CN112041265A - 羟基磷灰石 - Google Patents

羟基磷灰石 Download PDF

Info

Publication number
CN112041265A
CN112041265A CN201980028726.7A CN201980028726A CN112041265A CN 112041265 A CN112041265 A CN 112041265A CN 201980028726 A CN201980028726 A CN 201980028726A CN 112041265 A CN112041265 A CN 112041265A
Authority
CN
China
Prior art keywords
hydroxyapatite
crystalline
present
microcrystalline
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201980028726.7A
Other languages
English (en)
Inventor
中村弘一
酒井有纪
川本忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japanese Baiou Abataite Co ltd
Original Assignee
Japanese Baiou Abataite Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japanese Baiou Abataite Co ltd filed Critical Japanese Baiou Abataite Co ltd
Publication of CN112041265A publication Critical patent/CN112041265A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3637Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the origin of the biological material other than human or animal, e.g. plant extracts, algae
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/32Phosphates of magnesium, calcium, strontium, or barium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/32Phosphates of magnesium, calcium, strontium, or barium
    • C01B25/34Magnesium phosphates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Botany (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epidemiology (AREA)
  • Biotechnology (AREA)
  • Dermatology (AREA)
  • Medicinal Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Materials For Medical Uses (AREA)
  • Cosmetics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

一种适合于食品添加物、化妆品原料、药物原料、人工骨等用途的生物亲和性高的羟基磷灰石。本发明的羟基磷灰石含有Mg。

Description

羟基磷灰石
技术领域
本发明涉及生物亲和性高的羟基磷灰石。
背景技术
羟基磷灰石(Ca10(PO4)6(OH)2)为骨或齿的主要成分,且是生物亲和性高、pH为中性且安全性也高的生物材料,所以被使用在工业用原料、食品添加物、化妆品原料、药物原料、人工骨等的生物材料等。
关于制造羟基磷灰石的方法,有将导入了用于析出羟基磷灰石晶体的位点的基材浸渍在含有羟基磷灰石成分的水溶液中,由此使羟基磷灰石晶体析出于上述基材的表面的方法(专利文献1)。此外,有在将规定的羟基磷灰石分散液涂布或印刷于基材后,使羟基磷灰石分散液所含有的溶剂从该基材中蒸发,从而在该基材的表面生成低结晶型羟基磷灰石颗粒的方法(专利文献2)。
现有技术文献
专利文献
专利文献1:日本特开2001-31409号公报
专利文献2:日本特开2016-147799号公报
发明内容
发明要解决的问题
羟基磷灰石虽如上述般生物亲和性高,但对于在食品添加物、化妆品原料、药物原料、人工骨等用途中生物亲和性高的羟基磷灰石的期望仍未停歇。
因此,本发明的目的在于提供一种生物亲和性较以往更高的羟基磷灰石。
用于解决问题的方案
本发明人等为了解决上述问题而进行精心探讨,发现含有Mg的羟基磷灰石的生物亲和性高,因而完成本发明。
即,本发明为:
[1]一种羟基磷灰石,其含有镁;
[2]如[1]的羟基磷灰石,其含有微晶的羟基磷灰石;
[3]如[1]或[2]的羟基磷灰石,其由化学式(Ca:Mg)10(PO4)6(OH)2表示,
在上式中,(Ca:Mg)10意指Ca与Mg的元素总数为10、Ca为9~7、Mg为1~3;
[4]如[1]~[3]中任一项的羟基磷灰石,其由来自生物的材料形成;
[5]如[1]~[4]中任一项的羟基磷灰石,其进一步含有选自Na、K及Si中的至少一种的矿物质。
发明的效果
本发明的羟基磷灰石通过含有Mg而具有高生物亲和性。
附图说明
图1为显示实施例中的来自蛋壳的羟基磷灰石以及比较用的羟基磷灰石的在模拟体液中的羟基磷灰石增加量的图表。
具体实施方式
以下更具体地说明本发明的羟基磷灰石。
本发明的羟基磷灰石含有Mg(镁)。Mg为生物骨所含有的矿物质的一种,在生物骨中,Mg具有活化成骨细胞或蚀骨细胞并促进骨细胞的作用。含有具有此作用的Mg的本发明的羟基磷灰石,与以往的羟基磷灰石相比,在食品添加物、化妆品原料、药物原料、人工骨等的生物材料的用途中具有更高的生物亲和性。
Mg含量在后述化学式中可含有的范围内,优选为约100~20000质量ppm程度的范围。在Mg含量为100质量ppm以上时,可良好地显现含有Mg的效果。Mg含量的上限虽无特别限定,但从生物亲和性的观点来看,大致上20000质量ppm即充足。Mg含量更优选为500~6000质量ppm。
本发明的羟基磷灰石优选为含有微晶的羟基磷灰石。所谓微晶的羟基磷灰石,意指仅为微晶化的羟基磷灰石,或者是微晶化的羟基磷灰石与因晶体形状扭曲或晶体缺损等而结晶化程度低的低结晶型的羟基磷灰石混合得到的。即,所谓“微晶的羟基磷灰石”,并不限于仅为微晶化的羟基磷灰石的方式,也包括微晶化的羟基磷灰石中混合存在低结晶型羟基磷灰石的方式。然后,低结晶型羟基磷灰石可以约50质量%以下的比率含在本发明的羟基磷灰石中。
含有Mg且含有微晶的羟基磷灰石并不会因分子一个个聚集而牢固地结合,所以相对于其他物质显示出柔软的反应,此外,吸附力大于结晶型。进而,颗粒较细、触感丝滑而不产生刺激。
微晶的羟基磷灰石、即仅为微晶化的羟基磷灰石或者是微晶化的羟基磷灰石与结晶化的程度低的低结晶型羟基磷灰石混合得到的,可通过X射线结构分析来确定。
具体而言,在X射线结构分析中出现在2θ为31.500~32.500°的峰处的微晶尺寸为
Figure BDA0002745222280000031
的羟基磷灰石,可视作仅为微晶化的羟基磷灰石、或者是微晶化的羟基磷灰石与结晶化的程度低的低结晶型羟基磷灰石混合得到的。
微晶尺寸表示晶粒的大小,其是作为表示结晶性的标准的数值。微晶尺寸的数值越大则意味着作为测定对象的物质的结晶性越高。相反而言,微晶尺寸的数值越小则意味着羟基磷灰石为低结晶或微晶化。微晶尺寸例如可通过由株式会社理学制的X射线解析装置的型号:RINT2200V/PC来测定。
出现在2θ为31.500~32.500°的峰的微晶尺寸优选为
Figure BDA0002745222280000032
更优选为
Figure BDA0002745222280000033
通过为在X射线结构分析中出现在2θ为31.500~32.500°的峰的微晶尺寸位于上述范围内的羟基磷灰石,使羟基磷灰石的表面变得复杂而带有表面电位。由此可使吸附力变大,对于蛋白质或脂质以及细菌或花粉等的吸附率优异,所以可适用于过滤器等,此外,由于吸附色素,所以对于齿的美白有效。此外,微晶尺寸位于上述范围内的羟基磷灰石可制成颗粒较细、触感丝滑且刺激少的羟基磷灰石。
含有Mg的羟基磷灰石优选由化学式(Ca:Mg)10(PO4)6(OH)2表示。
(上述式中,(Ca:Mg)10意指Ca与Mg的元素总数为10、Ca为9~7、Mg为1~3。)
即,优选构成羟基磷灰石的Ca的一部分被Mg替换的结构。
本发明的羟基磷灰石优选由来自生物的材料形成。以往所知的羟基磷灰石是以来自矿物的熟石灰为主要原料并通过各种制法所合成而制造的。此外,以来自矿物的熟石灰为主要原料的羟基磷灰石几乎不含以Mg为代表例的矿物质成分,因此,生物亲和性低于本发明的羟基磷灰石。相对于此,由来自生物的材料形成的本发明的羟基磷灰石,可适量地含有Mg而能够得到本发明的羟基磷灰石的上述效果。例如可通过焙烧来自生物的材料而得到氧化钙,并通过下述方法来处理它,从而可得到本发明的羟基磷灰石。焙烧条件并无特别限定,可采用一般所知的条件,焙烧条件例如可列举出使用电炉等以温度900~1300℃焙烧1~72小时。
此外,由于由来自生物的材料形成,可制成即使在如作为钙补给剂的用途般的经口服用的用途或食用时对人体而言也安全的羟基磷灰石。
所谓来自生物的材料,例如可列举出蛋壳或珊瑚。当中,蛋壳的Mg含量多于其他生物材料,故更优选。
本发明的羟基磷灰石优选进一步含有选自Na、K及Si中的至少一种的矿物质。Na(钠)为参与骨的代谢或再吸收过程、细胞接合的矿物质,K(钾)为在生化学反应中参与多种功能的矿物质,Si(硅)为作用于参与骨形成的代谢机制、并参与骨细胞或嵌合细胞的显现的矿物质。因此,含有这些矿物质中的至少一种的羟基磷灰石,生物亲和性可进一步提升。由来自生物的材料形成的羟基磷灰石含有Mg且含有选自Na、K及Si中的至少一种的矿物质。因此,含有100质量ppm以上的Mg且含有选自Na、K及Si中的至少一种的矿物质的羟基磷灰石,可推测是上述由来自生物的材料形成的羟基磷灰石。
Na、K及Si的各含量并无特别限定,例如Na含有约100~5000质量ppm、K含有约10~100质量ppm、Si含有约10~100质量ppm时,可充分地得到上述效果,故优选。此外,由来自生物的材料形成的羟基磷灰石可通过矿物质均衡而相对于Mg含量以上述范围含有Na、K及Si中的至少一种,所以可充分地得到上述效果,就这方面而言是优选的材料。
选自Na、K及Si中的至少一种的矿物质,例如可通过使用含有Na、K及Si的前述来自生物的材料来制造羟基磷灰石而含在羟基磷灰石中。
本发明的羟基磷灰石的制造方法并无特别限定,例如可将磷酸的水或醇溶液添加到上述来自生物的材料焙烧所得到的氧化钙的水或醇悬浮液中,或者是将氧化钙的水或醇悬浮液添加到磷酸的水或醇溶液中,从而得到羟基磷灰石浆料,然后将该羟基磷灰石浆料涂布或印刷于基材并使其蒸发,或者是使该浆料直接蒸发,可得到羟基磷灰石颗粒。此时,通过使用来自生物的材料作为氧化钙悬浮液的氧化钙的原料,可容易地制造含有Mg的羟基磷灰石。
制备羟基磷灰石浆料的过程中,不需要进行pH调整。此外,氧化钙悬浮液中的氧化钙的总量与磷酸溶液中的磷酸的总量的比率,例如优选使之以摩尔比计钙离子:磷酸根离子为10:6。当然也可根据反应条件等的不同来变更前述比率。该摩尔比率的调整可通过调整添加液及被添加液的浓度及量而调整。
将添加液添加到被添加液中时的温度条件,例如优选将添加液及被添加液的温度设为5~90℃的范围,更优选设为15~60℃的范围,进一步优选设为20~40℃的范围。通过将添加液及被添加液的温度设为该范围,可得到抑制羟基磷灰石的结晶化、并且顺利地进行用以得到羟基磷灰石的反应的效果。需要说明的是,也可以边搅拌被添加液边加入添加液。
使羟基磷灰石浆料蒸发时并不需特别进行加热,可通过在环境温度下自然干燥来蒸发。然而,为了达成良好的生产效率并促进微晶化的羟基磷灰石的低结晶化,在使溶剂蒸发的过程中及/或使之蒸发后,可加热基材或浆料。加热基材时的加热温度优选为40~300℃,更优选为40~180℃,进一步优选为80~150℃。通过将加热温度设为上述范围,可在基材表面生成适当粒径的低结晶型羟基磷灰石颗粒,并可抑制低结晶型羟基磷灰石颗粒从基材表面的脱落。加热时间并无特别限制,进行至在基材表面生成低结晶型羟基磷灰石颗粒即可。然而,对涂布或印刷后的基材过度加热时,会有低结晶型羟基磷灰石转变为结晶型羟基磷灰石的疑虑。低结晶型羟基磷灰石与结晶型羟基磷灰石相比,吸附来自细菌及花粉等微小生物的物质以及重金属物质等的性能优异,所以作为加热条件的标准之一例如以100℃以上的温度进行加热时,优选将加热时间设为720分钟以下,以抑制低结晶型羟基磷灰石向结晶型羟基磷灰石的转变。
实施例
以下通过实施例来更详细地说明本发明的内容。需要说明的是,本发明的范围当然并不限定于实施例。
(试验1)
准备:使用以1000℃焙烧蛋壳20小时的物质作为CaO的原料所制造的羟基磷灰石,以及使用以1000℃焙烧珊瑚20小时的物质作为CaO的原料所制造的羟基磷灰石。此外,准备用于比较的市售的羟基磷灰石(试剂)。使用ICP发光分析装置(岛津制作所株式会社制ICPS-8100)对这些羟基磷灰石进行微量元素的分析。分析过程中,试剂使用Mg、Na、K各1000ppm的和光纯药公司制的标准液。此外,将各试样1.00g采集至50mL量瓶并以少量的盐酸溶解后,加水至50mL并进行测定。
分析结果如表1所示。其中,表1中的数值表示质量ppm(mg/kg)。
[表1]
Figure BDA0002745222280000071
从表1中可知,由来自生物的原料形成的羟基磷灰石含有Mg,尤其是来自蛋壳的羟基磷灰石的Mg含量多,接近于人骨中的Mg含量的一例的5500ppm,可推测生物亲和性高。
(实验2)
使用模拟体液(SBF)对来自蛋壳的羟基磷灰石进行生物活性评价。此评价是将试样浸渍在模拟体液(SBF)中,并在一定时间后测定在试样表面的羟基磷灰石生成量。在此,模拟体液具有与人体体液几乎相等的无机离子浓度,并通过以下成分来调制。
NaCl:7.996g、NaHCO3:0.350g、KCl:0.224g、K2HPO4·3H2O:0.228g、MgCl2·6H2O:0.350g、1M HCl:40mL、CaCl2·2H2O:0.278g、NaSO4:0.071g、三(缓冲剂、三羟基甲基氨基甲烷):6.057g。将这些试剂加入蒸馏水700mL中并调整至pH7.4后,加入蒸馏水而成为1000mL。
作为进行生物活性评价的羟基磷灰石,准备:使用以1000℃焙烧蛋壳20小时的物质作为CaO的原料所制造的羟基磷灰石(羟基磷灰石A;含有1974ppm的Mg)的浆料,以及使用以1000℃焙烧试剂Ca(OH)2(和光纯药制、纯度99%)20小时的物质作为CaO的原料所制造的羟基磷灰石(羟基磷灰石B;不含Mg)的浆料。
将羟基磷灰石A及羟基磷灰石B的浆料分别涂布于1cm×5cm大小的毡布各6片,并于120℃干燥2小时以使该毡布中生成羟基磷灰石颗粒而形成试样。通过生成前后的毡布的质量测定,计算所生成的羟基磷灰石颗粒的质量。
将各试样一个个浸渍在模拟体液50mL中,于37℃放置7天。然后从模拟体液取出试样并于130℃干燥2小时后,放入干燥器中保管。
然后测定各试样的质量并计算羟基磷灰石的质量增加量。
羟基磷灰石A的测定结果如表2所示。
[表2]
Figure BDA0002745222280000081
羟基磷灰石B的测定结果如表3所示。
[表3]
Figure BDA0002745222280000082
将浸渍后的质量增加量相对于浸渍前的羟基磷灰石的质量的百分率定义为增加率。表2所示的来自蛋壳的羟基磷灰石A的增加率平均为1.84%,与表3所示的羟基磷灰石B的增加率平均为1.06%相比,在模拟体液中的羟基磷灰石的生成量多。此意指含有Mg的羟基磷灰石A与不含Mg的羟基磷灰石B相比,生物亲和性高。
表2及表3的结果如图1的图表所示。

Claims (5)

1.一种羟基磷灰石,其含有镁。
2.根据权利要求1所述的羟基磷灰石,其含有微晶的羟基磷灰石。
3.根据权利要求1或2所述的羟基磷灰石,其由化学式(Ca:Mg)10(PO4)6(OH)2表示,
在上式中,(Ca:Mg)10意指Ca与Mg的元素总数为10、Ca为9~7、Mg为1~3。
4.根据权利要求1~3中任一项所述的羟基磷灰石,其由来自生物的材料形成。
5.根据权利要求1~4中任一项所述的羟基磷灰石,其进一步含有选自Na、K及Si中的至少一种的矿物质。
CN201980028726.7A 2018-04-27 2019-04-25 羟基磷灰石 Pending CN112041265A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018087430 2018-04-27
JP2018-087430 2018-04-27
PCT/JP2019/017578 WO2019208683A1 (ja) 2018-04-27 2019-04-25 ハイドロキシアパタイト

Publications (1)

Publication Number Publication Date
CN112041265A true CN112041265A (zh) 2020-12-04

Family

ID=68295420

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980028726.7A Pending CN112041265A (zh) 2018-04-27 2019-04-25 羟基磷灰石

Country Status (6)

Country Link
US (1) US20210094825A1 (zh)
EP (1) EP3786109A4 (zh)
JP (2) JPWO2019208683A1 (zh)
CN (1) CN112041265A (zh)
TW (1) TW201945278A (zh)
WO (1) WO2019208683A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116990513A (zh) * 2023-09-26 2023-11-03 北京美联泰科生物技术有限公司 胃蛋白酶原1的化学发光检测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003210567A (ja) * 2002-01-21 2003-07-29 Toshiyuki Akazawa 生体組織由来吸収性リン酸カルシウム傾斜機能複合材料とその作製方法
JP2004532172A (ja) * 2001-03-06 2004-10-21 ルトガーズ、ザ ステイト ユニバーシティ マグネシウム置換ハイドロキシアパタイト
US20080262121A1 (en) * 2005-10-18 2008-10-23 Fin-Ceramica Faenza S.P.A. Plurisubstituted Hydroxyapatite and the Composite Thereof With a Natural and/or Synthetic Polymer, Their Preparation and Uses Thereof
CN101837147A (zh) * 2010-05-13 2010-09-22 四川大学 掺杂微量元素的羟基磷灰石生物活性涂层的制备方法
CN107161974A (zh) * 2016-03-07 2017-09-15 中国科学院上海硅酸盐研究所 一种多元离子共掺杂羟基磷灰石粉体材料的制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4300497B2 (ja) 1999-07-22 2009-07-22 独立行政法人産業技術総合研究所 水酸アパタイト皮膜の製造方法
KR100786312B1 (ko) * 2006-05-03 2007-12-17 박진우 칼슘 포스페이트의 제조 방법 및 이에 의해 제조된 칼슘포스페이트
GB0609815D0 (en) * 2006-05-18 2006-06-28 Univ Belfast Process for preparing hydroxylapatite
JP5788179B2 (ja) * 2008-02-29 2015-09-30 スミス アンド ネフュー インコーポレーテッド コーティングおよびコーティング方法
CN102070131A (zh) * 2010-11-16 2011-05-25 中国矿业大学 一种蛋壳水热合成高纯度羟基磷灰石的方法
CN103991856A (zh) * 2014-06-13 2014-08-20 淮海工学院 一种羟基磷灰石纳米片的制备方法
JP2016147799A (ja) 2015-01-08 2016-08-18 合同会社トレスバイオ技研 ハイドロキシアパタイト粒子を含む基材の製造方法
KR101907408B1 (ko) * 2016-08-31 2018-10-12 목포대학교산학협력단 난각과 인산-암모니아 용액을 이용한 인산칼슘계 물질의 제조방법
WO2018078593A1 (en) * 2016-10-29 2018-05-03 Farhad Bakhshi Biomimetic apatite nanopowder composition
JP2018123040A (ja) * 2017-02-03 2018-08-09 株式会社日本バリアフリー 生体親和性材料用ハイドロキシアパタイトの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004532172A (ja) * 2001-03-06 2004-10-21 ルトガーズ、ザ ステイト ユニバーシティ マグネシウム置換ハイドロキシアパタイト
JP2003210567A (ja) * 2002-01-21 2003-07-29 Toshiyuki Akazawa 生体組織由来吸収性リン酸カルシウム傾斜機能複合材料とその作製方法
US20080262121A1 (en) * 2005-10-18 2008-10-23 Fin-Ceramica Faenza S.P.A. Plurisubstituted Hydroxyapatite and the Composite Thereof With a Natural and/or Synthetic Polymer, Their Preparation and Uses Thereof
CN101837147A (zh) * 2010-05-13 2010-09-22 四川大学 掺杂微量元素的羟基磷灰石生物活性涂层的制备方法
CN107161974A (zh) * 2016-03-07 2017-09-15 中国科学院上海硅酸盐研究所 一种多元离子共掺杂羟基磷灰石粉体材料的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
I. V. FADEEV ET AL.: "Synthesis and Structure of Magnesium-Substituted Hydroxyapatite", 《INORGANIC MATERIALS》 *
IRMA BOGDANOVICIENE ET AL.: "Synthesis of bio-cation-substituted Ca-apatites by precipitation", 《INORGANIC AND ENVIRONMENTAL MATERIALS》 *
S.R. KIM ET AL.: "Synthesis of Si,Mg substituted hydroxyapatites and their sintering behaviors", 《BIOMATERIALS》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116990513A (zh) * 2023-09-26 2023-11-03 北京美联泰科生物技术有限公司 胃蛋白酶原1的化学发光检测方法
CN116990513B (zh) * 2023-09-26 2023-12-26 北京美联泰科生物技术有限公司 胃蛋白酶原1的化学发光检测方法

Also Published As

Publication number Publication date
US20210094825A1 (en) 2021-04-01
WO2019208683A1 (ja) 2019-10-31
TW201945278A (zh) 2019-12-01
EP3786109A4 (en) 2022-01-19
JP2024028331A (ja) 2024-03-04
JPWO2019208683A1 (ja) 2021-05-20
EP3786109A1 (en) 2021-03-03

Similar Documents

Publication Publication Date Title
Medvecký et al. Influence of manganese on stability and particle growth of hydroxyapatite in simulated body fluid
Fahami et al. Synthesis, bioactivity and zeta potential investigations of chlorine and fluorine substituted hydroxyapatite
Tas Synthesis of biomimetic Ca-hydroxyapatite powders at 37 C in synthetic body fluids
Ibrahim et al. Synthesis of rod-like hydroxyapatite with high surface area and pore volume from eggshells for effective adsorption of aqueous Pb (II)
Zhuang et al. Synthesis of plate-shaped hydroxyapatite via an enzyme reaction of urea with urease and its characterization
Miller et al. Testing of Brushite (CaHPO 4· 2 H 2 O) in Synthetic Biomineralization Solutions and In Situ Crystallization of Brushite Micro‐Granules
EP1948561A1 (en) A plurisubstituted hydroxyapatite and the composite thereof with a natural and/or synthetic polymer, their preparation and uses thereof
JP2024028331A (ja) ハイドロキシアパタイト
CN102616762A (zh) 硅酸钙前驱体水热制备羟基磷灰石粉体的方法
Wang et al. Theoretical analysis of protein effects on calcium phosphate precipitation in simulated body fluid
Dorozhkin In vitro mineralization of silicon containing calcium phosphate bioceramics
Carbajal et al. Design and processing of ZnO doped tricalcium phosphate based materials: Influence of β/α polymorph phase assemblage on microstructural evolution
Song et al. In situ synthesis of silicon-substituted biphasic calcium phosphate and their performance in vitro
Rabadjieva et al. Mg-and Zn-modified calcium phosphates prepared by biomimetic precipitation and subsequent treatment at high temperature
JP5083748B2 (ja) 炭酸カルシウム・ゼオライト系化合物複合体の製造方法
Bricha et al. Hydrothermal synthesis and appraisal of mg-doped hydroxyapatite nanopowders
JP7244901B2 (ja) ハイドロキシアパタイト、その製造方法及びβ-TCPの製造方法
JP7315160B2 (ja) フッ素不溶化剤、その製造方法、処理石膏、フッ素含有汚染土壌及び汚染水の処理方法
Sallam et al. The influence of chromium ions on the growth of the calcium hydroxyapatite crystal
Hassan et al. Synthesis of Hydroxyapatite Nanostructures Using Chemical Method
KR101034207B1 (ko) 유/무기 용매에 분산 가능한 수산화 아파타이트 제조 방법
Yasukawa et al. Ion-exchange of magnesium–calcium hydroxyapatite solid solution particles with Cd2+ ion
JP2008069041A (ja) アパタイト複合体及びその製造方法
Narayanan et al. Combustion synthesis of hydroxyapatite and hydroxyapatite (silver) powders
Kalbarczyk et al. Synthesis of hydroxyapatite derived from agricultural waste and its applications as an adsorbent for heavy metal removal from wastewater

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination