggttcagaa ctctctggac ccgaaatggg ttccgatggg tggtggtaac cagggtatcc 660
tggaacgtac cccgcacaac accgttcaca acaacatcgg tgctttcatg ccgaccgctg 720
cttctccgcg tgacccggtt ttcatgatgc accacggtaa catcgaccgt gtttgggcta 780
cctggaacgc tctgggtcgt aaaaactcta ccgacccgct gtggctgggt atgaaattcc 840
cgaacaacta catcgacccg cagggtcgtt actacaccca gggtgtttct gacctgctgt 900
ctaccgaagc tctgggttac cgttacgacg ttatgccgcg tgctgacaac aaagttgttt 960
ctaacgctcg tgctgaacac ctgctggctc tgttcaaaac cggtgactct gttaaactgg 1020
ctgaccacat ccgtctgcgt tctgttctga aaggtgaaca cccggttgct accgctgttg 1080
aaccgctgaa ctctgctgtt cagttcgaag ctggtaccgt taccggtgct ctgggtgctg 1140
acgttggtac cggttctacc accgaagttg ttgctctgat caaaaacatc cgtatcccgt 1200
acaacgttat ctctatccgt gttttcgtta acctgccgaa cgctaacctg gacgttccgg 1260
aaaccgaccc gcacttcgtt acctctctgt ctttcctgac ccacgctgct ggtcacgacc 1320
accacgctct gccgtctact atggttaacc tgaccgacac cctgaaagct ctgaacatcc 1380
gtgacgacaa cttctctatc aacctggttg ctgttccgca gccgggtgtt gctgttgaat 1440
cttctggtgg tgttaccccg gaatctatcg aagttgctgt tatctaa 1487
<210> 8
<211> 1131
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 8
atgtctaaag gtaaagttct gctggttctg tacgaaggtg gtaaacacgc tgaagaacag 60
gaaaaactgc tgggttgcat cgaaaacgaa ctgggtatcc gtaacttcat cgaagaacag 120
ggttacgaac tggttaccac catcgacaaa gacccggaac cgacctctac cgttgaccgt 180
gaactgaaag acgctgaaat cgttatcacc accccgttct tcccggctta catctctcgt 240
aaccgtatcg ctgaagctcc gaacctgaaa ctgtgcgtta ccgctggtgt tggttctgac 300
cacgttgacc tggaagctgc taacgaacgt aaaatcaccg ttaccgaagt taccggttct 360
aacgttgttt ctgttgctga acacgttatg gctaccatcc tggttctgat ccgtaactac 420
aacggtggtc accagcaggc tatcaacggt gaatgggaca tcgctggtgt tgctaaaaac 480
gaatacgacc tggaagacaa aatcatctct accgttggtg ctggtcgtat cggttaccgt 540
gttctggaac gtctggttgc tttcaacccg aaaaaactgc tgtactacga ctaccaggaa 600
ctgccggctg aagctatcaa ccgtctgaac gaagcttcta aactgttcaa cggtcgtggt 660
gacatcgttc agcgtgttga aaaactggaa gacatggttg ctcagtctga cgttgttacc 720
atcaactgcc cgctgcacaa agactctcgt ggtctgttca acaaaaaact gatctctcac 780
atgaaagacg gtgcttacct ggttaacacc gctcgtggtg ctatctgcgt tgctgaagac 840
gttgctgaag ctgttaaatc tggtaaactg gctggttacg gtggtgacgt ttgggacaaa 900
cagccggctc cgaaagacca cccgtggcgt accatggaca acaaagacca cgttggtaac 960
gctatgaccg ttcacatctc tggtacctct ctggacgctc agaaacgtta cgctcagggt 1020
gttaaaaaca tcctgaactc ttacttctct aaaaaattcg actaccgtcc gcaggacatc 1080
atcgttcaga acggttctta cgctacccgt gcttacggtc agaaaaaata a 1131
<210> 9
<211> 1095
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 9
atgaaaatcg ttctggttct gtacgacgct ggtaaacacg ctgctgacga agaaaaactg 60
tacggttgca ccgaaaacaa actgggtatc gctaactggc tgaaagacca gggtcacgaa 120
ctgatcacca cctctgacaa agaaggtgaa acctctgaac tggacaaaca catcccggac 180
gctgacatca tcatcaccac cccgttccac ccggcttaca tcaccaaaga acgtctggac 240
aaagctaaaa acctgaaact ggttgttgtt gctggtgttg gttctgacca catcgacctg 300
gactacatca accagaccgg taaaaaaatc tctgttctgg aagttaccgg ttctaacgtt 360
gtttctgttg ctgaacacgt tgttatgacc atgctggttc tggttcgtaa cttcgttccg 420
gctcacgaac agatcatcaa ccacgactgg gaagttgctg ctatcgctaa agacgcttac 480
gacatcgaag gtaaaaccat cgctaccatc ggtgctggtc gtatcggtta ccgtgttctg 540
gaacgtctgc tgccgttcaa cccgaaagaa ctgctgtact acgactacca ggctctgccg 600
aaagaagctg aagaaaaagt tggtgctcgt cgtgttgaaa acatcgaaga actggttgct 660
caggctgaca tcgttaccgt taacgctccg ctgcacgctg gtaccaaagg tctgatcaac 720
aaagaactgc tgtctaaatt caaaaaaggt gcttggctgg ttaacaccgc tcgtggtgct 780
atctgcgttg ctgaagacgt tgctgctgct ctggaatctg gtcagctgcg tggttacggt 840
ggtgacgttt ggttcccgca gccggctccg aaagaccacc cgtggcgtga catgcgtaac 900
aaatacggtg ctggtaacgc tatgaccccg cactactctg gtaccaccct ggacgctcag 960
acccgttacg ctgaaggtac caaaaacatc ctggaatctt tcttcaccgg taaattcgac 1020
taccgtccgc aggacatcat cctgctgaac ggtgaatacg ttaccaaagc ttacggtaaa 1080
cacgacaaaa aataa 1095
<210> 10
<211> 1155
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 10
atggctaaat gcgttatggt tctgtacccg gacccggttg acggttaccc gccggcttac 60
gctcgtgact ctatcccgac catccacggt tacccggacg gttctaccgt tccgaccccg 120
tctaccatcg acttcacccc gggtgaactg ctgggttgcg tttctggtgc tctgggtctg 180
cgtaaattct tcgaagacgc tggtcacgaa ctggttgtta cctctgacaa agacggtccg 240
gactctgaat tcgaacgtgc tctgccggac gctgaaatcg ttatctctca gccgttctgg 300
ccggcttacc tgaccaaaga acgtatcgct aaagctccga aactgaaact ggctctgacc 360
gctggtatcg gttctgacca cgttgacctg gacgctgcta aagaacgtgg tatcaccgtt 420
gctgaagtta cctactctaa ctctatctct gttgctgaac acgctgttat gcagatcctg 480
gctctggttc gtaacttcgt tccgtctcac cgttgggctg ttgaaggtgg ttggaacatc 540
gctgactgcg ttgaacgtgc ttacgacctg gaaggtatgg acgttggtgt tatcgctgct 600
ggtcgtatcg gtcgtgctgt tctgcgtcgt ctggctccgt tcgacgttaa cctgcactac 660
accgacaccc gtcgtctggc tccggaagtt gaaaaagaac tgaacgttac cttccacccg 720
accgttcagg aactggttcg tgctgttgac gttgtttcta tccactctcc gctgtacgct 780
gacacccgtg ctatgttcga cgaaaaactg atctctacca tgcgtcgtgg ttcttacatc 840
gttaacaccg ctcgtgctga agaaaccgtt ccggaagcta tcgctgacgc tctgcgttct 900
ggtcagctgg gtggttacgc tggtgacgtt tggtacccgc agccgccgcc ggttgctcac 960
ccgtggcgta ccatgccgaa caacgctatg accccgcacg tttctggtac caccctgtct 1020
gctcaggctc gttacgctgc tggtacccgt gaaatcctgg aatcttggtt cgctggtacc 1080
ccgatccgtc cggaatacct gatcgttgaa ggtggtcgtc tggctggtac cggtgctctg 1140
tcttaccaga aatga 1155
<210> 11
<211> 1089
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 11
atgcagatca aaaccgcttt ctctgacggt acctctgaac agctgaaaat catcgacgct 60
accctggacg aaccgaaagc taacgaagtt ctgatcaaaa tggttgctac cggtgtttgc 120
cacaccgaca ccgctggtcg tgacggtctg accaccccgc tgccggtttc tctgggtcac 180
gaaggtgctg gtatcgttga acaggttggt tcttctgtta tggacctgca gccgggtgac 240
cacgttgttc tgtctttcgc ttactgcggt cgttgccagc actgcctgac cggtcacccg 300
ggtatgtgcg aacacttcaa cgaactgaac ttcgctggtc acaacttcga cggttctcac 360
cgtatccaca ccctggacgg tcagccgatc tctaccttct tcggtcagtc ttctttctct 420
acccacaccg ttgttgacca gcacaacgtt atcaaagttg acccgaccgt tgacctgcgt 480
ctgctgggtc cgctgggttg cggtatccag accggtgctg gtaccatcct gaactacctg 540
cagccgaaat tcggtgaatc tctggttatc ttcggtaccg gtgctgttgg tctgtctgct 600
atcatggctg ctaaaatcac cggtgctaac cacatcatcg ctatcgacat cttcgacaac 660
cgtctggctc tggctaaaga actgggtgct accgaagtta tcaactctca ccaggctgac 720
gttgaagcta ccctgaaaga aatcctgccg accggtgctg actacgctat cgacaccacc 780
ggtgtttctc cggttgttat gaacgctctg cacgctctga aaccgggtgg tgaatgcgct 840
gttgttggta tgggtcgtgg tctgaccttc aacctgatgg acgacctgat ggctgaaggt 900
aaaaaaatct ctggtgttat cgaaggtgac gctatcccgc agctgttcat cccgaaactg 960
gttgactact acaaacaggg tcgtttcccg ttcgacaaac tgatcaaatt ctacgacttc 1020
gaccagatca acgacggttt cgctgcttct aaagacggtt ctgttctgaa accggttatc 1080
accttctaa 1089
<210> 12
<211> 64
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 12
tagtgaacgg caggtatatg tgatgggtta aaaaggatcc gcccaaacaa tattgcatac 60
atgc 64
<210> 13
<211> 78
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 13
ggttccttac gcgggcagaa gttcctattc tctagaaagt ataggaactt cttttttcat 60
ttcgctgttt cctcactc 78
<210> 14
<211> 70
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 14
aaacagcgaa atgaaaaaag aagttcctat actttctaga gaataggaac ttctgcccgc 60
gtaaggaacc 70
<210> 15
<211> 30
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 15
cttaagcata tggcgatcag ggtgtgggtg 30
<210> 16
<211> 38
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 16
accctgatcg ccatatgctt aagctggatc cttgacag 38

Claims (33)

1. An engineering bacterium for producing hydroxytyrosol, which is characterized in that the engineering bacterium expresses hydroxylase catalyzing tyrosol to generate hydroxytyrosol and expresses NAD+Reducing the coenzyme to NADH.
2. The engineered bacterium of claim 1, wherein said hydroxylase catalyzing tyrosol to hydroxytyrosol is tyrosinase or 4-hydroxyphenylacetate 3-monooxygenase.
3. The engineered bacterium of claim 2, wherein the hydroxylase catalyzing tyrosol to hydroxytyrosol is tyrosinase.
4. The engineered bacterium of claim 3, wherein said tyrosinase is derived from stenotrophomonas maltophilia, Bacillus megaterium, Bacillus thuringiensis, Bacillus endophyticus, Sphaerotheca rosea, or Ralstonia solanacearum.
5. The engineered bacterium of claim 2, wherein said hydroxylase catalyzing tyrosol to hydroxytyrosol is 4-hydroxyphenylacetate 3-monooxygenase.
6. The engineered bacterium of claim 5, wherein said 4-hydroxyphenylacetate 3-monooxygenase is derived from Escherichia coli or Pseudomonas aeruginosa.
7. The engineered bacterium of claim 6, wherein said 4-hydroxyphenylacetic acid 3-monooxygenase is derived from E.
8. The engineered bacterium of claim 1, wherein said NAD is added to said bacteria+The coenzyme which is reduced to generate NADH is formate dehydrogenase, alcohol dehydrogenase, glucose dehydrogenase or phosphite dehydrogenase.
9. The engineered bacterium of claim 8, wherein said NAD is added to said bacteria+The coenzyme which is reduced to generate NADH is formate dehydrogenase or alcohol dehydrogenase.
10. The engineered bacterium of claim 9, wherein said NAD is added to said culture medium+The coenzyme which is reduced to NADH is formate dehydrogenase.
11. The engineered bacterium of claim 10, wherein said formate dehydrogenase is derived from Candida boidinii, Saccharomyces cerevisiae, or Mycobacterium intracellulare.
12. The engineered bacterium of claim 11, wherein said formate dehydrogenase is derived from M.
13. The engineered bacterium of claim 12, wherein the nucleotide sequence encoding formate dehydrogenase derived from mycobacterium intracellulare is SEQ ID NO: 10.
14. the engineered bacterium of claim 9, wherein said alcohol dehydrogenase is derived from lactobacillus brevis.
15. The engineered bacterium of claim 14, wherein the nucleotide sequence encoding an alcohol dehydrogenase derived from lactobacillus brevis is SEQ ID NO: 11.
16. an engineered bacterium for producing hydroxytyrosol, which is obtained by transforming a pETDuet-1 plasmid into a host Escherichia coli BL21(DE3), wherein the pETDuet-1 plasmid is loaded with a hydroxylase gene catalyzing tyrosol to generate hydroxytyrosol and NAD+Coenzyme gene for generating NADH by reduction.
17. The engineered bacterium of claim 16, wherein a gene for decomposing phenolic compounds in escherichia coli BL21(DE3) is knocked out.
18. The engineered bacterium of claim 17, wherein the genes that decompose phenolic compounds are hpaD and/or hpaE.
19. The engineered bacterium of claim 18, wherein the genes that decompose phenolic compounds are HpaD and HpaE.
20. The engineered bacterium of any one of claims 16 to 19, wherein the hydroxylase catalyzing tyrosol to hydroxytyrosol is tyrosinase or 4-hydroxyphenylacetate 3-monooxygenase.
21. The engineered bacterium of claim 20, wherein the hydroxylase that catalyzes the production of hydroxytyrosol from tyrosol is tyrosinase.
22. The engineered bacterium of claim 21, wherein said tyrosinase is derived from stenotrophomonas maltophilia, bacillus megaterium, bacillus thuringiensis, bacillus endophyticus, diplocarpus roseus, or ralstonia solanacearum.
23. The engineered bacterium of claim 20, wherein said hydroxylase catalyzing tyrosol to hydroxytyrosol is 4-hydroxyphenylacetate 3-monooxygenase.
24. The engineered bacterium of claim 23, wherein said 4-hydroxyphenylacetate 3-monooxygenase is derived from escherichia coli or pseudomonas aeruginosa.
25. The engineered bacterium of claim 24, wherein said 4-hydroxyphenylacetic acid 3-monooxygenase is derived from e.
26. The engineered bacterium of claim 20, wherein said NAD is added+The coenzyme which is reduced to generate NADH is formate dehydrogenase, alcohol dehydrogenase, glucose dehydrogenase or phosphite dehydrogenase.
27. The engineered bacterium of claim 26, wherein said NAD is added+The coenzyme which is reduced to generate NADH is formate dehydrogenase or alcohol dehydrogenase.
28. The engineered bacterium of claim 27, wherein said NAD is added to said culture medium+The coenzyme which is reduced to NADH is formate dehydrogenase.
29. The engineered bacterium of claim 28, wherein said formate dehydrogenase is derived from candida boidinii, saccharomyces cerevisiae, or mycobacterium intracellulare.
30. The engineered bacterium of claim 29, wherein said formate dehydrogenase is derived from mycobacterium intracellulare.
31. The engineered bacterium of claim 30, wherein the nucleotide sequence encoding formate dehydrogenase derived from mycobacterium intracellulare is SEQ ID NO: 10.
32. the engineered bacterium of claim 27, wherein said alcohol dehydrogenase is derived from lactobacillus brevis.
33. The engineered bacterium of claim 32, wherein the nucleotide sequence encoding an alcohol dehydrogenase derived from lactobacillus brevis is SEQ ID NO: 11.
CN201910554741.7A 2019-06-25 2019-06-25 Engineering bacterium for producing hydroxytyrosol Pending CN112126610A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201910554741.7A CN112126610A (en) 2019-06-25 2019-06-25 Engineering bacterium for producing hydroxytyrosol
PCT/CN2020/098056 WO2020259569A1 (en) 2019-06-25 2020-06-24 An engineered microbial strain for hydroxytyrosol production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910554741.7A CN112126610A (en) 2019-06-25 2019-06-25 Engineering bacterium for producing hydroxytyrosol

Publications (1)

Publication Number Publication Date
CN112126610A true CN112126610A (en) 2020-12-25

Family

ID=73849120

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910554741.7A Pending CN112126610A (en) 2019-06-25 2019-06-25 Engineering bacterium for producing hydroxytyrosol

Country Status (1)

Country Link
CN (1) CN112126610A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114507633A (en) * 2022-04-01 2022-05-17 南京合谷生命生物科技有限公司 Temperature-sensitive recombinant strain for producing 3, 4-dihydroxy phenethyl alcohol and application thereof
CN114874963A (en) * 2022-06-13 2022-08-09 深圳蓝晶生物科技有限公司 Recombinant vibrio natriegens for producing hydroxytyrosol and application thereof
CN115141748A (en) * 2022-06-14 2022-10-04 南京工业大学 Microporous membrane tube reactor and application thereof in immobilized enzyme catalytic reaction
CN115786221A (en) * 2022-10-10 2023-03-14 杭州唯铂莱生物科技有限公司 Recombinant bacterium for producing 3, 4-dihydroxy phenylethanol and construction method and application thereof
CN116042732A (en) * 2022-12-29 2023-05-02 天津科技大学 Method for preparing phenolic compound by flavin monooxygenase

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114507633A (en) * 2022-04-01 2022-05-17 南京合谷生命生物科技有限公司 Temperature-sensitive recombinant strain for producing 3, 4-dihydroxy phenethyl alcohol and application thereof
CN114874963A (en) * 2022-06-13 2022-08-09 深圳蓝晶生物科技有限公司 Recombinant vibrio natriegens for producing hydroxytyrosol and application thereof
CN115141748A (en) * 2022-06-14 2022-10-04 南京工业大学 Microporous membrane tube reactor and application thereof in immobilized enzyme catalytic reaction
CN115786221A (en) * 2022-10-10 2023-03-14 杭州唯铂莱生物科技有限公司 Recombinant bacterium for producing 3, 4-dihydroxy phenylethanol and construction method and application thereof
CN116042732A (en) * 2022-12-29 2023-05-02 天津科技大学 Method for preparing phenolic compound by flavin monooxygenase

Similar Documents

Publication Publication Date Title
US11421254B2 (en) Biotechnological production of alcohols and derivatives thereof
CN112126610A (en) Engineering bacterium for producing hydroxytyrosol
CN108779429B (en) Functional expression of monooxygenases and methods of use
US11371065B2 (en) Genetically engineered strain
Knietsch et al. Construction and screening of metagenomic libraries derived from enrichment cultures: generation of a gene bank for genes conferring alcohol oxidoreductase activity on Escherichia coli
US7105296B2 (en) Genes encoding Baeyer-Villiger monooxygenases
EP2922963B1 (en) Process for producing alpha,omega-diols from c4-alkanes or c4-1-alkanols employing a cyp153 alkane hydroxylase
Liu et al. Recent advances in fermentative biohydrogen production
CN102690774A (en) Method of producing 3-hydroxypropionic acid using malonic semialdehyde reducing pathway
CN104630243B (en) Carbonyl reduction enzyme gene, enzyme, carrier, engineering bacteria and its application in asymmetric reduction prochiral carbonyl compounds
CN104884609B (en) The production method of recombinant cell and isoprene
Han et al. New approaches to NAD (P) H regeneration in the biosynthesis systems
CN104093836B (en) Hydrocarbon synthase gene and its utilization
US10294479B2 (en) Candida carbonyl reductase and method for preparing (R)-lipoic acid precursor
CN109055324B (en) Improved ketoreductase and application thereof
CN108949652B (en) Engineering bacterium and application thereof in producing caffeic acid
Rahman et al. Biotransformation of biodiesel-derived crude glycerol using newly isolated bacteria from environmental consortia
Wang et al. Monitoring dark hydrogen fermentation performance of indigenous Clostridium butyricum by hydrogenase gene expression using RT-PCR and qPCR
CN108410831B (en) Ketoacid reductase, gene, engineering bacterium and application in synthesis of chiral aromatic 2-hydroxy acid
Matsuoka et al. Crucial role of 4-deoxy-L-erythro-5-hexoseulose uronate reductase for alginate utilization revealed by adaptive evolution in engineered Saccharomyces cerevisiae
CN110396507A (en) L- pantoic acid lactone dehydrogenase from Cnuibacter physcomitrellae
CN103695443A (en) Novel carbonyl reductase as well as gene and application thereof
Wu et al. Cloning, expression, and characterization of a novel diketoreductase from Acinetobacter baylyi
CN108949649B (en) Engineering bacterium and application thereof in producing levodopa
CN114891707B (en) Recombinant strain and method for producing bilirubin by whole cell catalysis thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20201225

WD01 Invention patent application deemed withdrawn after publication