CN112008091A - 一种高灵敏、低毒、具氧化模拟酶活性的金纳米簇制备方法与应用 - Google Patents

一种高灵敏、低毒、具氧化模拟酶活性的金纳米簇制备方法与应用 Download PDF

Info

Publication number
CN112008091A
CN112008091A CN202010815635.2A CN202010815635A CN112008091A CN 112008091 A CN112008091 A CN 112008091A CN 202010815635 A CN202010815635 A CN 202010815635A CN 112008091 A CN112008091 A CN 112008091A
Authority
CN
China
Prior art keywords
preparation
gold
gold nanocluster
enzyme activity
high sensitivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010815635.2A
Other languages
English (en)
Inventor
李少光
姚宏
林新华
张晓颖
黄丽英
李光文
蔡佳松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Medical University
Original Assignee
Fujian Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian Medical University filed Critical Fujian Medical University
Priority to CN202010815635.2A priority Critical patent/CN112008091A/zh
Publication of CN112008091A publication Critical patent/CN112008091A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0553Complex form nanoparticles, e.g. prism, pyramid, octahedron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/07Metallic powder characterised by particles having a nanoscale microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • G01N21/6458Fluorescence microscopy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

本发明公开一种高灵敏、低毒、具氧化模拟酶活性的金纳米簇制备方法与应用,属于纳米生物材料技术领域。本发明涉及的金纳米簇的制备方法包括:配置L‑组氨酸溶液、抗坏血酸溶液、氯金酸溶液,再将上述溶液以一定比例和顺序混合,在所筛选条件下孵育,透析后得到组氨酸‑抗坏血酸‑金纳米簇金纳米团簇。本发明所得到的金纳米团簇探针具氧化模拟酶活性,在活细胞显像中显像具高灵敏特性,且荧光强度随探针浓度增加而升高,其对H2O2检测的线性范围和对Fe3+响应的浓度范围宽,其制备简便、低成本,具有多功能、高灵敏和高选择性检测特点和潜在生物活性显像作用,在生命分析领域有较为良好应用前景。

Description

一种高灵敏、低毒、具氧化模拟酶活性的金纳米簇制备方法与 应用
技术领域
本发明涉及纳米生物材料技术领域,设计并制备组氨酸(His)和抗坏血酸(AA)还原与共同保护的多功能金纳米团簇(His-AA-AuNCs)并研究其应用。
背景技术
细胞内过剩H2O2可导致多种炎症类型的发生,包括动脉粥样硬化、慢性阻塞性肺病和肝炎。因此对过氧化氢进行高灵敏度、高选择性的分析与检测是极为必要的。
目前对于过氧化氢检测方法有激光共聚焦显微检测、紫外分光光度计检测、高效液相色谱柱后衍生法、化学发光法等方法。激光共聚焦显微检测方法灵敏度高,时间短,尤其能够动态检测细胞内H2O2浓度的变化,但动态监测需要荧光探针低毒及抗光漂白作用强,因此,该方法对荧光探针有较高要求。紫外分光光度计检测法是一种快速简易的测定方法,所用试剂价格便宜, 通过制作标准曲线, 可以准确定量测定细胞内H2O2的浓度,但其不足之处是灵敏度不高。
本发明设计并制备组氨酸(His)和抗坏血酸(AA)还原与共同保护的多功能金纳米团簇(His-AA-AuNCs),发现基于过氧化氢模拟酶性质用于高灵敏度和选择性检测Fe3+,以及检测阿霉素损伤后细胞内活性氧水平。
发明内容
本发明的目的在于提供一种具有过氧化氢模拟酶活性的金纳米簇制备方法与应用。
本发明所提供的金纳米团簇,形状为类球形,直径为1-5纳米,有明显的晶格条纹,记为His-AA-AuNCs。
本发明的目的是这样实现的,本发明所提出的金纳米团簇的制备方法,具体步骤如下:
(1)在组氨酸溶液中,依次加入氯金酸溶液、抗坏血酸溶液;
(2)将步骤(1)所得的混合溶液恒温孵育;
(3)将步骤(2)所得孵育后的溶液透析纯化,于低温避光保存。
步骤(1)中,混合溶液的流程为:在5 mL,0.2 mol/L组氨酸中,搅拌下依次加入2mL,23.16 mmol/L氯金酸、2 mL,10 mmol/L抗坏血酸。
步骤(2)中,恒温温度为60℃,孵育时间为2小时。
步骤(3)中,透析条件为500 Da透析袋透析24小时,低温保存温度为4℃。
本发明中,金纳米团簇的最佳荧光激发波长为388 nm,发射波长为481 nm,在365nm紫外灯照射下呈蓝绿色荧光。
本发明中,金纳米团簇作为过氧化物模拟酶,对H2O2的浓度检测呈线性正比关系,检测线性范围10-9.97×106 μM。
本发明中,基于Fe3+正催化的金纳米团簇,其Fe3+浓度在0.28-280 nM范围内与A/A0(652 nm处各个Fe3+和空白组对应的吸光度比值)呈线性正比关系,在此范围内,Fe3+可较大程度提高金纳米团簇的响应信号。
本发明上述的制备方法制得的具有过氧化氢模拟酶活性的金纳米团簇,其特征在于,形状为类球形,直径为1-5纳米,有明显的晶格条纹,记为His-AA-AuNCs。
本发明中,上述的金纳米团簇在制备作为生命分析领域的药物中的应用。
本发明中,金纳米团簇作为探针用于检测阿霉素损伤后细胞内活性氧水平,随着阿霉素损伤程度加大,细胞荧光成像亮度增加,且荧光强度随探针浓度增加而升高。
本发明的有益效果:本发明提供的金纳米团簇,具有多功能检测、高灵敏度和高选择性、简化和低成本等优点,拓宽了金纳米簇在生命分析领域的应用。
附图说明
图1为本发明金纳米团簇制备方法流程图。
图2为His-AA-AuNCs的荧光发射光谱图。
图3为His-AA-AuNCs的透射电子显微图,图中,A为较大视野下His-AA-AuNCs的透镜图,B为其中一个金纳米簇的透镜图。
图4为His-AA-AuNCs对H2O2浓度检测的标准曲线图。
图5为体系干扰实验图。
图6为基于Fe3+正催化的金纳米团簇,其Fe3+浓度的标准曲线图。
图7为 His-AA-AuNCs在系列浓度阿霉素损伤的HepG 2(肝癌)细胞中的细胞成像图。图中,a为阴性对照组,b-f分别为加入2.5μM、5μM、10μM、20μM、40μM阿霉素干预组。
具体实施方式
本发明所提出的金纳米团簇的制备方法,具体步骤如下(见图1):
(1)在组氨酸溶液中,依次加入氯金酸溶液、抗坏血酸溶液;
(2)将步骤(1)所得的混合溶液恒温孵育;
(3)将步骤(2)所得孵育后的溶液透析纯化,于低温避光保存。
实施例1:
His-AA-AuNCs的制备,具体步骤如下:
在5 mL,0.2 mol/L组氨酸中,搅拌下依次加入2 mL、23.16 mmol/L氯金酸,2 mL、10mmol/L抗坏血酸,反应在60 ℃孵育2 h后取出,用500 Da透析袋透析24 h,去除未反应的小分子。将获得的His-AA-AuNCs放置于4 ℃冰箱低温避光保存备用。His-AA-AuNCs形状为类球形,直径为1-5纳米,有明显的晶格条纹,见图3。其荧光发射光谱图,见图2,His-AA-AuNCs的最佳发射波长为481 nm。
实施例2:
His-AA-AuNCs作为过氧化物模拟酶,对H2O2的浓度检测呈线性正比关系,见图4,其对H2O2的浓度检测的线性范围为10-9.97×106 μM。
实施例3:
Fe3+能催化分解过氧化氢,显著增加His-AA-AuNCs的过氧化物模拟酶活性。通过考察其他金属离子及其他干扰物质有无催化酶活性,进一步研究该检测***的选择性。测试了Cu2+、Ca2+、Na+、K+、Co2+、Zn2+、腺苷、组氨酸和多巴胺等物质与Fe3+吸光度值进行比较,见图5,说明基于His-AA-AuNCs的过氧化物模拟酶活性增加可特异性检测Fe3+
实施例4:
基于Fe3+正催化的金纳米团簇,其Fe3+浓度在0.28-280 nM范围内与A/A0(652 nm处各个Fe3+和空白组对应的吸光度比值)呈线性正比关系,在此范围内,Fe3+可较大程度提高金纳米团簇的响应信号,见图6。
实施例5:
His-AA-AuNCs金纳米团簇在制备作为生命分析领域的药物中的应用,其特征在于,His-AA-AuNCs可作为探针用于检测阿霉素损伤后细胞内活性氧水平,见图7,随着阿霉素损伤程度加大,细胞荧光成像亮度增加,且荧光强度随探针浓度增加而升高。

Claims (7)

1.一种具有过氧化氢模拟酶活性的金纳米簇制备方法,其特征在于,步骤如下:
在组氨酸溶液中,依次加入氯金酸溶液、抗坏血酸溶液,获得混合溶液;
将步骤(1)所得的混合溶液恒温孵育;
将步骤(2)所得孵育后的溶液透析纯化,于低温避光保存。
2.根据权利要求1所述的制备方法,其特征在于,步骤(1)中所述的混合溶液的流程为:在5 mL,浓度为0.2 mol/L组氨酸中,搅拌下依次加入2 mL,23.16 mmol/L氯金酸、2 mL,10mmol/L抗坏血酸。
3.根据权利要求1所述的制备方法,其特征在于,步骤(2)中,恒温温度为60℃,孵育时间为2小时。
4.根据权利要求1所述的制备方法,其特征在于,步骤(3)中,透析条件为500 Da透析袋透析24小时,低温保存温度为4℃。
5.权利要求1-4任一所述的制备方法制得的具有过氧化氢模拟酶活性的金纳米团簇,其特征在于,形状为类球形,直径为1-5纳米,有明显的晶格条纹,记为His-AA-AuNCs。
6.权利要求5所述的金纳米团簇在制备作为生命分析领域的药物中的应用。
7.根据权利要求6所述的应用,其特征在于,金纳米团簇作为探针用于检测阿霉素损伤后细胞内活性氧水平,随着阿霉素损伤程度加大,细胞荧光成像亮度增加,且荧光强度随探针浓度增加而升高。
CN202010815635.2A 2020-08-14 2020-08-14 一种高灵敏、低毒、具氧化模拟酶活性的金纳米簇制备方法与应用 Pending CN112008091A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010815635.2A CN112008091A (zh) 2020-08-14 2020-08-14 一种高灵敏、低毒、具氧化模拟酶活性的金纳米簇制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010815635.2A CN112008091A (zh) 2020-08-14 2020-08-14 一种高灵敏、低毒、具氧化模拟酶活性的金纳米簇制备方法与应用

Publications (1)

Publication Number Publication Date
CN112008091A true CN112008091A (zh) 2020-12-01

Family

ID=73504414

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010815635.2A Pending CN112008091A (zh) 2020-08-14 2020-08-14 一种高灵敏、低毒、具氧化模拟酶活性的金纳米簇制备方法与应用

Country Status (1)

Country Link
CN (1) CN112008091A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113502158A (zh) * 2021-07-14 2021-10-15 桂林电子科技大学 金纳米簇的制备方法及其在胆红素和锌离子联级检测中的应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5264348A (en) * 1991-05-13 1993-11-23 Miles Inc. Ascorbate interference-resistant composition, device and method of assaying for predetermined analyte
CN103920889A (zh) * 2014-04-03 2014-07-16 东南大学 巯基聚乙二醇在制备水溶性金纳米簇中的应用
CN104101584A (zh) * 2014-06-12 2014-10-15 东南大学 金纳米簇作为谷胱甘肽荧光探针的应用
CN105548131A (zh) * 2016-03-03 2016-05-04 中国烟草总公司郑州烟草研究院 一种阵列荧光纳米簇传感器的制备方法及其在金属离子识别方面的应用
CN105965028A (zh) * 2016-05-20 2016-09-28 中国科学院新疆理化技术研究所 制备水溶性发光金属铂、金、银、铜团簇的方法及用途
CN108372312A (zh) * 2018-03-23 2018-08-07 山西大学 一种绿色荧光银纳米团簇及其制备方法与应用
CN109884011A (zh) * 2019-03-03 2019-06-14 福建医科大学 基于羧化壳聚糖/二硫苏糖醇-金纳米团簇的阿霉素荧光检测方法
CN110125432A (zh) * 2019-04-22 2019-08-16 山西大学 一种绿色荧光铜纳米团簇的制备方法及应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5264348A (en) * 1991-05-13 1993-11-23 Miles Inc. Ascorbate interference-resistant composition, device and method of assaying for predetermined analyte
CN103920889A (zh) * 2014-04-03 2014-07-16 东南大学 巯基聚乙二醇在制备水溶性金纳米簇中的应用
CN104101584A (zh) * 2014-06-12 2014-10-15 东南大学 金纳米簇作为谷胱甘肽荧光探针的应用
CN105548131A (zh) * 2016-03-03 2016-05-04 中国烟草总公司郑州烟草研究院 一种阵列荧光纳米簇传感器的制备方法及其在金属离子识别方面的应用
CN105965028A (zh) * 2016-05-20 2016-09-28 中国科学院新疆理化技术研究所 制备水溶性发光金属铂、金、银、铜团簇的方法及用途
CN108372312A (zh) * 2018-03-23 2018-08-07 山西大学 一种绿色荧光银纳米团簇及其制备方法与应用
CN109884011A (zh) * 2019-03-03 2019-06-14 福建医科大学 基于羧化壳聚糖/二硫苏糖醇-金纳米团簇的阿霉素荧光检测方法
CN110125432A (zh) * 2019-04-22 2019-08-16 山西大学 一种绿色荧光铜纳米团簇的制备方法及应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHENGZHI ZHENG等: "Study on the interaction between histidine-capped Au nanoclusters and bovine serum albumin with spectroscopic techniques", 《SPECTROCHIMICA ACTA PART A: MOLECULAR AND BIOMOLECULAR SPECTROSCOPY》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113502158A (zh) * 2021-07-14 2021-10-15 桂林电子科技大学 金纳米簇的制备方法及其在胆红素和锌离子联级检测中的应用
CN113502158B (zh) * 2021-07-14 2023-03-14 桂林电子科技大学 金纳米簇的制备方法及其在胆红素和锌离子联级检测中的应用

Similar Documents

Publication Publication Date Title
Zhang et al. Copper sulfide nanoclusters with multi-enzyme-like activities and its application in acid phosphatase sensing based on enzymatic cascade reaction
Ju et al. Proton-controlled synthesis of red-emitting carbon dots and application for hematin detection in human erythrocytes
Peng et al. Smartphone colorimetric determination of hydrogen peroxide in real samples based on B, N, and S co-doped carbon dots probe
Ali et al. based selective and quantitative detection of uric acid using citrate-capped Pt nanoparticles (PtNPs) as a colorimetric sensing probe through a simple and remote-based device
CN112175608B (zh) 一种蓝色荧光银纳米团簇及其制备方法与应用
Pirot et al. Surface imprinted polymer on dual emitting MOF functionalized with blue copper nanoclusters and yellow carbon dots as a highly specific ratiometric fluorescence probe for ascorbic acid
CN101936905A (zh) 一种汞离子检测试剂及检测方法
Liang et al. Synthesis of carbon quantum dots with iron and nitrogen from Passiflora edulis and their peroxidase-mimicking activity for colorimetric determination of uric acid
Qu et al. A dual-channel ratiometric fluorescent probe for determination of the activity of tyrosinase using nitrogen-doped graphene quantum dots and dopamine-modified CdTe quantum dots
Kailasa et al. Recent progress of nanomaterials for colorimetric and fluorescence sensing of reactive oxygen species in biological and environmental samples
Li et al. Fabricating a nano-bionic sensor for rapid detection of H2S during pork spoilage using Ru NPs modulated catalytic hydrogenation conversion
Wu et al. Sensitive fluorescence detection for hydrogen peroxide and glucose using biomass carbon dots: Dual-quenching mechanism insight
Alle et al. Gold nanoparticles spontaneously grown on cellulose nanofibrils as a reusable nanozyme for colorimetric detection of cholesterol in human serum
CN110108679A (zh) 一种基于铜掺杂碳纳米点的有机磷农药无酶比率荧光检测新方法
Chen et al. " Light-on" Colorimetric Assay for Ascorbic Acid Detection via Boosting the Peroxidase-like Activity of Fe-MIL-88
Du et al. Polydopamine coated copper nanoclusters with aggregation-induced emission for fluorometric determination of phosphate ion and acid phosphatase activity
Mao et al. Luminescent europium (III)-organic framework for visual and on-site detection of hydrogen peroxide via a tablet computer
Sha et al. One step functional assembly of guanosine monophosphate and terbium ion on metal organic frameworks for determination of alkaline phosphatase activity
Chen et al. A redox reaction-induced ratiometric fluorescence platform for the specific detection of ascorbic acid based on Ag 2 S quantum dots and multifunctional CoOOH nanoflakes
CN112008091A (zh) 一种高灵敏、低毒、具氧化模拟酶活性的金纳米簇制备方法与应用
CN104865232A (zh) 一种金属有机骨架材料选择性检测抗坏血酸的方法
Zhang et al. Zeolitic imidazolate framework-8 encapsulating gold nanoclusters and carbon dots for ratiometric fluorescent detection of adenosine triphosphate and cellular imaging
Li et al. Biomimetic enzyme MOF-NADH-mediated and 3, 3′, 5, 5′-tetramethylbenzidine-based colorimetric assay for formaldehyde detection
Yan et al. Kill two birds with one stone: Ratiometric sensing of phosphate via a single-component probe with fluorescence-scattering dual-signal response behavior
Zhang et al. Upconversion nanoparticles anchored MnO2 nanosheets for luminescence “turn on” detecting hydrogen peroxide

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20201201