CN112079516A - 一种高浓度盐水零排放与分盐资源化处理工艺 - Google Patents

一种高浓度盐水零排放与分盐资源化处理工艺 Download PDF

Info

Publication number
CN112079516A
CN112079516A CN202011094209.0A CN202011094209A CN112079516A CN 112079516 A CN112079516 A CN 112079516A CN 202011094209 A CN202011094209 A CN 202011094209A CN 112079516 A CN112079516 A CN 112079516A
Authority
CN
China
Prior art keywords
salt
low
treatment process
temperature evaporation
evaporation system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011094209.0A
Other languages
English (en)
Inventor
刘军
杨龙
宫建瑞
孙少龙
刘彦奎
王英惠
韩珊珊
程池权
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Wondux Environmental Protection Technology Co ltd
Original Assignee
Nanjing Wondux Environmental Protection Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Wondux Environmental Protection Technology Co ltd filed Critical Nanjing Wondux Environmental Protection Technology Co ltd
Priority to CN202011094209.0A priority Critical patent/CN112079516A/zh
Publication of CN112079516A publication Critical patent/CN112079516A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D3/00Halides of sodium, potassium or alkali metals in general
    • C01D3/04Chlorides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D3/00Halides of sodium, potassium or alkali metals in general
    • C01D3/14Purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D3/00Halides of sodium, potassium or alkali metals in general
    • C01D3/22Preparation in the form of granules, pieces, or other shaped products
    • C01D3/24Influencing the crystallisation process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D5/00Sulfates or sulfites of sodium, potassium or alkali metals in general
    • C01D5/16Purification
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/442Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by nanofiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F2001/007Processes including a sedimentation step
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/08Multistage treatments, e.g. repetition of the same process step under different conditions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/026Fenton's reagent
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • C02F5/08Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Abstract

本发明提供一种高浓度盐水零排放与分盐资源化处理工艺,包括:高浓度盐水经预处理去除悬浮颗粒,然后进入高级氧化反应器,反应器出水经化学软化反应池与沉淀池,去除废水中的钙离子和镁离子,降低废水硬度,沉淀池上清液经pH调节后进入纳滤膜工艺,其清液进入反渗透膜工艺,反渗透清液回用,其浓水与纳滤浓水混合后进入第一低温蒸发***,馏出的蒸发冷凝液回用,浓缩液进入冷冻结晶器,晶浆经分离干燥后获得工业级的硫酸钠结晶盐,未结晶液体进入第二低温蒸发***,馏出的蒸发冷凝液回用,浓缩液则以晶浆形式排出,经分离干燥后获得工业级的氯化钠结晶盐。本发明工艺过程简单,安全系数高,能量利用率高,整套工艺自动化程度高,无二次污染。

Description

一种高浓度盐水零排放与分盐资源化处理工艺
技术领域
本发明涉及一种高浓度盐水零排放与分盐资源化处理工艺,属煤化工废水处理技术领域。
背景技术
随着工业的快速发展以及煤炭资源需求的不断增加,煤炭产业取得了长足的发展,使得相关产业也得到了改善与进步。然而在生产煤炭和相关产品的同时,随之而来的污染问题也越来越突出,严重阻碍了我国生态平衡性和环境友好型社会的建设。其中煤化工生产过程中排放的高含盐废水,若直接排放,不仅会对环境造成污染,甚至会严重污染地下水和土壤等。因此,需要采用各种组合工艺对其进行深度处理。在煤化工行业中,含盐废水中无机盐的来源与补充新鲜水和循环冷却水密切相关,并且在除盐水生产过程中也会产生新的高含盐废水。另外在煤化工有机废水的处理过程中,由于各类处理药剂的添加,也会导致高含盐废水的产生。例如在国内某大型煤炭企业中,煤制天然气项目主要通过补充新鲜水来确保水量,而该过程中由于新鲜水的不断补充,会直接给***带入超过一半以上的盐量。同时在生产过程以及水***添加化学药剂的过程中,也会产生近30%的盐量。虽然循环冷却***的循环倍数可通过***优化和选择减少无机盐的带入,但是废水中却难以实现含盐量的真正降低。
针对煤化工高浓度盐水,零排放处理工艺不仅流程相对较长,而且处理工序存在一定的复杂性。主要由于其中涉及到的工艺较多,每个工艺之间联系紧密,会互相产生影响。若整个工艺处理的某个环节达不到预期效果,不仅会影响整个水处理体系的稳定、高效运行,严重情况下甚至会导致后续环节无法正常运行。因此,采取行之有效的处理工艺,确保各个处理环节有机衔接,从而保障工艺流程的顺畅性,对实现零排放具有重要意义。
目前,根据我国现已投入使用的高浓度盐水零排放处理工艺,蒸发结晶处理技术是废水零排放技术应用的瓶颈,同样该工艺应用也是存在较多争议。煤化工高浓度盐水中无机盐以杂盐的形式存在,若处理过程中未经分盐,通过蒸发结晶处理后形成的结晶固体,由于组分复杂,有害物质浓度高,一般情况下该类结晶盐可视为危险固体废弃物,需进行处理。如处理不当,该类结晶盐在淋溶作用下会形成二次污染。从结晶技术角度出发,单组份盐的结晶技术已经比较成熟,然而单组份盐的溶解度数据和速率常数并不适用于混合盐的复杂***,即使混盐中其它盐类的数量较少,也可能对结晶过程产生很大的影响。同时,目前已在高浓度盐水零排放处理中应用的常规蒸发技术有单效蒸发、多效蒸发及MVR蒸发等。针对煤化工高含盐废水,由于其组分变化大,存在多种盐类并存的情况,在常规蒸发技术的运行温度下,蒸发器内还会产生泡沫,具有极强的腐蚀性,同时浓缩液中的无机盐离子极易导致设备严重的结垢,降低换热效率与蒸发能效比,降低运行稳定性。因此针对目前处理技术存在的问题及不足,特此开发本申请专利所提出的高效、节能、操作性强的高浓度盐水零排放与分盐资源化处理工艺。
发明内容
本发明的目的在于提出一种高浓度盐水零排放与分盐资源化处理工艺。该处理工艺具有可操作性强,自动化程度高,安全系数高,能耗低,能量利用率高,设备投资运行成本低,清洁无污染的特点。同时,在蒸发结晶环节创新地提出了一种新型的低温蒸发技术,结合冷冻结晶技术,实现煤化工高浓度盐水零排放和无机盐资源化利用。
技术方案:
一种高浓度盐水零排放与分盐资源化处理工艺,包括如下步骤:高浓度盐水经预处理后进入高级氧化反应器,高级氧化反应器出水经化学软化反应池与沉淀池,去除废水中的钙离子和镁离子,沉淀池上清液经pH调节后进入纳滤膜工艺,其清液进入反渗透膜工艺,反渗透清液回用,其浓水与纳滤浓水混合后进入第一低温蒸发***,第一低温蒸发***馏出的蒸发冷凝液回用,浓缩液进入冷冻结晶器,晶浆经分离干燥后获得工业级的硫酸钠结晶盐,冷冻结晶器未结晶液体进入第二低温蒸发***,由第二低温蒸发***馏出的蒸发冷凝液作为回用水回用,浓缩液则以晶浆形式排出,经分离干燥后获得工业级的氯化钠结晶盐。
作为改进,所述的预处理***采用的设备为混凝沉淀反应器或自动反冲洗过滤器,过滤器精度小于5μm。
作为改进,所述的高级氧化反应器为臭氧催化氧化反应器或Fenton氧化反应器。
作为改进,所述的软化反应池采用氢氧化钠与碳酸钠作为软化药剂。
作为改进,所述的沉淀池上清液出水利用盐酸调节pH至6.5~6.8。
作为改进,所述的第一低温蒸发***与第二低温蒸发***进料温度为60~80℃。
作为改进,所述的第一低温蒸发***与第二低温蒸发***采用气液两相直接接触式错流蒸发,其中气体为空气或氮气。
作为改进,第一低温蒸发***与第二低温蒸发***采用蒸汽、低品位热源作为能源,其配套设备采用的材质为非金属材料。
作为改进,所述的第一低温蒸发***与第二低温蒸发***产生的蒸发冷凝液一部分作为清液排出回用,一部分作为热源对母液进行预热,回收热量。低温蒸发***包括加热器和蒸发器,液体先经加热器加热至60~80℃,然后进入蒸发器。低温蒸发***可增加换热器和冷却器,换热器的热侧进口连接低温蒸发***的清液出口,热侧出口经冷却器冷却后回到蒸发器里。换热器的冷侧进口连接原水,冷侧出口连接加热器原水进口。
作为改进,所述的第一低温蒸发***中排出的蒸发冷凝液可对冷冻结晶器排出的液体进行预热,进一步回收热量。冷冻结晶出来的液体温度很低,可通过第一蒸发***排出的冷凝液利用换热器进行初步预热,再经过第二低温蒸发自身产生的冷凝液进行进一步预热。
作为改进,冷冻结晶器采用连续运行方式。
作为优选,第二低温蒸发***浓缩液所需的液固分离器采用离心干燥机或板框式压滤机,更优选的为离心干燥机。
有益效果
本发明采用具有普适性、简单易行的物化处理手段有效地将煤化工高浓度盐水处理至符合进膜要求。水质明显提高后的废水采用膜工艺***进行深度处理。膜工艺***由纳滤与反渗透两部分组成,纳滤产水直接进入反渗透进行末端处理,可使废水COD、盐含量达到排放标准,清液作为回用水进行回用。同时,采用新型低温蒸发技术对膜工艺处理后的浓缩液进行提浓脱水,两级低温蒸发结合冷冻结晶器可实现硫酸钠与氯化钠分盐处理,达到资源化利用。本发明中提及的新型低温蒸发技术可不受高硬度与高盐含量的限制,可采用较为廉价的非金属材料,不易结垢,设备投资成本低。同时综合利用厂区产生的废热和废蒸气,可节省总体能耗,使整体运行成本降低40%,大大降低运营负担,提高整体能源利用效率。本发明中通过热量回收***充分回收工艺中消耗的热量,进一步降低了能耗。本发明主要针对煤化工高浓度盐水,可以实现99%以上废水回用,并分离出工业级别的氯化钠(NaCl)和硫酸钠(Na2SO4)再利用,减少约90%危废处理量,节省危废处理成本。
附图说明
图1是一种高浓度盐水零排放与分盐资源化处理工艺流程图。
具体实施方式
本发明涉及一种高浓度盐水零排放与分盐资源化处理工艺,主要包括预处理***、高级氧化***、化学软化***、膜工艺***及蒸发结晶***。其中预处理***主要采用物化处理方法将废水中悬浮颗粒或固体杂质得到有效去除;高级氧化***则利用氧化技术去除COD,核心设备为氧化反应器。化学软化***包括加药反应池,加药***,沉淀池,污泥外排装置以及软水酸调节池。膜工艺***包括纳滤与反渗透膜处理工艺,纳滤与反渗透装置互相连接,纳滤清液作为反渗透原液进入反渗透膜工艺,反渗透清液回用。蒸发结晶***由第一低温蒸发装置、冷冻结晶器、第二低温蒸发装置以及固液分离器组成,零排放核心***,旨在实现***分盐及其资源化回收利用。
实施例1
本发明实施例中,高浓度盐水零排放与分盐资源化处理工艺流程图如图1所示。来自煤化工回用水装置产生的高浓度盐水,处理量约为500m3/h,其水质主要指标:pH为7~8,COD约200mg/L,TDS为15000mg/L,总硬度1000mg/L。经自动反冲洗过滤器后,去除废水中的微小颗粒物或悬浮物,使***SS降低至较低水平。过滤器连接着臭氧催化氧化反应器,过滤液从反应器底部进入,臭氧则由臭氧发生器提供也由反应器底部进入。废水与臭氧在反应器催化剂床层发生强氧化反应,将水中有机物氧化成二氧化碳与水,同时,也可将部分难降解有机物开环、断键等,使得废水COD降低至80mg/L以下。从反应器顶部排出的废水置于缓冲罐中,经由离心泵送入化学软化反应池,反应池内通过加药***加入氢氧化钠与碳酸钠溶液,充分搅拌反应后进入沉淀池,反应生成的沉淀物在沉淀池内充分沉淀,作为污泥定期排出***,进入污泥处理工序。去除钙、镁离子后的废水总硬度降低至50mg/L以下,由沉淀池溢流至pH调节池,通过加入盐酸使得废水pH值控制在6.5~6.8。由pH调节池的产水作为纳滤膜进水原料,NF产生的清水直接进入RO膜***中,RO膜清水侧产水直接回用。
NF与RO浓液混合后TDS达到约50000~70000mg/L,混合浓液进入第一低温蒸发***,料液经加热器加热至80℃后,以喷淋形式进入蒸发器内,与自上而下的气体在填料层中进行气液直接接触,发生传热传质。蒸发器顶部馏出饱和热空气,经冷凝后析出冷凝液,冷凝液一部分作为回用水排出,一部分回流至第一低温蒸发***预热器,回收部分热量。浓缩液从蒸发器底部排出,进入冷冻结晶器,可以得到纯度92%左右的工业级硫酸钠。结晶器产出的液体作为第二低温蒸发***的原料进行蒸发浓缩,该蒸发装置与第一低温蒸发***装置相同,料液经加热器加热至80℃,蒸发产出的冷凝液一部分与第一低温蒸发***冷凝液混合作为回用水排出,混合冷凝液主要水质指标为COD约20mg/L,电导率95μS/cm,TDS约45mg/L;一部分回流至第二低温蒸发***预热器。另外,第一与第二低温蒸发***回流至预热器的冷凝液可进行混合后对冷冻结晶器产出水进行初步预热,进一步回收热量。第二蒸发***的浓缩液经离心干燥机,结晶干燥后获得纯度约91%左右的工业级氯化钠。未结晶的液体返回至第二蒸发***进料处。经过本发明处理煤化工回用水装置产生的高浓度盐水,可有效将硫酸钠与氯化钠进行分盐处理,获得纯度均大于90%的工业级无机盐,***排出的清液由RO产水、第一与第二低温蒸发***冷凝液混合而成,作为回用水回用,从而达到零排放的要求。

Claims (10)

1.一种高浓度盐水零排放与分盐资源化处理工艺,其特征在于,包括如下步骤:高浓度盐水经预处理后进入高级氧化反应器,高级氧化反应器出水经化学软化反应池与沉淀池,去除废水中的钙离子和镁离子,沉淀池上清液经pH调节后进入纳滤膜工艺,其清液进入反渗透膜工艺,反渗透清液回用,其浓水与纳滤浓水混合后进入第一低温蒸发***,第一低温蒸发***馏出的蒸发冷凝液回用,浓缩液进入冷冻结晶器,晶浆经分离干燥后获得工业级的硫酸钠结晶盐,冷冻结晶器未结晶液体进入第二低温蒸发***,由第二低温蒸发***馏出的蒸发冷凝液作为回用水回用,浓缩液则以晶浆形式排出,经分离干燥后获得工业级的氯化钠结晶盐。
2.根据权利要求1所述的一种高浓度盐水零排放与分盐资源化处理工艺,其特征在于:所述的预处理***采用的设备为混凝沉淀反应器或自动反冲洗过滤器,过滤器精度小于5μm。
3.根据权利要求1所述的一种高浓度盐水零排放与分盐资源化处理工艺,其特征在于:所述的高级氧化反应器为臭氧催化氧化反应器或Fenton氧化反应器。
4.根据权利要求1所述的一种高浓度盐水零排放与分盐资源化处理工艺,其特征在于:所述的软化反应池采用氢氧化钠与碳酸钠作为软化药剂。
5.根据权利要求1所述的一种高浓度盐水零排放与分盐资源化处理工艺,其特征在于:所述的沉淀池上清液出水利用盐酸调节pH至6.5~6.8。
6.根据权利要求1所述的一种高浓度盐水零排放与分盐资源化处理工艺,其特征在于:所述的第一低温蒸发***与第二低温蒸发***进料温度为60~80℃。
7.根据权利要求1所述的一种高浓度盐水零排放与分盐资源化处理工艺,其特征在于:所述的第一低温蒸发***与第二低温蒸发***采用气液两相直接接触式错流蒸发,其中气体为空气或氮气。
8.根据权利要求1所述的一种高浓度盐水零排放与分盐资源化处理工艺,其特征在于:第一低温蒸发***与第二低温蒸发***采用蒸汽、低品位热源作为能源,其配套设备采用的材质为非金属材料。
9.根据权利要求1所述的一种高浓度盐水零排放与分盐资源化处理工艺,其特征在于:所述的第一低温蒸发***与第二低温蒸发***产生的蒸发冷凝液一部分作为清液排出回用,一部分作为热源对母液进行预热,回收热量。
10.根据权利要求1所述的一种高浓度盐水零排放与分盐资源化处理工艺,其特征在于:所述的第一低温蒸发***中排出的蒸发冷凝液可对冷冻结晶器排出的液体进行预热,进一步回收热量。
CN202011094209.0A 2020-10-14 2020-10-14 一种高浓度盐水零排放与分盐资源化处理工艺 Pending CN112079516A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011094209.0A CN112079516A (zh) 2020-10-14 2020-10-14 一种高浓度盐水零排放与分盐资源化处理工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011094209.0A CN112079516A (zh) 2020-10-14 2020-10-14 一种高浓度盐水零排放与分盐资源化处理工艺

Publications (1)

Publication Number Publication Date
CN112079516A true CN112079516A (zh) 2020-12-15

Family

ID=73730990

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011094209.0A Pending CN112079516A (zh) 2020-10-14 2020-10-14 一种高浓度盐水零排放与分盐资源化处理工艺

Country Status (1)

Country Link
CN (1) CN112079516A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114751575A (zh) * 2022-04-25 2022-07-15 湖南东晟环保有限公司 一种不产生杂盐的高盐水零排放处理***
CN115140882A (zh) * 2022-08-01 2022-10-04 光大绿色环保管理(深圳)有限公司 渗滤液浓缩液的资源化处置工艺
CN116444105A (zh) * 2023-06-14 2023-07-18 华电电力科学研究院有限公司 一种高硬度高矿化度煤矿矿井水资源化预处理方法及装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114751575A (zh) * 2022-04-25 2022-07-15 湖南东晟环保有限公司 一种不产生杂盐的高盐水零排放处理***
CN115140882A (zh) * 2022-08-01 2022-10-04 光大绿色环保管理(深圳)有限公司 渗滤液浓缩液的资源化处置工艺
CN116444105A (zh) * 2023-06-14 2023-07-18 华电电力科学研究院有限公司 一种高硬度高矿化度煤矿矿井水资源化预处理方法及装置
CN116444105B (zh) * 2023-06-14 2023-09-08 华电电力科学研究院有限公司 一种高硬度高矿化度煤矿矿井水资源化预处理方法及装置

Similar Documents

Publication Publication Date Title
WO2022100313A1 (zh) 一种矿井水深度处理***及其处理矿井水的方法
CN106830465B (zh) 一种含盐废水的分盐及纯化回收方法
JP6764850B2 (ja) ブライン廃水の処理のための方法およびシステム
CN108529802B (zh) 钛白粉生产排放高含盐废水零排工艺
CN112079516A (zh) 一种高浓度盐水零排放与分盐资源化处理工艺
CN108117207B (zh) 一种含盐废水零排放处理工艺方法
CN108117206B (zh) 含盐废水零排放处理工艺方法
CN111362283B (zh) 一种黏胶废水资源化处理方法
CN113955888A (zh) 一种焦化废水中浓盐水回收利用的集成处理***及工艺
CN113480077A (zh) 一种高盐高cod废水的回收与零排放处理装置及工艺
CN112679013A (zh) 铜冶炼高盐废水零排放处理装置及处理方法
CN114906989A (zh) 一种煤化工废水分盐零排放的工艺***及处理方法
CN112499863A (zh) 一种高浓废水、废盐资源化综合利用的方法
CN111362480A (zh) 一种处理反渗透浓盐水的方法
CN111777220A (zh) 一种新型高含盐量、高永硬度废水软化处理方法
CN105481160B (zh) 一种浓盐水零排放制取工业盐的方法及装置
WO2024060693A1 (zh) 一种煤化工废水处理方法及***
CN112299613A (zh) 一种用于污水处理中的零排放工艺***
CN114105349A (zh) 一种压裂返排液的零排放资源化利用***及其工艺方法
CN212800022U (zh) 一种高浓度盐水零排放与分盐资源化处理***
CN216513289U (zh) 一种资源化协同处理废水的***
CN205473142U (zh) 一种浓盐水零排放制取工业盐的装置
CN112960835A (zh) 一种pta污水反渗透浓水纳滤分盐***及方法
CN206089336U (zh) 污水资源化零排放装置
CN214735111U (zh) 一种利用化工浓盐水连续生产合格工业盐的装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination