CN112017832B - 一种低重稀土高性能烧结钕铁硼磁体及其制备方法 - Google Patents

一种低重稀土高性能烧结钕铁硼磁体及其制备方法 Download PDF

Info

Publication number
CN112017832B
CN112017832B CN202010842928.XA CN202010842928A CN112017832B CN 112017832 B CN112017832 B CN 112017832B CN 202010842928 A CN202010842928 A CN 202010842928A CN 112017832 B CN112017832 B CN 112017832B
Authority
CN
China
Prior art keywords
powder
rare earth
heavy rare
low
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010842928.XA
Other languages
English (en)
Other versions
CN112017832A (zh
Inventor
吴玉程
曹玉杰
徐光青
陈婧
崔接武
张鹏杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
BGRIMM Technology Group Co Ltd
Original Assignee
Hefei University of Technology
BGRIMM Technology Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology, BGRIMM Technology Group Co Ltd filed Critical Hefei University of Technology
Priority to CN202010842928.XA priority Critical patent/CN112017832B/zh
Publication of CN112017832A publication Critical patent/CN112017832A/zh
Application granted granted Critical
Publication of CN112017832B publication Critical patent/CN112017832B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0572Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes with a protective layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0573Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by reduction or by hydrogen decrepitation or embrittlement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

本发明公开了一种低重稀土高性能烧结钕铁硼磁体及其制备方法,其制备方法包括以下步骤:制粉、粉末的改性、混粉、成型、烧结及热处理。采用磁控溅射技术在微米级的钕铁硼粉末表面依次沉积重稀土和低熔点金属,可以有效避免合金熔炼时添加的重稀土引起的剩磁和磁能积降低问题,提高重稀土的利用率。沉积的低熔点金属有助于磁体的烧结致密化,且沉积的低熔点金属可提高磁体晶界相的耐腐蚀性能。通过在改性后的微米级钕铁硼粉末中添加一定量的镍基纳米线,可以提高磁体的抗弯强度和断裂韧性,增强烧结钕铁硼磁体的力学稳定性。本发明在获得更高磁性能的基础上,显著提高了磁体的耐腐蚀性能和力学性能。

Description

一种低重稀土高性能烧结钕铁硼磁体及其制备方法
技术领域
本发明涉及稀土永磁材料领域,具体涉及一种低重稀土高性能烧结钕铁硼磁体及其制备方法。
背景技术
烧结钕铁硼磁体以其优异的磁性能(高剩磁、高矫顽力、高磁能积)被称为当代“磁王”,广泛应用于汽车工业、风力发电、仪器仪表、医疗器械、新能源以及航空航天等诸多领域。烧结钕铁硼磁体具有明显的多相结构,其中Nd2Fe14B主相是磁性的最主要来源,而晶界富稀土相(即富钕相)主要分布在主相晶粒周围,起到助熔烧结以及使磁体致密化的作用,同时可以有效起到去磁交换耦合作用。目前,烧结钕铁硼磁体的剩磁和最大磁能积均已达到其理论值的90%以上,而矫顽力与其理论值相差甚远,具有很大的提升空间。因此,在材料设计时普遍采用重稀土元素Dy或Tb部分取代Nd,以期获得更高的磁晶各向异性场。但是Dy、Tb与Fe属于反铁磁性耦合,添加Dy或Tb在提高磁体矫顽力的同时,磁体的剩磁和磁能积也出现不同程度的降低。此外,重稀土元素Dy、Tb的资源储量非常有限,价格昂贵,所以Dy或Tb的大量开采使用不符合资源节约型、可持续发展的战略规划。因此,降低重稀土的使用量,开发低重稀土高矫顽力烧结钕铁硼磁体已成为该领域的研究热点之一。
当前,人们主要采用晶界调控方式降低重稀土元素Dy或Tb在主相晶粒中的含量,使其主要分布于晶粒表层及晶界相处,在主相晶粒表层形成更高的各向异性场,提高磁体的矫顽力。另外,烧结钕铁硼磁体的耐腐蚀性能极差,其力学性能也较差。其中晶界相的电化学活性最高,在腐蚀性介质中易优先发生腐蚀,降低了磁体的化学稳定性。烧结钕铁硼磁体属于脆性材料,主相晶粒和晶界相的力学性能相差较大,在外力作用下易形成沿晶断裂,直接影响到磁体的力学稳定性。因此,在获得高矫顽力磁体的同时,提高磁体的耐腐蚀性能和力学性能具有重要意义。
通过调控晶界富稀土相的成分、分布、腐蚀电位、强度等影响因素,从而制备出高性能烧结钕铁硼磁体。其中双合金法和晶界扩散法是目前提高磁体磁性能、耐腐蚀性能和力学性能常用的技术手段。但是,在制备高矫顽力磁体方面,双合金法无法真正解决对重稀土元素Dy、Tb的过度依赖。虽然晶界扩散法降低了重稀土元素的消耗量,显著提高了磁体的矫顽力,由于受扩散深度的限制,晶界扩散法只适用于薄片磁体。
发明内容
本发明的目的在于提供一种低重稀土高性能烧结钕铁硼磁体及其制备方法,其可以解决上述背景技术提出的问题。
为实现上述目的,本发明提供如下技术方案:
一种低重稀土高性能烧结钕铁硼磁体的制备方法,包括以下步骤:
(1)制粉:对氢破碎后的钕铁硼粗粉进行气流磨制粉,制得微米级的钕铁硼粉末A;
(2)粉末的改性:采用磁控溅射方式在微米级的钕铁硼粉末A的表面依次沉积重稀土、低熔点的金属,制得改性后的粉末B;
(3)混粉:将改性后的粉末B与镍基纳米线进行充分混合,制得粉末C;
(4)成型:将粉末C置于磁场强度为1.5T以上的磁场中进行取向成型,制得钕铁硼压坯D;
(5)烧结及热处理:将钕铁硼压坯D置于真空烧结炉内,进行烧结和回火热处理,制得烧结钕铁硼磁体E。
优选地,所述步骤(1)中,将氢破碎后的钕铁硼粗粉在氩气保护下进行气流磨制粉,制得微米级的钕铁硼粉末A,所述钕铁硼粉末A的平均粒度为2.0~4.0μm。
优选地,所述步骤(2)中,所述沉积的重稀土层厚5~50nm,所述的重稀土包括Dy或Tb中的至少一种,所述沉积的低熔点金属层厚10~30nm,所述的低熔点金属包括Al、Ag、Cu中的至少一种。
优选地,所述步骤(3)中,将改性后的粉末B与镍基纳米线按质量比为(99.50~99.99):(0.01~0.50)进行充分混合,制得粉末C。
优选地,所述步骤(3)中的混粉,所述的强韧性镍基纳米线包括Ni-Fe、Ni-Co、Ni-Zr、Ni-Fe-Co中的至少一种,所述镍基纳米线的直径为10~100nm,长度为0.1~20μm。
优选地,所述步骤(5)中,所述的烧结温度为1020~1080℃,烧结时间为3~10h,所述的回火热处理工艺包括一级回火和二级回火,一级回火热处理温度为900~950℃,时间为3~5h,二级回火热处理温度为480~520℃,时间为4~6h。
一种低重稀土高性能烧结钕铁硼磁体,所述的制备方法制得。
与现有技术相比,本发明的有益效果是:
(1)本发明采用磁控溅射技术在微米级的钕铁硼粉末表面依次沉积重稀土和低熔点金属,可以有效避免合金熔炼时添加的重稀土引起的剩磁和磁能积降低问题,提高重稀土的利用率。沉积的低熔点金属有助于磁体的烧结致密化,且沉积的低熔点金属可提高磁体晶界相的耐腐蚀性能。
(2)通过在改性后的微米级钕铁硼粉末中添加一定量的强韧性镍基纳米线,可以提高磁体的抗弯强度和断裂韧性,增强烧结钕铁硼磁体的力学稳定性。
(3)本发明在获得更高磁性能的基础上,显著提高了磁体的耐腐蚀性能和力学性能。
具体实施方式
下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
一种低重稀土高性能烧结钕铁硼磁体的制备方法,包括以下步骤:
(1)制粉:
将氢破碎后的钕铁硼粗粉在氩气保护下进行气流磨制粉,制得微米级的钕铁硼粉末A,所述钕铁硼粉末A的平均粒度为2.0μm。
(2)粉末的改性:
采用磁控溅射方式在微米级的钕铁硼粉末A的表面依次沉积重稀土Dy、低熔点金属Al。沉积的重稀土层厚5nm,沉积的低熔点金属层厚10nm,制得改性后的粉末B。
(3)混粉:
将改性后的粉末B与强韧性镍基纳米线Ni-Fe按质量比为99.50:0.50进行充分混合,其中镍基纳米线的直径为10nm,长度为0.1μm,制得粉末C。
(4)成型:
将粉末C置于磁场强度为1.5T的磁场中进行取向成型,制得钕铁硼压坯D;
(5)烧结及热处理:
将钕铁硼压坯D置于真空烧结炉内,进行烧结和两级回火热处理。其中烧结温度为1020℃,烧结时间为10h;一级回火热处理温度为900℃,时间为5h,二级回火热处理温度为480℃,时间为6h,制得烧结钕铁硼磁体E。
实施例2
一种低重稀土高性能烧结钕铁硼磁体的制备方法,包括以下步骤:
(1)制粉:
将氢破碎后的钕铁硼粗粉在氩气保护下进行气流磨制粉,制得微米级的钕铁硼粉末A,所述钕铁硼粉末A的平均粒度为3.0μm。
(2)粉末的改性:
采用磁控溅射方式在微米级的钕铁硼粉末A的表面依次沉积重稀土Tb、低熔点金属Ag。沉积的重稀土层厚30nm,沉积的低熔点金属层厚15nm,制得改性后的粉末B。
(3)混粉:
将改性后的粉末B与强韧性镍基纳米线Ni-Co按质量比为99.70:0.30进行充分混合,其中镍基纳米线的直径为50nm,长度为10μm,制得粉末C。
(4)成型:
将粉末C置于磁场强度为1.8T的磁场中进行取向成型,制得钕铁硼压坯D;
(5)烧结及热处理:
将钕铁硼压坯D置于真空烧结炉内,进行烧结和两级回火热处理。其中烧结温度为1050℃,烧结时间为6h;一级回火热处理温度为925℃,时间为4h,二级回火热处理温度为500℃,时间为5h,制得烧结钕铁硼磁体E。
实施例3
一种低重稀土高性能烧结钕铁硼磁体的制备方法,包括以下步骤:
(1)制粉:
将氢破碎后的钕铁硼粗粉在氩气保护下进行气流磨制粉,制得微米级的钕铁硼粉末A,所述钕铁硼粉末A的平均粒度为4.0μm。
(2)粉末的改性:
采用磁控溅射方式在微米级的钕铁硼粉末A的表面依次沉积重稀土Tb、低熔点金属Cu。沉积的重稀土层厚50nm,沉积的低熔点金属层厚20nm,制得改性后的粉末B。
(3)混粉:
将改性后的粉末B与强韧性镍基纳米线Ni-Zr按质量比为99.99:0.01进行充分混合,其中镍基纳米线的直径为100nm,长度为20μm,制得粉末C。
(4)成型:
将粉末C置于磁场强度为2.0T的磁场中进行取向成型,制得钕铁硼压坯D;
(5)烧结及热处理:
将钕铁硼压坯D置于真空烧结炉内,进行烧结和两级回火热处理。其中烧结温度为1080℃,烧结时间为3h;一级回火热处理温度为950℃,时间为3h,二级回火热处理温度为520℃,时间为4h,制得烧结钕铁硼磁体E。
对照例1
一种烧结钕铁硼磁体的制备方法,包括以下步骤:
(1)制粉:
将氢破碎后的钕铁硼粗粉在氩气保护下进行气流磨制粉,制得微米级的钕铁硼粉末A,所述钕铁硼粉末A的平均粒度为3.0μm。
(2)成型:
将粉末C置于磁场强度为2.0T的磁场中进行取向成型,制得钕铁硼压坯D;
(5)烧结及热处理:
将钕铁硼压坯D置于真空烧结炉内,进行烧结和两级回火热处理。其中烧结温度为1050℃,烧结时间为6h;一级回火热处理温度为925℃,时间为4h,二级回火热处理温度为500℃,时间为5h,制得烧结钕铁硼磁体E。
在室温下,使用永磁材料测量***,依据GB/T3217-2013和GB/T31967.2-2015规定的方法分别测试了实施例1~3和对照例1中烧结钕铁硼磁体的磁性能和力学性能,并对实施例1~3和对照例1制备的样品分别进行高温加速老化试验(试验条件为:温度为120℃,压力为2bar,相对湿度为100%,试验时间为168h),其具体结果见下表1。
表1烧结钕铁硼磁体的磁性能、力学性能和耐蚀性能测试结果
Figure BDA0002642095160000061
从表1给出的磁性能、力学性能和耐腐蚀性能测试数据可以看出,采用本发明方法制备的烧结钕铁硼磁体的矫顽力、抗弯强度和断裂韧性得到显著提高,磁体的失重明显降低。因此,采用本发明方法制备的烧结钕铁硼磁体在获得更高磁性能的基础上,显著提高了磁体的力学性能和耐腐蚀性能。
以上内容仅仅是对本发明结构所作的举例和说明,所属本技术领域的技术人员对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,只要不偏离本发明的结构或者超越本权利要求书所定义的范围,均应属于本发明的保护范围。

Claims (7)

1.一种低重稀土高性能烧结钕铁硼磁体的制备方法,其特征在于,包括以下步骤:
(1)制粉:对氢破碎后的钕铁硼粗粉进行气流磨制粉,制得微米级的钕铁硼粉末A;
(2)粉末的改性:采用磁控溅射方式在微米级的钕铁硼粉末A的表面依次沉积重稀土、低熔点的金属,制得改性后的粉末B;
(3)混粉:将改性后的粉末B与镍基纳米线进行充分混合,制得粉末C;
(4)成型:将粉末C置于磁场强度为1.5T以上的磁场中进行取向成型,制得钕铁硼压坯D;
(5)烧结及热处理:将钕铁硼压坯D置于真空烧结炉内,进行烧结和回火热处理,制得烧结钕铁硼磁体E。
2.根据权利要求1所述的一种低重稀土高性能烧结钕铁硼磁体的其制备方法,其特征在于:所述步骤(1)中,将氢破碎后的钕铁硼粗粉在氩气保护下进行气流磨制粉,制得微米级的钕铁硼粉末A,所述钕铁硼粉末A的平均粒度为2.0~4.0μm。
3.根据权利要求1所述的一种低重稀土高性能烧结钕铁硼磁体的制备方法,其特征在于:所述步骤(2)中,所述沉积的重稀土层厚5~50nm,所述的重稀土包括Dy或Tb中的至少一种,所述沉积的低熔点金属层厚10~30nm,所述的低熔点金属包括Al、Ag、Cu中的至少一种。
4.根据权利要求1所述的一种低重稀土高性能烧结钕铁硼磁体的制备方法,其特征在于:所述步骤(3)中,将改性后的粉末B与镍基纳米线按质量比为(99.50~99.99):(0.01~0.50)进行充分混合,制得粉末C。
5.根据权利要求1所述的一种低重稀土高性能烧结钕铁硼磁体的制备方法,其特征在于:所述步骤(3)中的混粉,强韧性镍基纳米线包括Ni-Fe、Ni-Co、Ni-Zr、Ni-Fe-Co中的至少一种,所述镍基纳米线的直径为10~100nm,长度为0.1~20μm。
6.根据权利要求1所述的一种低重稀土高性能烧结钕铁硼磁体的制备方法,其特征在于:所述步骤(5)中,所述的烧结温度为1020~1080℃,烧结时间为3~10h,所述的回火热处理工艺包括一级回火和二级回火,一级回火热处理温度为900~950℃,时间为3~5h,二级回火热处理温度为480~520℃,时间为4~6h。
7.一种低重稀土高性能烧结钕铁硼磁体,其特征在于:按照权利要求1~6任意一项所述的制备方法制得。
CN202010842928.XA 2020-08-20 2020-08-20 一种低重稀土高性能烧结钕铁硼磁体及其制备方法 Active CN112017832B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010842928.XA CN112017832B (zh) 2020-08-20 2020-08-20 一种低重稀土高性能烧结钕铁硼磁体及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010842928.XA CN112017832B (zh) 2020-08-20 2020-08-20 一种低重稀土高性能烧结钕铁硼磁体及其制备方法

Publications (2)

Publication Number Publication Date
CN112017832A CN112017832A (zh) 2020-12-01
CN112017832B true CN112017832B (zh) 2023-03-17

Family

ID=73505266

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010842928.XA Active CN112017832B (zh) 2020-08-20 2020-08-20 一种低重稀土高性能烧结钕铁硼磁体及其制备方法

Country Status (1)

Country Link
CN (1) CN112017832B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112820529A (zh) * 2020-12-31 2021-05-18 宁波松科磁材有限公司 一种高性能烧结钕铁硼的制备方法
CN114799160B (zh) * 2021-01-27 2024-03-26 中国科学院理化技术研究所 一种磁性颗粒表面改性的方法
CN115321972B (zh) * 2022-08-09 2023-10-24 矿冶科技集团有限公司 一种粘结型永磁铁氧体的除铬方法及应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103456452A (zh) * 2013-09-12 2013-12-18 南京理工大学 低镝耐腐蚀烧结钕铁硼制备方法
CN105810425A (zh) * 2014-12-29 2016-07-27 天津三环乐喜新材料有限公司 一种集约型烧结钕铁硼永磁体的制造方法
CN108735494A (zh) * 2018-05-24 2018-11-02 北京京磁电工科技有限公司 高矫顽力钕铁硼磁体的制备方法
CN111292951A (zh) * 2020-02-28 2020-06-16 安徽大地熊新材料股份有限公司 一种提高烧结钕铁硼磁体矫顽力的方法
CN111326307A (zh) * 2020-03-17 2020-06-23 宁波金鸡强磁股份有限公司 一种渗透磁体用的涂覆材料及高矫顽力钕铁硼磁体的制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090020193A1 (en) * 2005-04-15 2009-01-22 Hitachi Metals, Ltd. Rare earth sintered magnet and process for producing the same
CN101375352B (zh) * 2006-01-31 2013-07-10 日立金属株式会社 R-Fe-B类稀土烧结磁铁及其制造方法
CN104051102A (zh) * 2013-03-12 2014-09-17 北京中科三环高技术股份有限公司 一种稀土永磁体及其制备方法
CN105185562B (zh) * 2015-08-27 2018-02-02 安徽大地熊新材料股份有限公司 一种烧结钕铁硼磁体的制备方法
CN105118596A (zh) * 2015-09-16 2015-12-02 安徽万磁电子有限公司 一种锌铝钴复合添加的烧结钕铁硼磁体及其制备方法
CN108766753A (zh) * 2018-05-11 2018-11-06 包头稀土研究院 高磁能积高矫顽力烧结钕铁硼磁体的制备方法
CN109585113A (zh) * 2018-11-30 2019-04-05 宁波韵升股份有限公司 一种烧结钕铁硼磁体的制备方法
CN109898063A (zh) * 2019-03-12 2019-06-18 江西理工大学 一种提升烧结钕铁硼磁体磁性能的方法
CN110911149A (zh) * 2019-11-28 2020-03-24 烟台首钢磁性材料股份有限公司 一种提高钕铁硼烧结永磁体矫顽力的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103456452A (zh) * 2013-09-12 2013-12-18 南京理工大学 低镝耐腐蚀烧结钕铁硼制备方法
CN105810425A (zh) * 2014-12-29 2016-07-27 天津三环乐喜新材料有限公司 一种集约型烧结钕铁硼永磁体的制造方法
CN108735494A (zh) * 2018-05-24 2018-11-02 北京京磁电工科技有限公司 高矫顽力钕铁硼磁体的制备方法
CN111292951A (zh) * 2020-02-28 2020-06-16 安徽大地熊新材料股份有限公司 一种提高烧结钕铁硼磁体矫顽力的方法
CN111326307A (zh) * 2020-03-17 2020-06-23 宁波金鸡强磁股份有限公司 一种渗透磁体用的涂覆材料及高矫顽力钕铁硼磁体的制备方法

Also Published As

Publication number Publication date
CN112017832A (zh) 2020-12-01

Similar Documents

Publication Publication Date Title
CN112017832B (zh) 一种低重稀土高性能烧结钕铁硼磁体及其制备方法
CN106128673B (zh) 一种烧结钕铁硼磁体及其制备方法
CN101266855B (zh) 稀土永磁材料及其制造方法
CN103187133B (zh) 一种稀土永磁合金及其磁性相复合制备方法
KR20140045289A (ko) 높은 내식성의 소결된 NdFeB 자석과 자석 준비 방법
CN103646742B (zh) 一种钕铁硼磁体及其制备方法
CN103276284B (zh) 一种低镝耐热烧结钕铁硼制备方法
CN105244131A (zh) 高抗裂度、高矫顽力的多主相Nd-Fe-B型永磁体及其制备方法
CN105990019A (zh) 一种低重稀土烧结钕铁硼的制备方法
CN103903823A (zh) 一种稀土永磁材料及其制备方法
CN108154986B (zh) 一种含y高丰度稀土永磁体及其制备方法
CN109585113A (zh) 一种烧结钕铁硼磁体的制备方法
CN111640549B (zh) 一种高温度稳定性烧结稀土永磁材料及其制备方法
CN104900360A (zh) 一种添加复合低价稀土的新型永磁合金及其制备方法
CN102610346B (zh) 一种新型无稀土纳米复合永磁材料及其制备方法
CN109087768B (zh) 用于磁悬浮***的钕铁硼永磁材料及其制备方法
CN103489620A (zh) 一种镨铁硼永磁铁及其制备方法
CN105931784A (zh) 一种耐腐蚀含铈稀土永磁材料及其制备方法
CN110060833B (zh) 一种高剩磁、高矫顽力r-t-b永磁材料及其制备方法
CN103060657B (zh) 一种制备高矫顽力和高耐蚀性烧结钕铁硼永磁材料的方法
CN106158213A (zh) 一种高矫顽力钕铁硼永磁材料及其制备方法
CN112017835B (zh) 一种低重稀土高矫顽力烧结钕铁硼磁体及其制备方法
CN113593873A (zh) 一种高矫顽力混合稀土永磁材料及其制备方法
CN100461308C (zh) 一种超高矫顽力烧结钕铁硼磁性材料及其制备方法
CN110033914B (zh) 提高烧结钕铁硼磁体的矫顽力的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant