CN112083018A - 一种树木节疤无损检测方法 - Google Patents

一种树木节疤无损检测方法 Download PDF

Info

Publication number
CN112083018A
CN112083018A CN202010954938.2A CN202010954938A CN112083018A CN 112083018 A CN112083018 A CN 112083018A CN 202010954938 A CN202010954938 A CN 202010954938A CN 112083018 A CN112083018 A CN 112083018A
Authority
CN
China
Prior art keywords
tree
knots
nodes
digital
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010954938.2A
Other languages
English (en)
Inventor
孙楠
翁海龙
李义彬
钟兆华
朱万才
李亚洲
吴瑶
张怡春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FORESTRY RESEARCH INSTITUTE OF HEILONGJIANG PROVINCE
Original Assignee
FORESTRY RESEARCH INSTITUTE OF HEILONGJIANG PROVINCE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FORESTRY RESEARCH INSTITUTE OF HEILONGJIANG PROVINCE filed Critical FORESTRY RESEARCH INSTITUTE OF HEILONGJIANG PROVINCE
Priority to CN202010954938.2A priority Critical patent/CN112083018A/zh
Publication of CN112083018A publication Critical patent/CN112083018A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/046Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/083Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the radiation being X-rays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/18Investigating the presence of flaws defects or foreign matter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/03Investigating materials by wave or particle radiation by transmission
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/03Investigating materials by wave or particle radiation by transmission
    • G01N2223/04Investigating materials by wave or particle radiation by transmission and measuring absorption
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/10Different kinds of radiation or particles
    • G01N2223/101Different kinds of radiation or particles electromagnetic radiation
    • G01N2223/1016X-ray
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/40Imaging
    • G01N2223/401Imaging image processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/619Specific applications or type of materials wood
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/646Specific applications or type of materials flaws, defects

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pulmonology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Theoretical Computer Science (AREA)
  • Toxicology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

一种树木节疤无损检测方法,它涉及一种检测方法,具体涉及一种树木节疤无损检测方法。本发明为了解决现有节疤测量方法浪费木材,数据缺失,且获取的节疤数据平面化,不能立体呈现节疤空间位置和分布规律的问题。本发明的具体步骤为:步骤一、用工业CT机对活立木由上至下进行扫描;步骤二、林木树干扫描所得信息经计算后获得X线衰减系数或吸收系数,再排列成矩阵,即数字矩阵,数字矩阵存储于磁盘中;步骤三、木材中材质密度越大灰度越小;步骤四、判断树木节疤种类;步骤五、节子生长缓慢,年轮及边材较致密,形成白色线条明显,节子年轮线不清晰;步骤六、展示CT二维断层图像(X,Z)和(Y,Z)。本发明属于林业领域。

Description

一种树木节疤无损检测方法
技术领域
本发明涉及一种检测方法,具体涉及一种树木节疤无损检测方法,属于林业领域。
背景技术
在林业研究过程中,树木节疤是评价林木质量的一个重要指标,常规检测方法是样地调查、计算标准木、伐倒后在树冠基部以下,含有死枝或节子的轮枝附近,截取10-30cm长的木段,每个木段选取两个最大的死枝或节子,沿树干方向用油锯通过树干髓心进行纵剖,以获取节疤数据。
采用常规方法测量时,有三个不足:一是伐取解析木需要直接伐树,伐树审批程序复杂,树干被截成30cm左右的木段进行纵剖,造成木材极大浪费;二是每30cm的木段只能获取的两个节疤数据,事实上有多个节疤存在,造成数据严重缺失;三是获取的节疤数据比较平面化,不能够立体呈现节疤的空间位置和分布规律。
发明内容
本发明为解决现有节疤测量方法浪费木材,数据缺失,且获取的节疤数据平面化,不能立体呈现节疤空间位置和分布规律的问题,进而提出一种树木节疤无损检测方法。
本发明为解决上述问题采取的技术方案是:本发明的具体步骤如下:
步骤一、用工业CT机对活立木由上至下进行扫描,由探测器接收透过该层面的X线,转变为可见光后,由光电转换器转变为电信号,再经模拟/数字转换器转为数字信号,VGS tudio MAX软件处理;
步骤二、林木树干扫描所得信息经计算后获得X线衰减系数或吸收系数,再排列成矩阵,即数字矩阵,数字矩阵存储于磁盘中;
步骤三、木材中材质密度越大灰度越小,数字为白色,反之呈灰黑色,无密度值为黑色;由于树木年轮线密度较高,呈白色线条,在有节疤的图像中,白色线条由髓心向外呈放射状,与树木年轮线相割;
步骤四、判断树木节疤种类;
步骤五、节子生长缓慢,年轮及边材较致密,形成白色线条明显,节子年轮线不清晰,节子年龄与相割年轮线数一致;
步骤六、展示CT二维断层图像(X,Z)和(Y,Z)。
进一步的,步骤一中用工业CT机对活立木由上至下按0.1mm厚度的层面进行扫描。
进一步的,步骤二中数字矩阵经数字/模拟转换器把数字矩阵中的每个数字转为由黑到白不等灰度的小方块,即像素,并按矩阵排列,即构成CT图像。
进一步的,步骤二中层面扫描形成x,y坐标值点云数据,构成二维断层图像;所有层面集合为x,y,z值点云数据,构成三维立体图像。
进一步的,步骤四中树木年轮线不闭合,节疤放射状线条穿过边材至树木表皮外为外生节,树木边材年轮线闭合,外端不显示节的则形成包藏节,节外边缘有明显的黑色线条则表明节与木材材质分离,为死节,顶端有斑块状黑色为空洞。
本发明的有益效果是:应用本技术不但可以准确树木节疤的所有数据,而且能够立体的呈现节疤的空间位置和分布规律;本技术采用活立木检测,不用伐取解析木,省去了采伐审批的复杂流程,不造成木材浪费;本技术对树干每0.1mm进行一次CT扫描,获得数据量大,准确度高,能够准确的获得树木的节疤数据。
附图说明
图1是工业CT机的成像技术原理示意图;
图2是树木节平面示意图;
图3是节疤的空间位置示意图;
图1中1-工业CT机的X射线焦点,2-维束,3-木段,4-平板探测器,5-成像平面,6-旋转台。
具体实施方式
具体实施方式一:结合图1至图3说明本实施方式,本实施方式所述一种树木节疤无损检测方法的具体步骤如下:
步骤一、用工业CT机对活立木由上至下进行扫描,由探测器接收透过该层面的X线,转变为可见光后,由光电转换器转变为电信号,再经模拟/数字转换器转为数字信号,VGS tudio MAX软件处理;
步骤二、林木树干扫描所得信息经计算后获得X线衰减系数或吸收系数,再排列成矩阵,即数字矩阵,数字矩阵存储于磁盘中;
步骤三、木材中材质密度越大灰度越小,数字为白色,反之呈灰黑色,无密度值为黑色;由于树木年轮线密度较高,呈白色线条,在有节疤的图像中,白色线条由髓心向外呈放射状,与树木年轮线相割;
步骤四、判断树木节疤种类;
步骤五、节子生长缓慢,年轮及边材较致密,形成白色线条明显,节子年轮线不清晰,节子年龄与相割年轮线数一致;
步骤六、展示CT二维断层图像(X,Z)和(Y,Z)。
具体实施方式二:结合图1说明本实施方式,本实施方式所述一种树木节疤无损检测方法的步骤一中用工业CT机对活立木由上至下按0.1mm厚度的层面进行扫描。
具体实施方式三:结合图1说明本实施方式,本实施方式所述一种树木节疤无损检测方法的步骤二中数字矩阵经数字/模拟转换器把数字矩阵中的每个数字转为由黑到白不等灰度的小方块,即像素,并按矩阵排列,即构成CT图像。
具体实施方式四:结合图1说明本实施方式,本实施方式所述一种树木节疤无损检测方法的步骤二中层面扫描形成x,y坐标值点云数据,构成二维断层图像;所有层面集合为x,y,z值点云数据,构成三维立体图像。
具体实施方式五:结合图1说明本实施方式,本实施方式所述一种树木节疤无损检测方法的步骤四中树木年轮线不闭合,节疤放射状线条穿过边材至树木表皮外为外生节,树木边材年轮线闭合,外端不显示节的则形成包藏节,节外边缘有明显的黑色线条则表明节与木材材质分离,为死节,顶端有斑块状黑色为空洞。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的技术内容做出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案内容,依据本发明的技术实质,在本发明的精神和原则之内,对以上实施例所作的任何简单的修改、等同替换与改进等,均仍属于本发明技术方案的保护范围之内。

Claims (5)

1.一种树木节疤无损检测方法,其特征在于:所述一种树木节疤无损检测方法的具体步骤如下:
步骤一、用工业CT机对活立木由上至下进行扫描,由探测器接收透过该层面的X线,转变为可见光后,由光电转换器转变为电信号,再经模拟/数字转换器转为数字信号,VGStudio MAX软件处理;
步骤二、林木树干扫描所得信息经计算后获得X线衰减系数或吸收系数,再排列成矩阵,即数字矩阵,数字矩阵存储于磁盘中;
步骤三、木材中材质密度越大灰度越小,数字为白色,反之呈灰黑色,无密度值为黑色;由于树木年轮线密度较高,呈白色线条,在有节疤的图像中,白色线条由髓心向外呈放射状,与树木年轮线相割;
步骤四、判断树木节疤种类;
步骤五、节子生长缓慢,年轮及边材较致密,形成白色线条明显,节子年轮线不清晰,节子年龄与相割年轮线数一致;
步骤六、展示CT二维断层图像(X,Z)和(Y,Z)。
2.根据权利要求1所述一种树木节疤无损检测方法,其特征在于:步骤一中用工业CT机对活立木由上至下按0.1mm厚度的层面进行扫描。
3.根据权利要求1所述一种树木节疤无损检测方法,其特征在于:步骤二中数字矩阵经数字/模拟转换器把数字矩阵中的每个数字转为由黑到白不等灰度的小方块,即像素,并按矩阵排列,即构成CT图像。
4.根据权利要求1所述一种树木节疤无损检测方法,其特征在于:步骤二中层面扫描形成x,y坐标值点云数据,构成二维断层图像;所有层面集合为x,y,z值点云数据,构成三维立体图像。
5.根据权利要求1所述一种树木节疤无损检测方法,其特征在于:步骤四中树木年轮线不闭合,节疤放射状线条穿过边材至树木表皮外为外生节,树木边材年轮线闭合,外端不显示节的则形成包藏节,节外边缘有明显的黑色线条则表明节与木材材质分离,为死节,顶端有斑块状黑色为空洞。
CN202010954938.2A 2020-09-11 2020-09-11 一种树木节疤无损检测方法 Pending CN112083018A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010954938.2A CN112083018A (zh) 2020-09-11 2020-09-11 一种树木节疤无损检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010954938.2A CN112083018A (zh) 2020-09-11 2020-09-11 一种树木节疤无损检测方法

Publications (1)

Publication Number Publication Date
CN112083018A true CN112083018A (zh) 2020-12-15

Family

ID=73737603

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010954938.2A Pending CN112083018A (zh) 2020-09-11 2020-09-11 一种树木节疤无损检测方法

Country Status (1)

Country Link
CN (1) CN112083018A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113674233A (zh) * 2021-08-13 2021-11-19 沭阳东川木业有限公司 基于人工智能的木材优选锯视觉检测方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006226950A (ja) * 2005-02-21 2006-08-31 Si Seiko Co Ltd 木材の検査方法及び木材の検査装置
CN109738524A (zh) * 2019-01-30 2019-05-10 南京林业大学 一种阔叶材原木内部质量评估***及应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006226950A (ja) * 2005-02-21 2006-08-31 Si Seiko Co Ltd 木材の検査方法及び木材の検査装置
CN109738524A (zh) * 2019-01-30 2019-05-10 南京林业大学 一种阔叶材原木内部质量评估***及应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
丁建文 等: "CT技术在木材工业中的应用", 木材加工机械, no. 04, pages 44 - 47 *
葛浙东 等: "断层扫描技术在木材无损检测中的应用", 木材工业, vol. 30, no. 03, pages 49 - 52 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113674233A (zh) * 2021-08-13 2021-11-19 沭阳东川木业有限公司 基于人工智能的木材优选锯视觉检测方法

Similar Documents

Publication Publication Date Title
Saarinen et al. Feasibility of Terrestrial laser scanning for collecting stem volume information from single trees
Hosoi et al. 3-D voxel-based solid modeling of a broad-leaved tree for accurate volume estimation using portable scanning lidar
Liang et al. Terrestrial laser scanning in forest inventories
Huang et al. Using terrestrial laser scanner for estimating leaf areas of individual trees in a conifer forest
Dassot et al. The use of terrestrial LiDAR technology in forest science: application fields, benefits and challenges
Thies* et al. Three-dimensional reconstruction of stems for assessment of taper, sweep and lean based on laser scanning of standing trees
Lau et al. Estimating architecture-based metabolic scaling exponents of tropical trees using terrestrial LiDAR and 3D modelling
Himmelbauer et al. Estimating length, average diameter and surface area of roots using two different image analyses systems
Gardiner et al. Models for predicting wood density of British-grown Sitka spruce
Srinivasan et al. Terrestrial laser scanning as an effective tool to retrieve tree level height, crown width, and stem diameter
Holmgren Prediction of tree height, basal area and stem volume in forest stands using airborne laser scanning
Dassot et al. Terrestrial laser scanning for measuring the solid wood volume, including branches, of adult standing trees in the forest environment
Thies et al. Evaluation and future prospects of terrestrial laser scanning for standardized forest inventories
Wang et al. Acoustic tomography for decay detection in black cherry trees
Di Iorio et al. Effect of tree density on root distribution in Fagus sylvatica stands: a semi-automatic digitising device approach to trench wall method
Pyörälä et al. Assessing log geometry and wood quality in standing timber using terrestrial laser-scanning point clouds
Quintilhan et al. Growth-ring boundaries of tropical tree species: Aiding delimitation by long histological sections and wood density profiles
Dutilleul et al. Crown traits of coniferous trees and their relation to shade tolerance can differ with leaf type: a biophysical demonstration using computed tomography scanning data
Luck et al. Exploring the variability of tropical savanna tree structural allometry with terrestrial laser scanning
Linhares et al. Structural stability of urban trees using visual and instrumental techniques: A review
Li et al. A new approach for estimating living vegetation volume based on terrestrial point cloud data
CN112083018A (zh) 一种树木节疤无损检测方法
Liang Feasibility of Terrestrial Laser Scanning for Plotwise Forest Inventories
Todo et al. Reconstruction of conifer root systems mapped with point cloud data obtained by 3D laser scanning compared with manual measurement
Karlinasari et al. Tree morphometric relationships and dynamic elasticity properties in tropical rain tree (Samanea saman Jacq. Merr)

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination