CN112010661B - 一种锂电池正极材料用匣钵及其制备方法 - Google Patents

一种锂电池正极材料用匣钵及其制备方法 Download PDF

Info

Publication number
CN112010661B
CN112010661B CN202010916023.2A CN202010916023A CN112010661B CN 112010661 B CN112010661 B CN 112010661B CN 202010916023 A CN202010916023 A CN 202010916023A CN 112010661 B CN112010661 B CN 112010661B
Authority
CN
China
Prior art keywords
sagger
positive electrode
electrode material
lithium battery
fluidity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010916023.2A
Other languages
English (en)
Other versions
CN112010661A (zh
Inventor
宋海利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Yueci New Material Co ltd
Original Assignee
Guangzhou Yueci New Material Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou Yueci New Material Co ltd filed Critical Guangzhou Yueci New Material Co ltd
Priority to CN202010916023.2A priority Critical patent/CN112010661B/zh
Publication of CN112010661A publication Critical patent/CN112010661A/zh
Application granted granted Critical
Publication of CN112010661B publication Critical patent/CN112010661B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/04Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
    • C04B35/043Refractories from grain sized mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/101Refractories from grain sized mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/19Alkali metal aluminosilicates, e.g. spodumene
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/195Alkaline earth aluminosilicates, e.g. cordierite or anorthite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/20Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in magnesium oxide, e.g. forsterite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • C04B35/443Magnesium aluminate spinel
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/481Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing silicon, e.g. zircon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开一种锂电池正极材料用匣钵及其制备方法。其中,锂电池正极材料用匣钵由流动性赋予材和粉体骨材的混合物组成,流动性赋予材选自气相氧化硅、气相氧化铝、可压缩滑石中的一种或两种以上,粉体骨材选自透锂长石、锂辉石、锂霞石、钨酸锆、堇青石、氧化铝、氧化锆、氧化镁、镁铝尖晶石、硅酸锆、镁橄榄石、顽火辉石、莫来石中的一种或两种以上。本发明通过在粉体骨材中添加流动性赋予材,从而增加了粉体骨材的流动性,完全避免了水的使用,大大加快了匣钵的生产效率,节约了生产成本和对能源的消耗。另外,本发明所使用的流动性赋予材本身就是良好的耐锂电池正极材料侵蚀的原料,可以在提高生产效率的同时增加匣钵本身的使用寿命。

Description

一种锂电池正极材料用匣钵及其制备方法
技术领域
本发明涉及锂电池技术领域,具体涉及一种锂电池正极材料用匣钵及其制备方法。
背景技术
近年来,随着技术的不断进步以及锂离子电池性能的不断提升,锂离子电池逐渐在电动汽车、笔记本电脑、智能手机、航天科技等领域得到广泛应用。锂离子电池一般是由正极材料,负极材料和电解质溶液三部分组成。其中,锂离子电池的正极材料主要有钴酸锂(LiCoO2)、锰酸锂(LiMn2O4)、镍酸锂(LiNiO2)以及磷酸锂铁(LiFePO4)等材料组成。这些锂离子电池正极材料大都是用耐火匣钵在窑炉中以高温固相合成的方法制成。
目前,锂离子电池正极材料制备用的耐火匣钵的制备方法主要是由干压法或者压力注浆法等成型。用干压法制备匣钵的时候,原料当中水的添加量大约为3~15%,而压力注浆法的水的添加量可以到达35%。用干压法或者压力注浆法制造的匣钵,一般需要经过24~72h的干燥才能进行烧结。锂离子电池正极材料制备用的耐火匣钵在进行干燥的时候,通常使用的手段为自然干燥或者强制加热等方法来去除匣钵胚体当中的水分。因为干燥的时间很长,所以被干燥的匣钵会占用相当大的面积或者消耗大量的电能。据估算,干燥成本占整个匣钵生产成本的20~45%。另外,由于表面和内部的干燥速度不同,如果强行加快干燥的进程,干燥中的匣钵容易产生开裂、起皮等问题,直接产生废胚。
为了节约干燥时消耗的电能,专利文献CN110762984A记载了一种锂电匣钵生产用干燥窑与辊道窑热量循环利用***。这种***旨在利用匣钵烧结时候的余热来干燥已经成型的匣钵胚体,节约了能源并且缩短了干燥的时间。但是,由于此类循环干燥***价格高昂,结构复杂,并且占用大量的生产面积,对于生产企业来说是一笔不小的开支。
说到使用的原料,锂离子电池正极材料制备用的耐火匣钵大体是以堇青石、莫来石以及氧化铝为原料制备而成。一般的研究认为,锂离子电池正极材料对于匣钵的侵蚀机理主要是:在锂离子电池正极材料高温制备时,正极材料中的Li2O与匣钵材料中的Al2O3和SiO2发生了化学反应,生成了LiAlSiO4、γ-LiA1O2和LiAlSi2O4反应产物层。由于LiAlSiO4、γ-LiA1O2和LiAlSi2O4反应产物层厚度可以达到1mm左右,反应产物层与莫来石和堇青石的热膨胀不匹配,再加上反应产物生成所带来的体积变化,形成了局部应力,导致了匣钵壁面裂纹的产生和剥落,大大缩短匣钵的使用寿命。
在匣钵使用寿命的后半段,生成的新的矿物成分和匣钵本身结合力有限,所以在反复使用的时候,生成的新的矿物质容易从匣钵表面脱落进而附着在锂离子电池正极材料上,严重影响了锂离子电池的性能。
由于三元锂离子电池阳极材料的能量密度高,原料成本低及原料元素丰度高等优点,逐渐成为锂离子电池正极材料的重要组成部分。与锻烧一元电池正极材料(如LiCoO2/LiMn2O4/LiNiO2)的相比,煅烧三元电池正极材料(LiNixCoyMn1-x-yO2,LNCM)的温度更高,为940~100℃。因此,锻烧三元电池正极材料用匣钵所遭受的化学侵蚀不仅由LiCoO2/LiMn2O4/LiNiO2的侵蚀转变为LiNixCoyMri1-x-yO2的多元侵蚀,而且反应温度由800~900℃升高到940~1100℃使反应大大加剧,造成了匣钵材料壁面被侵蚀而出现了开裂和逐层剥落,使匣钵的使用寿命缩短。
为了延长匣钵的使用寿命,专利文献CN103884190A中使用了莫来石或者莫来石-堇青石为母材,然后用氧化锆、氧化铝、氮化硅、尖晶石、氧化镁等材料对匣钵母材进行涂覆进而隔绝了母材和锂电池正极材料的反应。但是氧化锆、尖晶石、氧化镁的热膨胀系数和母材的莫来石或者莫来石-堇青石相比差异巨大,在反复使用的过程中涂层很容易出现裂纹,附着力下降。另外,氮化硅的热膨胀系数虽然很小,但是价格偏高,提高了匣钵的生产成本。
为了降低涂层和母材热膨胀系数不匹配的问题,专利文献CN103311498A中采用了在堇青石-莫来石母材上用二次压制的方法附着了氧化锆和锂辉石的混合附着层。氧化锆和锂辉石和锂离子电池正极材料都很难反应,并且锂辉石的热膨胀系数低,可以和氧化锆在一定比例范围内配合使用。但是所述的二次压制的方法不仅复杂,而且还存在着压制涂层不均匀导致匣钵底面和侧面的强度降低从而出现裂纹等问题。
专利文献CN108302942A中公开的匣钵保护层包括传统上经常使用的氧化铝、氧化镁、镁铝尖晶石、氧化锆、硅酸锆、锂辉石等,并且还包括了莫来石-堇青石和锂离子电池正极材料反应后的产物包括铝酸锂(LiAlO2)和锂霞石(Li2O·Al2O3·2SiO2)。但是所采用的涂层涂布方法为浸渍涂布,喷涂法或者刷涂法进行涂布,不但需要特殊的喷涂设备或者耗费人工,并且在涂层涂布以后还要等待涂层干燥,大大降低了生产效率。
综上所述,现在主流的提高匣钵使用寿命的方法主要是在堇青石-莫来石匣钵表面附着一层保护层,阻止了匣钵和锂离子正极材料的反应。但是,这种方法本身具有很多缺点:第一,莫来石-堇青石质的匣钵本身热膨胀系数很低,但是传统上认为的和碳酸锂或者氧化锂不反应的物质如氧化锆、氧化镁、氧化铝、镁铝尖晶石等的热膨胀系数都非常高,在反复不断加热冷却的时候,匣钵的母材和保护层会因为热膨胀系数不匹配进而出现开裂或者脱落等情况,并不能真正有效的提高匣钵的使用寿命;第二,不论是浸渍涂布,喷涂法或者刷涂法进行涂布,不但需要特殊的喷涂设备或者耗费人工,并且在涂层涂布以后还要等待涂层干燥,大大降低了生产效率,提高了生产成本。第三,一般的匣钵母材是由干式成型法成形,成形后的母材本身堆积密度很大,后期烧结的时候收缩率非常小。但是现有的保护层技术主体为两种,第一种为匣钵母材烧结后喷涂,干燥后直接就可以用来烧结锂离子电池正极材料,这种方法成膜简单,但是保护膜层的强度低下,在最开始的几次使用当中,容易发生保护层脱落的情况。另一种保护层技术为匣钵母材成形后直接在其表面附着保护膜,在整体干燥后进行烧结处理。这样做的好处是匣钵母材和保护层的结合力高,不容易脱落,但缺点是保护膜和母材的烧结收缩率不同,造成在烧结的时候就出现开裂起皮等现象,大大降低了成品率,提高了生产成本。
发明内容
本发明的目的在于提供一种锂电池正极材料用匣钵及其制备方法,增加了原料的流动性,同时完全避免了水的使用,成型后的匣钵胚体不需要额外的干燥过程,节省了干燥时间,提高了生产效率,降低了生产成本和能耗,同时增加了锂电池正极材料用匣钵本身的使用寿命。
本发明的锂电池正极材料用匣钵的耐腐蚀性高、耐热冲击、抗弯折强度大、气孔率低。并且本发明的匣钵只需要一次成型,不需要特殊的保护层,所以生产工艺简便,生产效率高。
本发明当中所述锂电池正极材料包括但不局限于有层状结构金属氧化物锂盐,包括钴酸锂、镍钴锰三元材料、富锂锰基材料等;具有橄榄石结构的磷酸铁锂、磷酸钴锂、磷酸锰锂、磷酸锰铁锂等;具有尖晶石结构的锰酸锂、镍锰二元材料等正极材料。
为达此目的,本发明采用以下技术方案:
一方面,本发明提供一种锂电池正极材料用匣钵,由流动性赋予材和粉体骨材的混合物组成,所述流动性赋予材选自气相氧化硅(SiO2)、气相氧化铝(Al2O3)、可压缩滑石(Mg3Si4O10(OH)2)中的一种或两种以上,所述粉体骨材选自透锂长石(Li2O·Al2O3·8SiO2)、锂辉石(Li2O·Al2O3·4SiO2)、锂霞石(Li2O·Al2O3·2SiO2)、钨酸锆(ZrO2·2WO4)、堇青石(2MgO·2Al2O3·5SiO2)、氧化铝(Al2O3)、氧化锆(ZrO2)、氧化镁(MgO)、镁铝尖晶石(Al2O3·MgO)、硅酸锆(ZrO2·SiO2)、镁橄榄石(2MgO·SiO2)、顽火辉石(MgO·SiO2)、莫来石(3Al2O3·2SiO2)中的一种或两种以上。
本发明通过使用流动性赋予材与粉体骨材来制备匣钵,不但在匣钵成型的过程中实现了水的零添加,彻底摒弃了干燥过程和减少了干燥设备的投入,并且通过流动性赋予材和粉体骨材的配合比例,从而达到了让匣钵在高透气性和高寿命性之间的转换,轻松应对不同锂离子电池正极材料的需求。并且,本发明不需要在匣钵表面装配保护层,降低了生产难度和设备的投入,并且解决了保护层和匣钵母材间结合力的问题,更进一步降低了匣钵在使用当中可能出现问题的概率。
具体而言,本发明当中所使用的流动性赋予材包括气相氧化硅(SiO2)、气相氧化铝(Al2O3)、可压缩滑石(Mg3Si4O10(OH)2)中的一种或两种以上。这些流动性赋予材最大的特点就是尺寸比较小,多为纳米级别,所以具有很大的比表面积。另外这些流动性赋予材本身的体积非常大,在于粉体骨材充分混合后,可以镶嵌在粉体骨材的颗粒之间,既充当了分散剂,又让匣钵原料的体积变大,具有了和添加水一样的流动性,让匣钵原料直接干压成型成为可能。另外,由于气相氧化铝和可压缩滑石本身就是非常良好的耐锂离子电池正极材料侵蚀的原料,所以在使用这两种原料的同时还可以提高匣钵的耐蚀性,延长了匣钵的使用寿命,所以推荐优先使用。
本发明可以根据需要在轻量化高透气性和耐锂离子电池正极材料侵蚀性中选择平衡。更进一步说,对于三元正极材料的烧成来说,匣钵底部和侧面的氧气透过性可以有效促进正极材的烧结,这就可以通过提高流动性赋予材的比例来降低匣钵的堆积密度,从而提高匣钵的透气性。而对于钴酸锂这类高腐蚀性正极材,需要低的气孔率来保证匣钵的寿命,这就可以降低流动性赋予材的比例,提高粉体骨材的比例来提高匣钵的堆积密度,延长匣钵寿命。
本发明中,所述流动性赋予材的重量百分比为1~50wt%,当流动性赋予材的添加比例高得时候,匣钵原料整体的流动性就会大大提高,并且由于流动性赋予材本身的体积非常大,所以成型后的匣钵本身的堆积密度小,气孔率高,适合需要快速升温,高通气性的情况下使用,比如烧结三元锂离子电池正极材料。相反,如果流动性赋予材的添加比例低的时候,匣钵原料的体积就会相对变小,成型后的匣钵的堆积密度相对较高,气孔率较低,适合烧结如钴酸锂等高侵蚀性锂离子电池正极材料。所以通过调节流动性赋予材的添加比例就可以在高通气性和强耐蚀性之间进行转换,从而对应不同的锂离子电池正极材料的烧结。
本发明中,所述粉体骨材的重量百分比为50~99wt%。这些粉体骨材的材料本身和锂离子电池正极材料很难反应,所以在和流动性赋予材搭配使用制成的匣钵,本身就具备有非常好的耐力离子电池正极材料侵蚀的特性。
为了确保流动性粉体骨材的流动性,所述流动性赋予材的中心粒径(D50)为0.001~100μm,所述粉体骨材的中心粒径(D50)为0.01~100μm。优选地,所述流动性赋予材的中心粒径(D50)为50μm,所述粉体骨材的中心粒径(D50)为50μm。
本发明中,按重量百分比计,所述锂电池正极材料用匣钵由以下组份组成:
Figure BDA0002665050320000051
本发明的发明人认为,匣钵的耐锂离子电池正极材料的侵蚀性主要表现在两个方面:第一、匣钵本身的材料中容易和碳酸锂或氢氧化锂反应的物质的比例,比如说如果匣钵中容易和锂离子电池正极材料反应的气相氧化硅的比例太高,就会严重影响匣钵的使用寿命;第二、匣钵本身的气孔率。如果匣钵的气孔率太大,在高温退火的时候,碳酸锂就会从固态转化为液态进而渗透到匣钵当中。如果匣钵的气孔率非常高,那么锂离子在匣钵当中的扩散率就会非常大,进而提高了和匣钵当中的易反应物质的结合概率,降低匣钵的使用寿命。所以为了防止锂离子的损失,同时减小液态锂离子对匣钵的侵蚀,本发明的匣钵的气孔率为75%以下,优选为50%以下,进一步地,气孔率能控制在5~30%会获得更高的耐侵蚀效果。
另外,匣钵的气孔率主要和匣钵当中材料的密度和匣钵本身的堆积密度有关。一般情况下,匣钵的堆积密度越大,气孔率就会越小。为了平衡气孔率和匣钵本身的重量,所以本发明的锂电池正极材料用匣钵的堆积密度为0.6~5.0g/cm3,优选为2.0~4.0g/cm3
一般情况下,匣钵材料的耐热冲击性和热膨胀系数、抗弯折强度以及材料本身的性质如厚度和杨氏模量有关。所以为了确保本发明的匣钵在急冷急热的情况下可以正常使用,在热膨胀系数为特定数值时,我们明确了匣钵的抗弯折强度在2MPa以上。更进一步,匣钵的抗弯折强度在9~150MPa会有更好的耐热冲击性。
另一方面,本发明还提供一种所述的锂电池正极材料用匣钵的制备方法,包括以下步骤:
S10、将所述流动性赋予材和粉体骨材混合均匀形成可流动性粉体混合物;
S20、将所述可流动性粉体混合物成型为匣钵胚体;
S30、对所述匣钵胚体进行烧成处理,制得锂电池正极材料用匣钵。
步骤S30中,对烧成后的匣钵不进行加工或者进行加工剔除表面的不均匀部分,进而得到最后的匣钵成品。
其中,成型后的匣钵胚体无需干燥,直接进行烧成处理即可。
其中,所述匣钵胚体成型方法为干法压制成型法,成型压力为100~1000kgf/cm2
优选地,烧成条件为:在900~1600℃下烧成1~48小时。
本发明的有益效果:本发明通过在粉体骨材中添加流动性赋予材,从而增加了粉体骨材的流动性,完全避免了水的使用,大大加快了匣钵的生产效率,节约了生产成本和对能源的消耗。另外,本发明所使用的流动性赋予材本身就是良好的耐锂电池正极材料侵蚀的原料,可以在提高生产效率的同时增加匣钵本身的使用寿命。
具体实施方式
下面通过具体实施方式来进一步说明本发明的技术方案。
如无具体说明,本发明的各种原料均可市售购得,或根据本技术领域的常规方法制备得到。
实施例1
按照表1所示组份的重量百分比备好原料。将上述原料置于球磨机中充分混合,将混合后的粉体倒入模具中直接压制成型。压制好的匣钵胚体不用干燥,直接放入高温电炉中(烧成温度参考表1),在1350℃下退火3h,冷却至150℃以下后开炉取出,即可得到锂电池正极材料用匣钵。
实施例2~13
各实施例所用的原料及其重量百分比及烧成温度等参数分别参考表1,其余步骤均与上述实施例1相同,具体不再赘述。
表1.实施例1~13工艺参数
Figure BDA0002665050320000061
Figure BDA0002665050320000071
比较例1~3
各比较例所用的各原料及其百分比及烧成温度等参数分别参考表2,其余步骤均与上述实施例1相同,具体不再赘述。
表2.比较例1~3工艺参数
Figure BDA0002665050320000072
Figure BDA0002665050320000081
测试
对实施例1~13所述匣钵的堆积密度、抗弯折强度、化学成分的重量比、热膨胀系数、真密度、气孔率以及耐用次数进行测试,测试结果见表3。
对比较例1~3所述匣钵的堆积密度、抗弯折强度、化学成分的重量比、热膨胀系数、真密度、气孔率以及耐用次数进行测试,测试结果见表4。
其中,匣钵的堆积密度通过重量和体积的测算可获得;采用三点弯折强度试验(试验机:株式会社岛津制作所AG-Xplus)测定匣钵的弯折强度;通过X射线分析装置(株式会社岛津制作所PDA-8000)测定匣钵的化学成分的重量百分比;采用热膨胀系数测定仪(株式会社NETZSCH,DIL 402C)检测匣钵的热膨胀系数;通过液相置换法(株式会社セイシン企業,AUTO TRUE DENSER MAT-7000)测定匣钵的真密度和气孔率。
耐用次数测试:将碳酸锂粉末和氧化钴粉末按照Li和Co的摩尔比1:1在球磨机中进行1h的高速混合。将混合均匀的碳酸锂氧化钴混合物堆积至匣钵的顶部平行(大约6kg)。然后将装满混合物的匣钵放置在大电炉当中,用3h从室温升至800℃,并在800℃保持5h,然后让匣钵及其当中的锂离子电池正极材料在大电炉中自然冷却至150℃(约6h)取出,并进行观察。如果所烧的锂离子电池正极材料可以轻松从匣钵中倒出,匣钵表面没有锂离子电池正极材料残留物,并且匣钵本身没有出现开裂脱皮等不良反应,则视为匣钵可以继续进行锂离子电池正极材料的烧结实验。如果发现锂离子电池正极材料不能顺利从匣钵中倒出,或者匣钵中少量残留锂离子电池正极材料,或者匣钵本身出现开裂脱皮等状况,则视为匣钵已经到了使用寿命,终止锂离子电池正极材料的烧结实验。
表3.实施例1~13测试结果
Figure BDA0002665050320000082
Figure BDA0002665050320000091
表4.比较例1~3测试结果
测试项目 比较例1 比较例2 比较例3
堆积密度(kg/m<sup>3</sup>) / 0.5 5.1
抗弯折强度(Mpa) / 1.5 19.9
SiO<sub>2</sub>(%) / 54.9 0.1
Al<sub>2</sub>O<sub>3</sub>(%) / 0.0 11.1
Li<sub>2</sub>O(%) / 0.0 0.0
ZrO<sub>2</sub>(%) 9.4 88.7
MgO(%) / 0.0 0.0
WO<sub>3</sub>(%) / 35.6 0.0
其他(%) / 0.1 0.1
热膨胀系数(10<sup>-6</sup>/K) / -2.0 8.9
真密度(g/cm<sup>3</sup>) / 3.6 5.5
气孔率(%) / 86.1 7.3
耐用次数 / 2 35
从表3可知,上述实施例1制得的匣钵可以使用的循环次数为13次。当进行了第14次循环烧结实验后,发现该匣钵表面出现了脱皮开裂,可能会影响锂离子电池正极材料的使用性能。采用实施例的方法制得的匣钵和现有传统的莫来石-堇青石匣钵的使用寿命(9次左右)相比有了很大提高。
在“比较例1”当中,由于没有使用流动性赋予材而只使用了粉体骨材,所以原料混合物的流动性非常低导致最终无法成型。在“比较例2”当中,由于流动性赋予材的添加量超过了50%,所以成型烧结后的匣钵堆积密度很低,导致匣钵的抗压强度不足,在使用一次后就出现了开裂。在“比较例3”当中,由于匣钵的堆积密度超过了本专利所述堆积密度的范围,所以并不属于本专利所述锂离子电池正极材料烧结用匣钵。
上述实施例1~13及比较例1~3中所使用的各原料的来源、密度以及热膨胀系数参见下表:
表5.各原料的来源、密度以及热膨胀系数
Figure BDA0002665050320000101
上述实施例1~13及比较例1~3中所使用的各原料的化学成分的重量百分比参见下表:
表6.各原料的化学成分的重量百分比
Figure BDA0002665050320000102
Figure BDA0002665050320000111
以上实施例仅用来说明本发明的详细方法,本发明并不局限于上述详细方法,即不意味着本发明必须依赖上述详细方法才能实施。所属技术领域的技术人员应该明白,对本发明的任何改进,对本发明产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。

Claims (13)

1.一种锂电池正极材料用匣钵,其特征在于,由流动性赋予材和粉体骨材的混合物制成,所述流动性赋予材选自气相氧化硅、气相氧化铝、可压缩滑石中的一种或两种以上,所述粉体骨材选自透锂长石、锂辉石、锂霞石、钨酸锆、堇青石、氧化铝、氧化锆、氧化镁、镁铝尖晶石、硅酸锆、镁橄榄石、顽火辉石、莫来石中的一种或两种以上;
所述流动性赋予材的重量百分比为1~50%;所述粉体骨材的重量百分比为50~99%;
所述流动性赋予材的中心粒径(D50)为0.001~100μm;所述粉体骨材的中心粒径(D50)为0.01~100μm。
2.根据权利要求1所述的锂电池正极材料用匣钵,其特征在于,所述流动性赋予材的重量百分比为5~30%;所述粉体骨材的重量百分比为70~95%。
3.根据权利要求1所述的锂电池正极材料用匣钵,其特征在于,按重量百分比计,所述锂电池正极材料用匣钵由以下组份组成:
Figure FDA0003528168090000011
4.根据权利要求1所述的锂电池正极材料用匣钵,其特征在于,所述锂电池正极材料用匣钵的堆积密度为0.6~5.0g/cm3
5.根据权利要求1所述的锂电池正极材料用匣钵,其特征在于,所述锂电池正极材料用匣钵的堆积密度为2.0~4.0g/cm3
6.根据权利要求1所述的锂电池正极材料用匣钵,其特征在于,所述锂电池正极材料用匣钵的抗弯折强度为2MPa以上。
7.根据权利要求1所述的锂电池正极材料用匣钵,其特征在于,所述锂电池正极材料用匣钵的抗弯折强度为9~150MPa。
8.根据权利要求1所述的锂电池正极材料用匣钵,其特征在于,所述锂电池正极材料用匣钵的气孔率为75%以下。
9.根据权利要求1所述的锂电池正极材料用匣钵,其特征在于,所述锂电池正极材料用匣钵的气孔率为50%以下。
10.根据权利要求1所述的锂电池正极材料用匣钵,其特征在于,所述锂电池正极材料用匣钵的气孔率为5~30%。
11.一种权利要求1至10任一项所述的锂电池正极材料用匣钵的制备方法,其特征在于,包括以下步骤:
S10、将所述流动性赋予材和粉体骨材混合均匀形成可流动性粉体混合物;
S20、将所述可流动性粉体混合物成型为匣钵胚体;
S30、对所述匣钵胚体进行烧成处理,制得锂电池正极材料用匣钵。
12.根据权利要求11所述的锂电池正极材料用匣钵的制备方法,其特征在于,所述匣钵胚体成型方法为干法压制成型法,成型压力为100~1000kgf/cm2
13.根据权利要求11所述的锂电池正极材料用匣钵的制备方法,其特征在于,步骤S30中的烧成条件为:在900~1600℃下烧成1~48小时。
CN202010916023.2A 2020-09-03 2020-09-03 一种锂电池正极材料用匣钵及其制备方法 Active CN112010661B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010916023.2A CN112010661B (zh) 2020-09-03 2020-09-03 一种锂电池正极材料用匣钵及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010916023.2A CN112010661B (zh) 2020-09-03 2020-09-03 一种锂电池正极材料用匣钵及其制备方法

Publications (2)

Publication Number Publication Date
CN112010661A CN112010661A (zh) 2020-12-01
CN112010661B true CN112010661B (zh) 2022-06-03

Family

ID=73515767

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010916023.2A Active CN112010661B (zh) 2020-09-03 2020-09-03 一种锂电池正极材料用匣钵及其制备方法

Country Status (1)

Country Link
CN (1) CN112010661B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114195533A (zh) * 2021-12-14 2022-03-18 广州粤瓷新材料有限公司 一种用于锂离子电池正极材料的匣钵及其制备方法
CN114671704B (zh) * 2022-04-22 2023-04-18 广州粤瓷新材料有限公司 一种低膨胀多孔堇青石及其制备方法
CN115319905B (zh) * 2022-07-29 2023-09-12 广东邦普循环科技有限公司 烧结生产线、匣钵回收***及方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4387195A (en) * 1981-07-20 1983-06-07 Tully Paul R Hydrophobic ceramic wares
US4687752A (en) * 1984-06-21 1987-08-18 Resco Products, Inc. Medium weight abrasion-resistant castable
CN1793017A (zh) * 2005-11-22 2006-06-28 武汉理工大学 莫来石晶须—莫来石复合涂层及其制备方法
JP2007308731A (ja) * 2006-05-16 2007-11-29 Nisshinbo Ind Inc 焼結用セッター材
CN104909733A (zh) * 2015-06-17 2015-09-16 长沙鼎成新材料科技有限公司 一种MnZn铁氧体烧结用堇青石陶瓷承烧板
CN106083017A (zh) * 2016-06-22 2016-11-09 景德镇陶瓷大学 一种高性能低膨胀坩埚及其制备方法
CN106747262A (zh) * 2016-12-13 2017-05-31 广西大学 一种纳米二氧化硅粉末基超级复合隔热材料的制备方法
CN106946553A (zh) * 2017-04-01 2017-07-14 武汉理工大学 一种低成本长寿命的陶瓷匣钵及其制备方法
CN108545941A (zh) * 2018-07-05 2018-09-18 湖南嘉盛电陶新材料股份有限公司 陶瓷釉料、陶瓷器皿及其制备方法
CN109216683A (zh) * 2018-09-20 2019-01-15 天津师范大学 一种锂离子电池用高容量负极材料的合成方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104370534B (zh) * 2014-10-27 2016-04-13 合肥市东庐机械制造有限公司 一种切削刀具用抗磨特种陶瓷及其制备方法
JP2017091910A (ja) * 2015-11-13 2017-05-25 旭化成株式会社 リチウムイオン伝導体及びこれを用いたリチウムイオン電池
CN105503233B (zh) * 2015-12-14 2019-04-16 重庆奥福精细陶瓷有限公司 一种大规格薄壁堇青石蜂窝陶瓷载体泥料及其制备方法
CN107021762A (zh) * 2017-06-01 2017-08-08 景德镇陶瓷大学 一种提高建筑陶瓷干法造粒粉料流动性的方法
CN107176827A (zh) * 2017-06-05 2017-09-19 长兴华悦耐火材料厂 一种制备坩埚用耐火材料粉体
CN107500787B (zh) * 2017-08-24 2020-06-16 中钢洛耐新材料科技有限公司 一种微波冶金窑车用莫来石-氧氮化硅复合耐火材料
CN107954732B (zh) * 2017-12-12 2021-02-19 浙江大学 堇青石-镁橄榄石匣钵、制备方法及其应用
CN109305808A (zh) * 2018-10-16 2019-02-05 武汉科技大学 一种锂电池正极材料烧成用匣钵及其制备方法
CN110282964A (zh) * 2019-06-20 2019-09-27 武汉科技大学 莫来石-堇青石质锂电池正极材料烧结用匣钵及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4387195A (en) * 1981-07-20 1983-06-07 Tully Paul R Hydrophobic ceramic wares
US4687752A (en) * 1984-06-21 1987-08-18 Resco Products, Inc. Medium weight abrasion-resistant castable
CN1793017A (zh) * 2005-11-22 2006-06-28 武汉理工大学 莫来石晶须—莫来石复合涂层及其制备方法
JP2007308731A (ja) * 2006-05-16 2007-11-29 Nisshinbo Ind Inc 焼結用セッター材
CN104909733A (zh) * 2015-06-17 2015-09-16 长沙鼎成新材料科技有限公司 一种MnZn铁氧体烧结用堇青石陶瓷承烧板
CN106083017A (zh) * 2016-06-22 2016-11-09 景德镇陶瓷大学 一种高性能低膨胀坩埚及其制备方法
CN106747262A (zh) * 2016-12-13 2017-05-31 广西大学 一种纳米二氧化硅粉末基超级复合隔热材料的制备方法
CN106946553A (zh) * 2017-04-01 2017-07-14 武汉理工大学 一种低成本长寿命的陶瓷匣钵及其制备方法
CN108545941A (zh) * 2018-07-05 2018-09-18 湖南嘉盛电陶新材料股份有限公司 陶瓷釉料、陶瓷器皿及其制备方法
CN109216683A (zh) * 2018-09-20 2019-01-15 天津师范大学 一种锂离子电池用高容量负极材料的合成方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
气相氧化铝的制备方法及应用前景;陈燕玉等;《广州化工》;20140731;第42卷(第14期);第17-19页 *
热处理温度对气相法二氧化硅性能的影响;黄潇等;《有机硅材料》;20200525;第34卷(第2期);第43-46页 *

Also Published As

Publication number Publication date
CN112010661A (zh) 2020-12-01

Similar Documents

Publication Publication Date Title
CN112010661B (zh) 一种锂电池正极材料用匣钵及其制备方法
CN112028650A (zh) 一种锂离子电池正极材料用匣钵
CN105698542B (zh) 一种抗锂电池高温腐蚀层状匣钵及其制备方法
JP7229456B2 (ja) リチウムイオン電池電極材料焼成用匣鉢及び匣鉢の保護層用材料
JP5241868B2 (ja)
CN108341666B (zh) 一种匣钵及其制备方法
CN113372105B (zh) 一种锂电池正极材料用双层结构匣钵及其制备方法
CN109467422A (zh) 一种锂电专用高循环特种陶瓷坩埚及其制备方法
CN114195533A (zh) 一种用于锂离子电池正极材料的匣钵及其制备方法
CN113548884B (zh) 含堇青石和复合尖晶石莫来石的匣钵及其制备方法
CN115340392B (zh) 一种长寿命锂电正极材料用匣钵及其制备方法
CN109320216A (zh) 一种基于片层状结构的稀土氧化物修饰的六铝酸钙坩埚制造方法
CN111225889A (zh) 锂二次电池正极活性物质烧成用匣钵及其制造方法
JP2004063261A (ja) 正極原料焼成用耐火物とその利用
CN113292349B (zh) 一种含六铝酸钙复合层的匣钵及其制备方法
CN114230371A (zh) 一种改善匣钵表面耐腐蚀性,提高使用寿命复合涂层
CN106365654B (zh) 一种添加ZrN-SiAlON的抗锂电材料侵蚀耐火坩埚
CN115353372B (zh) 一种锂电正极材料烧结用匣钵及其制备方法
CN115340409B (zh) 一种锂电正极材料用匣钵涂层及其制备方法
KR20130051290A (ko) 이차전지의 양극소재 소성을 위한 요도구용 조성물 및 요도구
CN114349484B (zh) 一种用于锂电池电极材料煅烧的陶瓷材料及其制备方法
CN112759377B (zh) 一种锂电池正极材料焙烧用匣钵及其制备方法
CN106348773B (zh) 一种添加SiAlON-AlN-TiN的抗锂电材料侵蚀耐火坩埚
CN114105630A (zh) 一种透锂长石结合六铝酸钙匣钵及其制备方法
KR20110061484A (ko) 노재 및 노재의 제조 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20220425

Address after: 510623 room 910, No. 770, Huacheng Avenue, Tianhe District, Guangzhou, Guangdong Province (office only)

Applicant after: Guangzhou yueci New Material Co.,Ltd.

Address before: 518048 808, block B, phase I, Tian'an innovation and Technology Plaza, No. 25, Tairan 4th Road, Tian'an community, Shatou street, Futian District, Shenzhen, Guangdong Province

Applicant before: Shenzhen Feiyue New Material Technology Co.,Ltd.

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant