CN111987928A - 一种自适应调制的多状态逆变***及其调制方法 - Google Patents

一种自适应调制的多状态逆变***及其调制方法 Download PDF

Info

Publication number
CN111987928A
CN111987928A CN202010839042.XA CN202010839042A CN111987928A CN 111987928 A CN111987928 A CN 111987928A CN 202010839042 A CN202010839042 A CN 202010839042A CN 111987928 A CN111987928 A CN 111987928A
Authority
CN
China
Prior art keywords
fault
bridge arm
output
state
bridge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010839042.XA
Other languages
English (en)
Inventor
王天真
汪晗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Maritime University
Original Assignee
Shanghai Maritime University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Maritime University filed Critical Shanghai Maritime University
Priority to CN202010839042.XA priority Critical patent/CN111987928A/zh
Publication of CN111987928A publication Critical patent/CN111987928A/zh
Priority to US17/396,715 priority patent/US11437928B2/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/325Means for protecting converters other than automatic disconnection with means for allowing continuous operation despite a fault, i.e. fault tolerant converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/16Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0012Control circuits using digital or numerical techniques
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0083Converters characterised by their input or output configuration
    • H02M1/009Converters characterised by their input or output configuration having two or more independently controlled outputs
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/084Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters using a control circuit common to several phases of a multi-phase system
    • H02M1/0845Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters using a control circuit common to several phases of a multi-phase system digitally controlled (or with digital control)
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53873Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53875Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • H02P27/12Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation pulsing by guiding the flux vector, current vector or voltage vector on a circle or a closed curve, e.g. for direct torque control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • H02P29/0243Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the fault being a broken phase
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/505Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/515Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M7/521Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53875Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output
    • H02M7/53876Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output based on synthesising a desired voltage vector via the selection of appropriate fundamental voltage vectors, and corresponding dwelling times
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2209/00Indexing scheme relating to controlling arrangements characterised by the waveform of the supplied voltage or current
    • H02P2209/05Polyphase motors supplied from a single-phase power supply or a DC power supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • H02P27/10Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation using bang-bang controllers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Data Mining & Analysis (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computing Systems (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Algebra (AREA)
  • Inverter Devices (AREA)

Abstract

本发明提出自适应调制的多状态逆变***,包括:***电容器;四条桥臂,每条桥臂上具有一对互补的功率开关组;隔离开关组,包括熔断器和双向晶闸管,在第一桥臂、第二桥臂、第三桥臂的输出支路上分别串联一熔断器输出三相电压,并且三相电压输出侧共用两条辅助支路,一条辅助支路为从第四桥臂的输出支路出发,在输出支路上串联一熔断器,再经由三个双向晶闸管分别与三相电压的输出点连接,另一条辅助支路为从***电容器中点引出的直流侧馈电支路出发,经由三个双向晶闸管分别与三相电压的输出点连接。本发明还提供多状态逆变***的调制方法。利用自适应调制技术使得多状态逆变器具有过电流保护,隔离故障桥臂以及任意单双桥臂故障容错控制的功能。

