CN112098605A - 一种高鲁棒性化学传感器阵列软测量方法 - Google Patents

一种高鲁棒性化学传感器阵列软测量方法 Download PDF

Info

Publication number
CN112098605A
CN112098605A CN202010997648.6A CN202010997648A CN112098605A CN 112098605 A CN112098605 A CN 112098605A CN 202010997648 A CN202010997648 A CN 202010997648A CN 112098605 A CN112098605 A CN 112098605A
Authority
CN
China
Prior art keywords
sensor array
sub
matrix
chemical sensor
chemical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010997648.6A
Other languages
English (en)
Inventor
陈寅生
宋凯
刘继江
金鹏飞
张伟岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN202010997648.6A priority Critical patent/CN112098605A/zh
Publication of CN112098605A publication Critical patent/CN112098605A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0062General constructional details of gas analysers, e.g. portable test equipment concerning the measuring method or the display, e.g. intermittent measurement or digital display
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0062General constructional details of gas analysers, e.g. portable test equipment concerning the measuring method or the display, e.g. intermittent measurement or digital display
    • G01N33/0068General constructional details of gas analysers, e.g. portable test equipment concerning the measuring method or the display, e.g. intermittent measurement or digital display using a computer specifically programmed

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

一种高鲁棒性化学传感器阵列软测量方法,涉及气体检测设备技术领域,针对现有技术中传统化学传感器阵列软测量模型准确率差的问题,包括步骤一:将化学传感器阵列分成g个子传感器阵列,所述化学传感器阵列中各类传感器数量一致;步骤二:采集每个子传感器阵列的输出信号组成训练样本集;步骤三:针对每个子传感器阵列的训练样本,利用主成分分析法进行特征提取,得到每个子传感器阵列的特征集;步骤四:利用特征集对子传感器阵列的回归模型进行训练;步骤五:利用训练好的各子传感器阵列的回归模型对测量样本进行测量,并选取将各子传感器阵列的回归模型测量结果的中位值作为最终的测量结果。

Description

一种高鲁棒性化学传感器阵列软测量方法
技术领域
本发明涉及气体检测设备技术领域,具体为一种高鲁棒性化学传感器阵列软测量方法。
背景技术
电子鼻***是由一组具有部分特异性的化学传感器和一个恰当的模式识别方法组成,能够识别和分析简单或复杂的气味。电子鼻***通过化学传感器阵列对气体/气味进行数据采集,组成训练样本集并利用训练样本集构建模式识别模型。根据该模型可以对测试气体/气味样本进行识别与分析。目前,电子鼻***已经广泛应用于公共安全、医学诊断、易燃易爆检测、环境污染监测及食品安全等领域。
目前大多数的相关学者的研究集中在对于信号处理方法和模式识别技术的研究。同时,相关学者也将不同类型的传感器应用到了电子鼻***,如导电聚合物、金属氧化物、声表面波、石英晶体微天平等传感器。随着电子鼻***应用领域的不断拓展,在长期工作情况下***的可靠性和分析结果的准确性至关重要。由于化学传感器通过复杂的物理化学反应实现对目标气体的响应,在长期使用过程中随着气敏元件老化及电路退化,化学传感器阵列的测量质量下降。一旦发生化学传感器故障会导致传感器阵列的响应信号发生突变,使得已经建立的模式识别模型的气体识别与分析结果准确性下降。
传统的软测量模型利用一组化学传感器阵列的输出信号,经过信号预处理模块对化学传感器阵列信号执行去基线处理,减少传感器漂移的影响。模式识别模型利用特征提取方法对目标气体的浓度信息进行描述,再利用恰当的回归模型对混合气体的浓度进行估计。如果化学传感器阵列发生故障,会导致后续模式识别模型对存在故障信息的阵列信号产生错误的识别与分析结果。因此,传统化学传感器阵列软测量模型的可靠性较差。
发明内容
本发明的目的是:针对现有技术中传统化学传感器阵列软测量模型准确率差的问题,提出一种高鲁棒性化学传感器阵列软测量方法。
本发明为了解决上述技术问题采取的技术方案是:
一种高鲁棒性化学传感器阵列软测量方法,包括以下步骤:
步骤一:将化学传感器阵列分成g个子传感器阵列,所述化学传感器阵列中各类传感器数量一致;
步骤二:采集每个子传感器阵列的输出信号组成训练样本集;
步骤三:针对每个子传感器阵列的训练样本,利用主成分分析法进行特征提取,得到每个子传感器阵列的特征集;
步骤四:利用特征集对子传感器阵列的回归模型进行训练;
步骤五:利用训练好的各子传感器阵列的回归模型对测量样本进行测量,并选取将各子传感器阵列的回归模型测量结果的中位值作为最终的测量结果。
进一步的,所述步骤三中利用主成分分析法进行特征提取的具体步骤为:
假设
Figure BDA0002693145990000021
表示子传感器阵列的测量值矩阵,m表示传感器个数,n表示测量值的个数,步骤如下:
步骤三一:针对传感器阵列中每个传感器的输出信号进行漂移补偿;
步骤三二:对漂移补偿后的子传感器阵列进行标准化,得到矩阵X*
步骤三三:计算矩阵X*的协方差矩阵∑;
步骤三四:根据得到的协方差矩阵执行奇异值分解:
步骤三五:根据奇异值分解后的协方差矩阵∑,利用累积方差百分比得到主成分的个数k;
步骤三六:根据确定的主成分个数k,确定载荷矩阵
Figure BDA0002693145990000022
由协方差矩阵∑中最大的k个特征值对应的特征向量组成;
步骤三七:利用载荷矩阵
Figure BDA0002693145990000023
获得映射矩阵C:
Figure BDA0002693145990000024
步骤三八:利用映射矩阵C进行特征提取:
Figure BDA0002693145990000025
其中,
Figure BDA0002693145990000026
表示对化学传感器阵列测量值特征提取的结果。
进一步的,所述步骤三一通过分式差分法进行漂移补偿。
进一步的,所述分式差分法进行漂移补偿表示为:
xi=(Vi max-Vi min)/Vi min
其中,Vi max表示传感器响应信号的最大输出电压,Vi min表示传感器响应信号的最小输出电压。
进一步的,所述步骤三二中矩阵X*表示为:
Figure BDA0002693145990000031
其中,Xi表示Xn×p的列向量,E(Xi)表示列向量均值,D(Xi)表示列向量的方差,i=1,2,...p,p为子传感器阵列中传感器的个数。
进一步的,所述步骤三三中协方差矩阵∑表示为:
Figure BDA0002693145990000032
进一步的,所述步骤三四中根据得到的协方差矩阵∑执行奇异值分解表示为:
∑=VΛVT
其中Λ表示一个对角矩阵,其对角线位置包含协方差矩阵∑的特征值λi,且以降序排列λ1≥λ2≥...≥λm≥0,V由∑的特征向量组成。
进一步的,所述步骤三五中利用累积方差百分比得到主成分的个数k表示为:
Figure BDA0002693145990000033
当CPV值大于90时,k的值为主成分的个数,其中trace表示矩阵的迹数。
进一步的,当CPV值大于90%,且小于95%时,k的值为主成分的个数。
进一步的,所述载荷矩阵
Figure BDA0002693145990000034
表示为:
Figure BDA0002693145990000035
其中,uk表示选取得到的k个主成分对应的∑的特征向量。
本发明的有益效果是:
本发明提出了一种高鲁棒性化学传感器阵列软测量模型,具有良好的化学传感器的容错性,提升电子鼻***的长期工作条件下的准确性和稳定性。本发明提出一种高鲁棒性化学传感器阵列软测量模型,该模型能够在化学传感器阵列中存在故障气敏传感器的情况下,保持电子鼻***对气体识别与分析结果的准确性。
附图说明
图1为传统化学传感器阵列软测量模型框图;
图2为本发明高鲁棒性化学传感器阵列软测量模型框图;
图3为基于MOS气体传感器阵列的电子鼻***框图。
具体实施方式
具体实施方式一:参照图具体说明本实施方式,本实施方式所述的一种高鲁棒性化学传感器阵列软测量方法,包括以下步骤:
步骤一:将化学传感器阵列分成g个子传感器阵列,所述化学传感器阵列中各类传感器数量一致;
步骤二:采集每个子传感器阵列的输出信号组成训练样本集;
步骤三:针对每个子传感器阵列的训练样本,利用主成分分析法进行特征提取,得到每个子传感器阵列的特征集;
步骤四:利用特征集对子传感器阵列的回归模型进行训练;
步骤五:利用训练好的各子传感器阵列的回归模型对测量样本进行测量,并选取将各子传感器阵列的回归模型测量结果的中位值作为最终的测量结果。
在本申请中,申请所针对的是传感器阵列中各类传感器数量一致的传感器阵列,在将传感器阵列分成多个子传感器阵列时,如传感器阵列共有12个,4类,每类3个传感器,那么可将传感器阵列分为3个子传感器阵列,每个子传感器阵列中包含4类传感器各一个。
传统化学传感器阵列软测量模型
如图1所示为传统化学传感器阵列软测量模型框图。可见,传统的软测量模型利用一组化学传感器阵列的输出信号,经过信号预处理模块对化学传感器阵列信号执行去基线处理,减少传感器漂移的影响。模式识别模型利用特征提取方法对目标气体的浓度信息进行描述,再利用恰当的回归模型对混合气体的浓度进行估计。如果化学传感器阵列发生故障,会导致后续模式识别模型对存在故障信息的阵列信号产生错误的识别与分析结果。因此,传统化学传感器阵列软测量模型的可靠性较差。
高鲁棒性化学传感器阵列软测量模型
本专利提出一种高鲁棒性化学传感器阵列软测量模型,该模型能够在化学传感器阵列中存在故障气敏传感器的情况下,保持电子鼻***对气体识别与分析结果的准确性。如图2所示为提出的高鲁棒性化学传感器阵列软测量模型框图。
化学传感器阵列通常采用不同类型的化学传感器组成并且每种类型的传感器具有硬件冗余。根据化学传感器阵列的上述性质,在对化学传感器阵列信号进行采集和信号预处理之后,将根据化学传感器的种类组成虚拟化学传感器阵列。虚拟化学传感器阵列分为多个子传感器阵列,为了保证每个子传感器阵列能够具有更好的广谱响应特性,每个子传感器阵列都由不同的化学传感器组成。通过每个子传感器阵列获取足够的训练样本集,并构建各自的模式识别模型。求取不同模式识别模型对目标气体的估计值,并选择其中的中位值作为软测量模型的结果输出。当化学传感器阵列中存在故障传感器,会导致包含故障传感器的子传感器阵列的分析结果偏离其他模式识别模型的分析结果。为了提升模型的鲁棒性,本发明采用各模式识别模型的中位值作为化学传感器阵列的分析结果输出。
基本步骤
高鲁棒性化学传感器阵列软测量模型的基本步骤如下所述。
(1)由于化学传感器存在温度效应带来的漂移,为了减少漂移的影响,采用分式差动法对传感器漂移进行补偿。利用分式差分法针对每个化学传感器进行信号预处理如式(1)所示。
xi=(Vi max-Vi min)/Vi min (1)
其中,xi表示化学传感器经信号预处理后获得的处理结果,Vi max表示传感器响应信号的最大输出电压,Vi min表示传感器响应信号的最小输出电压,Vi表示传感器响应信号的某一时刻值。
(2)假设化学传感器阵列由n个化学传感器组成,且一共采用了g种不同的化学传感器,则可以根据提出的方法将化学传感器阵列分成m个子传感器阵列,构成虚拟化学传感器阵列,可知n=m·g。
(3)根据实验计划利用不同浓度的被测气体进行样本采集实验,针对不同的浓度进行独立实验,获得每个子传感器阵列对应的训练样本集。
(4)利用主成分分析法(PCA)实现特征提取。针对每个子传感器阵列的训练样本,假设子传感器阵列由p个传感器组成,子传感器阵列的每个训练样本由n个预处理后的测量值组成Xn×p。对Xn×p进行标准化处理获得标准化后的矩阵X*
Figure BDA0002693145990000051
其中,Xi表示Xn×p的列向量,E(Xi)表示列向量均值,D(Xi)表示列向量的方差。
通过PCA可以将X分解为
Figure BDA0002693145990000052
其中,
Figure BDA0002693145990000053
称为主成分子空间(PCS),
Figure BDA0002693145990000054
称为残差子空间(RS);
Figure BDA0002693145990000055
为得分矩阵,
Figure BDA0002693145990000061
为载荷矩阵,k为PCA模型的主成分个数。
载荷矩阵
Figure BDA0002693145990000062
可以通过以下步骤获得:
计算X*的协方差矩阵Σ,
Figure BDA0002693145990000063
对协方差矩阵Σ进行奇异值分解(SVD),
∑=VΛVT (5)
其中,Λ为由协方差矩阵Σ特征值按照降序排列获取(λ1≥λ1≥λ2≥...≥λm≥0)组成的对角矩阵,V由协方差矩阵Σ所有特征值对应的特征向量构成。
采用累积方差百分比(CPV)选取主成分的最优个数,
Figure BDA0002693145990000064
利用U前k个列向量组成载荷矩阵
Figure BDA0002693145990000065
载荷矩阵包含了原始样本中的气体信息,并降低了样本的维数。
通过特征提取获得了每个子传感器阵列的特征集,利用特征集对子传感器阵列的回归模型进行训练。本发明采用多变量相关向量机(MVRVM)、相关向量机(RVM)、最小二乘支持向量机回归(LS-SVR)作为混合气体浓度分析模型,MVRVM回归模型的基本原理可以参考文献[1]Thayananthan A,Navaratnam R,Stenger B,et al.Multivariate relevancevector machines for tracking[C]//European conference on computervision.Springer,Berlin,Heidelberg,2006:124-138.[2]THAYANANTHANA A.Template-based Pose Estimation and Tracking of 3D Hand Motion[D].Dissertation ofCambridge University.2005:103-124.
利用训练完成的各子传感器阵列的回归模型对测量样本进行分析,可以获得样本中不同气体的浓度值。为了降低故障传感器对电子鼻***的性能,选取所有子传感器阵列测量值的中位值作为***的输出。
实施例
图3所示的是基于MOS气体传感器阵列的电子鼻***框图,该***主要由MOS气体传感器阵列、数据采集卡、电源、质量流量控制器及PC机组成。MOS气体传感器阵列由16个日本FIGARO公司生产的TGS系列商用MOS气敏传感器组成,具体型号与装配数量如表1所示。
通过相应的测量电路可以将被测量信息转化为模拟信号。数据采集卡连接于PC机,采用NI公司生产的USB-6251,对MOS气体传感器阵列输出的16路模拟信号进行采集。MOS气体传感器阵列放置于一个容积1L的密闭有机玻璃气室中。采用+5V直流电源对MOS气体传感阵列的气敏材料加热,使得气敏传感器能够与被测气体/气味进行充分反应。甲烷(CH4)和一氧化碳(CO)气体被选为目标气体样本,通过两个质量流量控制器控制两种气体在气室中的体积分数。MOS气体传感器阵列自确认方法程序在主频2.27Hz,内存4G,32位Window 7操作***下的PC机上运行。表2为实验***采集的混合气体实验样本。以上实验每种浓度的MOS气体传感器响应数据样本都是进行五次独立重复实验获得的。
表1装配于气体传感器阵列的MOS气敏传感器
Figure BDA0002693145990000071
表2混合气体实验数据样本
Figure BDA0002693145990000072
以MOS气体传感器阵列中16号TGS2620型MOS气敏传感器出现加热电压断路故障为例,此时该气敏传感器由于缺少足够的工作温度,导致气敏材料不能够与被测气体进行化学反应,使得MOS气体传感器发生恒定输出故障。表3表示不同回归模型在恒定输出故障下的浓度估计的凭据相对误差。可见,在恒定故障情况下电子鼻实验***的识别与检测性能均有下降,特别是气体浓度检测精度有显著下降。表4为使用本专利方法的不同回归模型在恒定输出故障下的浓度估计的平均相对误差。可见,本专利提出的高鲁棒性化学传感器阵列软测量模型能够显著提升电子鼻***的分析结果的可靠性和准确性。
表3不同回归模型在恒定输出故障下的浓度估计的平均相对误差
Figure BDA0002693145990000081
表4使用本专利方法的不同回归模型在恒定输出故障下的浓度估计的平均相对误差
Figure BDA0002693145990000082
需要注意的是,具体实施方式仅仅是对本发明技术方案的解释和说明,不能以此限定权利保护范围。凡根据本发明权利要求书和说明书所做的仅仅是局部改变的,仍应落入本发明的保护范围内。

Claims (10)

1.一种高鲁棒性化学传感器阵列软测量方法,其特征在于包括以下步骤:
步骤一:将化学传感器阵列分成g个子传感器阵列,所述化学传感器阵列中各类传感器数量一致;
步骤二:采集每个子传感器阵列的输出信号组成训练样本集;
步骤三:针对每个子传感器阵列的训练样本,利用主成分分析法进行特征提取,得到每个子传感器阵列的特征集;
步骤四:利用特征集对子传感器阵列的回归模型进行训练;
步骤五:利用训练好的各子传感器阵列的回归模型对测量样本进行测量,并选取将各子传感器阵列的回归模型测量结果的中位值作为最终的测量结果。
2.根据权利要求1所述的一种高鲁棒性化学传感器阵列软测量方法,其特征在于所述步骤三中利用主成分分析法进行特征提取的具体步骤为:
假设
Figure FDA0002693145980000011
表示子传感器阵列的测量值矩阵,m表示传感器个数,n表示测量值的个数,步骤如下:
步骤三一:针对传感器阵列中每个传感器的输出信号进行漂移补偿;
步骤三二:对漂移补偿后的子传感器阵列进行标准化,得到矩阵X*
步骤三三:计算矩阵X*的协方差矩阵∑;
步骤三四:根据得到的协方差矩阵执行奇异值分解:
步骤三五:根据奇异值分解后的协方差矩阵∑,利用累积方差百分比得到主成分的个数k;
步骤三六:根据确定的主成分个数k,确定载荷矩阵
Figure FDA0002693145980000012
由协方差矩阵∑中最大的k个特征值对应的特征向量组成;
步骤三七:利用载荷矩阵
Figure FDA0002693145980000013
获得映射矩阵C:
Figure FDA0002693145980000014
步骤三八:利用映射矩阵C进行特征提取:
Figure FDA0002693145980000015
其中,
Figure FDA0002693145980000016
表示对化学传感器阵列测量值特征提取的结果。
3.根据权利要求2所述的一种高鲁棒性化学传感器阵列软测量方法,其特征在于所述步骤三一通过分式差分法进行漂移补偿。
4.根据权利要求3所述的一种高鲁棒性化学传感器阵列软测量方法,其特征在于所述分式差分法进行漂移补偿表示为:
xi=(Vi max-Vi min)/Vi min
其中,Vi max表示传感器响应信号的最大输出电压,Vi min表示传感器响应信号的最小输出电压。
5.根据权利要求4所述的一种高鲁棒性化学传感器阵列软测量方法,其特征在于所述步骤三二中矩阵X*表示为:
Figure FDA0002693145980000021
其中,Xi表示Xn×p的列向量,E(Xi)表示列向量均值,D(Xi)表示列向量的方差,i=1,2,...p,p为子传感器阵列中传感器的个数。
6.根据权利要求5所述的一种高鲁棒性化学传感器阵列软测量方法,其特征在于所述步骤三三中协方差矩阵∑表示为:
Figure FDA0002693145980000022
7.根据权利要求6所述的一种高鲁棒性化学传感器阵列软测量方法,其特征在于所述步骤三四中根据得到的协方差矩阵∑执行奇异值分解表示为:
∑=VΛVT
其中Λ表示一个对角矩阵,其对角线位置包含协方差矩阵∑的特征值λi,且以降序排列λ1≥λ2≥...≥λm≥0,V由∑的特征向量组成。
8.根据权利要求7所述的一种高鲁棒性化学传感器阵列软测量方法,其特征在于所述步骤三五中利用累积方差百分比得到主成分的个数k表示为:
Figure FDA0002693145980000023
当CPV值大于90时,k的值为主成分的个数,其中trace表示矩阵的迹数。
9.根据权利要求8所述的一种高鲁棒性化学传感器阵列软测量方法,其特征在于当CPV值大于90%,且小于95%时,k的值为主成分的个数。
10.根据权利要求9所述的一种高鲁棒性化学传感器阵列软测量方法,其特征在于所述载荷矩阵
Figure FDA0002693145980000031
表示为:
Figure FDA0002693145980000032
其中,uk表示选取得到的k个主成分对应的∑的特征向量。
CN202010997648.6A 2020-09-21 2020-09-21 一种高鲁棒性化学传感器阵列软测量方法 Pending CN112098605A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010997648.6A CN112098605A (zh) 2020-09-21 2020-09-21 一种高鲁棒性化学传感器阵列软测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010997648.6A CN112098605A (zh) 2020-09-21 2020-09-21 一种高鲁棒性化学传感器阵列软测量方法

Publications (1)

Publication Number Publication Date
CN112098605A true CN112098605A (zh) 2020-12-18

Family

ID=73756413

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010997648.6A Pending CN112098605A (zh) 2020-09-21 2020-09-21 一种高鲁棒性化学传感器阵列软测量方法

Country Status (1)

Country Link
CN (1) CN112098605A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113030197A (zh) * 2021-03-26 2021-06-25 哈尔滨工业大学 一种气体传感器漂移补偿方法
CN115808504A (zh) * 2022-12-01 2023-03-17 哈尔滨工业大学 一种用于浓度预测的气体传感器在线漂移补偿方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1801136A (zh) * 2006-01-10 2006-07-12 华东理工大学 机器嗅觉气味类别与强度同时确定方法
CN102944583A (zh) * 2012-11-30 2013-02-27 重庆大学 基于漂移补偿的金属氧化物气体传感器阵列浓度检测方法
CN105938116A (zh) * 2016-06-20 2016-09-14 吉林大学 基于模糊划分和模型集成的气体传感器阵列浓度检测方法
CN106569982A (zh) * 2016-07-11 2017-04-19 江南大学 带奇异点检测补偿的gpr在线软测量方法及***
CN108037183A (zh) * 2017-12-12 2018-05-15 杭州电子科技大学 一种基于电容式电桥结构的超声阵列气体传感器
CN108287184A (zh) * 2017-12-29 2018-07-17 东北电力大学 基于电子鼻的石蜡嗅味等级评定方法
CN109116042A (zh) * 2018-09-04 2019-01-01 中国农业大学 一种网络通信电子鼻检测***及检测方法
CN109611077A (zh) * 2018-11-14 2019-04-12 渤海大学 一种基于多模型的抽油井油液气油比在线软测量方法
CN105913079B (zh) * 2016-04-08 2019-04-23 重庆大学 基于目标域迁移极限学习的电子鼻异构数据识别方法
CN106841308B (zh) * 2016-12-26 2019-12-10 浙江工商大学 一种便携式智能电子鼻***及气味识别方法
CN111103325A (zh) * 2019-12-19 2020-05-05 南京益得冠电子科技有限公司 一种基于集成神经网络学习的电子鼻信号漂移补偿方法
CN111126575A (zh) * 2020-01-09 2020-05-08 同济大学 基于机器学习的气体传感器阵列混合气体检测方法及装置

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1801136A (zh) * 2006-01-10 2006-07-12 华东理工大学 机器嗅觉气味类别与强度同时确定方法
CN102944583A (zh) * 2012-11-30 2013-02-27 重庆大学 基于漂移补偿的金属氧化物气体传感器阵列浓度检测方法
CN102944583B (zh) * 2012-11-30 2014-05-14 重庆大学 基于漂移补偿的金属氧化物气体传感器阵列浓度检测方法
CN105913079B (zh) * 2016-04-08 2019-04-23 重庆大学 基于目标域迁移极限学习的电子鼻异构数据识别方法
CN105938116A (zh) * 2016-06-20 2016-09-14 吉林大学 基于模糊划分和模型集成的气体传感器阵列浓度检测方法
CN106569982A (zh) * 2016-07-11 2017-04-19 江南大学 带奇异点检测补偿的gpr在线软测量方法及***
CN106841308B (zh) * 2016-12-26 2019-12-10 浙江工商大学 一种便携式智能电子鼻***及气味识别方法
CN108037183A (zh) * 2017-12-12 2018-05-15 杭州电子科技大学 一种基于电容式电桥结构的超声阵列气体传感器
CN108287184A (zh) * 2017-12-29 2018-07-17 东北电力大学 基于电子鼻的石蜡嗅味等级评定方法
CN109116042A (zh) * 2018-09-04 2019-01-01 中国农业大学 一种网络通信电子鼻检测***及检测方法
CN109611077A (zh) * 2018-11-14 2019-04-12 渤海大学 一种基于多模型的抽油井油液气油比在线软测量方法
CN111103325A (zh) * 2019-12-19 2020-05-05 南京益得冠电子科技有限公司 一种基于集成神经网络学习的电子鼻信号漂移补偿方法
CN111126575A (zh) * 2020-01-09 2020-05-08 同济大学 基于机器学习的气体传感器阵列混合气体检测方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
陈寅生等: "自确认金属氧化物半导体气体传感器阵列及其应用研究", 《传感技术学报》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113030197A (zh) * 2021-03-26 2021-06-25 哈尔滨工业大学 一种气体传感器漂移补偿方法
CN115808504A (zh) * 2022-12-01 2023-03-17 哈尔滨工业大学 一种用于浓度预测的气体传感器在线漂移补偿方法
CN115808504B (zh) * 2022-12-01 2024-06-04 哈尔滨工业大学 一种用于浓度预测的气体传感器在线漂移补偿方法

Similar Documents

Publication Publication Date Title
Blein-Nicolas et al. Thousand and one ways to quantify and compare protein abundances in label-free bottom-up proteomics
Richards et al. Multivariate data analysis in electroanalytical chemistry
Wei et al. Classification and prediction of rice wines with different marked ages by using a voltammetric electronic tongue
CN112098605A (zh) 一种高鲁棒性化学传感器阵列软测量方法
CN106841308B (zh) 一种便携式智能电子鼻***及气味识别方法
Xu et al. Comparison of machine learning algorithms for concentration detection and prediction of formaldehyde based on electronic nose
CN112462001B (zh) 一种基于条件生成对抗网络进行数据增广的气体传感器阵列模型校准方法
Miszczyk et al. Multispectral impedance quality testing of coil-coating system using principal component analysis
Chen et al. Fault detection, isolation, and diagnosis of status self-validating gas sensor arrays
Yu et al. Pure milk brands classification by means of a voltammetric electronic tongue and multivariate analysis
Cai et al. Determination of Chinese Angelica honey adulterated with rice syrup by an electrochemical sensor and chemometrics
Yang et al. A real-time fault detection and isolation strategy for gas sensor arrays
Sorrentino et al. Determination of the distribution of relaxation times through Loewner framework: A direct and versatile approach
Li et al. Voltammetric electronic tongue for the qualitative analysis of milk adulterated with urea combined with multi-way data analysis
Shaffer et al. Multiway analysis of preconcentrator‐sampled surface acoustic wave chemical sensor array data
Llobet et al. Electronic nose simulation tool centred on PSpice
Jin et al. Chemometric analysis of gas chromatographic peaks measured with a microsensor array: methodology and performance assessment
CN115047853A (zh) 基于递推规范变量残差和核主元分析的微小故障检测方法
Song et al. Design and implementation a real-time electronic nose system
Murugan et al. ELENA: A low-cost portable electronic nose for alcohol characterization
Xia et al. A method for recognition of mixed gas composition based on PCA and KNN
Men et al. Data fusion of electronic nose and electronic tongue for discrimination of Chinese liquors
Lelono et al. Quality Classification of Chili Sauce Using Electronic Nose with Principal Component Analysis
Natale et al. Data analysis for chemical sensor arrays
Yan et al. Sensor evaluation in a breath analysis system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20201218