Description

一种自适应调制的多状态逆变***及其调制方法
技术领域
本发明涉及电力电子技术领域,特别涉及一种自适应调制的多状态逆变***及其调制方法。
背景技术
逆变器作为能量转换的核心部件,其性能直接关系到能源转换效率和可靠性。然而由于逆变器中电力电子器件自身的脆弱性导致***故障频发,在工业生产中直接造成经济亏损,在航空航天、地铁、电动汽车等民生重要场合将造成灾难性事故。
在传统的容错型逆变器中,最多只能解决单、双功率开关管发生故障;这样使得现阶段容错型逆变器所能承受故障的类型较少,并且在一定程度上限制了逆变***的可靠性。然而在逆变器中故障发生的位置、数量是随机的,我们亟待找到一种逆变器应变***来适应和承受多种类型的故障。
发明内容
本发明的目的在于提供自适应调制的多状态逆变***及其调制方法,以解决当前容错型逆变器所能承受故障的类型较少的问题。
为了解决上述技术问题,本发明的技术方案是:提供自适应调制的多状态逆变***,包括:***电容器;四条桥臂,每条所述桥臂上具有一对互补的功率开关组;隔离开关组,包括四个熔断器以及六个双向晶闸管,在第一桥臂、第二桥臂以及第三桥臂的输出支路上分别串联一熔断器输出三相电压,并且所述三相电压输出侧共用两条辅助支路,一条辅助支路为从第四桥臂的输出支路出发,在所述输出支路上串联一熔断器,再经由三个双向晶闸管分别与所述三相电压的输出点连接,另一条辅助支路为从所述***电容器中点引出的直流侧馈电支路出发,直接经由三个双向晶闸管分别与三相电压的输出点连接。
本发明还提供一种利用自适应调制的多状态逆变***的调制方法,包括以下步骤:实时监测所述隔离开关组中四个所述熔断器的工作状态,确定四个所述熔断器的状态因子,根据所述状态因子确定故障桥臂矩阵;根据所述故障桥臂矩阵中故障桥臂的数量,对故障桥臂进行定位,输出工作状态因子S;当所述故障桥臂矩阵中故障桥臂的数量为0时,S=1,当所述故障桥臂矩阵中故障桥臂的数量为1时,S=2,当所述故障桥臂矩阵中故障桥臂的数量为2时,S=3,当所述工作状态因子S≤2时,采用六开关容错调制算法;当所述工作状态因子S=3时,采用四开关容错调制算法。
进一步地,当所述熔断器正常工作时令其状态因子为0,当所述熔断器熔断时令其状态因子为1。
本发明提供的自适应调制的多状态逆变***,该***结合多状态逆变器,利用自适应调制技术使得多状态逆变器具有过电流保护,隔离故障桥臂以及任意单双桥臂故障容错控制的功能;能承受故障的类型较多,其中不仅仅包括单开关管故障,双开关管故障,还包括三开关管故障以及四开关管故障等;在发生任意单桥臂故障并能成功容错后,即使再度发生单桥臂故障造成相继双桥臂故障仍能实现容错控制的功能。
本发明提供的利用自适应调制的多状态逆变***的调制方法,是一种基于自适应控制的空间矢量调制技术,可以根据多状态逆变器具体的工作状态因子,灵活地调制健康桥臂。首先,需要实际监测熔断器的工作状态,当任意单、双桥臂出现故障后,对应的故障相上的熔断器将自动熔断,实现隔离故障桥臂的功能,并由此确定故障桥臂矩阵,从而根据故障桥臂数量,确定工作状态因子;最后由工作状态因子,实现调制健康桥臂的功能。
附图说明
下面结合附图对发明作进一步说明:
图1为本发明实施例提供的自适应调制的多状态逆变***的电路示意图;
图2为本发明提供的利用自适应调制的多状态逆变***的调制方法的步骤流程图;
图3为本发明实施例提供的S≤2时多状态容错型逆变器的空间矢量图;
图4a为本发明实施例提供的S≤2时多状态容错型逆变器无故障时第I扇区的开关序列图;
图4b本发明实施例提供的为S≤2时多状态容错型逆变器A相故障时第II扇区的开关序列图;
图5为本发明实施例提供的S=3时多状态容错型逆变器的空间矢量图;
图6a为本发明实施例中S=3时多状态容错型逆变器A&B相故障时第I扇区的开关序列图;
图6b为本发明实施例中S=3时多状态容错型逆变器A&B相故障时第II扇区的开关序列图。
具体实施方式
以下结合附图和具体实施例对本发明提出的自适应调制的多状态逆变***及其调制方法作进一步详细说明。根据下面说明和权利要求书,本发明的优点和特征将更清楚。需说明的是,附图均采用非常简化的形式且均使用非精准的比率,仅用以方便、明晰地辅助说明本发明实施例的目的。
本发明的核心思想在于,本发明提供的自适应调制的多状态逆变***,该***结合多状态逆变器,利用自适应调制技术使得多状态逆变器具有过电流保护,隔离故障桥臂以及任意单双桥臂故障容错控制的功能;能承受故障的类型较多,其中不仅仅包括单开关管故障,双开关管故障,还包括三开关管故障以及四开关管故障等;在发生任意单桥臂故障并能成功容错后,即使再度发生单桥臂故障造成相继双桥臂故障仍能实现容错控制的功能。本发明提供的利用自适应调制的多状态逆变***的调制方法,是一种基于自适应控制的空间矢量调制技术,可以根据多状态逆变器具体的工作状态因子,灵活地调制健康桥臂。首先,需要实际监测熔断器的工作状态,当任意单、双桥臂出现故障后,对应的故障相上的熔断器将自动熔断,实现隔离故障桥臂的功能,并由此确定故障桥臂矩阵,从而根据故障桥臂数量,确定工作状态因子;最后由工作状态因子,实现调制健康桥臂的功能。
图1为本发明实施例提供的自适应调制的多状态逆变***的电路示意图。参照图1,提供自适应调制的多状态逆变***,包括:***电容器11;四条桥臂,每条所述桥臂上具有一对互补的功率开关组;隔离开关组13,包括四个熔断器以及六个双向晶闸管,在第一桥臂121、第二桥臂122以及第三桥臂123的输出支路上分别串联一熔断器Fa、Fb、Fc输出三相电压,并且所述三相电压输出侧共用两条辅助支路,一条辅助支路为从第四桥臂124的输出支路出发,在所述输出支路上串联一熔断器Fx,再经由三个双向晶闸管TRa1、TRb1、TRc1分别与所述三相电压的输出点连接,另一条辅助支路为从所述***电容器中点引出的直流侧馈电支路出发,直接经由三个双向晶闸管TRa2、TRb2、TRc2分别与三相电压的输出点连接。
为了方便技术阐述,在本发明实施例中第一桥臂为A桥臂,具有功率开关组IGBT1、IGBT2,第二桥臂为B桥臂,具有功率开关组IGBT3、IGBT4,第三桥臂为C桥臂,具有功率开关组IGBT5、IGBT6,第四桥臂为X桥臂,具有功率开关组IGBT7、IGBT8
自适应调制的多状态逆变***能承受任意单双桥臂故障,表1为自适应调制的多状态逆变***所能承受的故障类型列表。参照表1,在本发明实施例中主要包括了36种类型的开关管故障,其中,不仅仅包括单开关管故障6种、双开关管故障15种,还包括三开关管故障12种以及四开关管故障3种。
表1
Figure BDA0002640735350000041
Figure BDA0002640735350000051
图2为本发明提供的利用自适应调制的多状态逆变***的调制方法的步骤流程图。参照图2,本发明还提供一种利用自适应调制的多状态逆变***的调制方法,包括以下步骤:
S21、实时监测所述隔离开关组中四个熔断器的工作状态,确定四个熔断器的状态因子,根据状态因子确定故障桥臂矩阵;
S22、根据故障桥臂矩阵中故障桥臂的数量,对故障桥臂进行定位,输出工作状态因子S;
S23、当故障桥臂矩阵中故障桥臂的数量为0时,S=1,当故障桥臂矩阵中故障桥臂的数量为1时,S=2,当故障桥臂矩阵中故障桥臂的数量为2时,S=3,当工作状态因子S≤2时,采用六开关容错调制算法;当工作状态因子S=3时,采用四开关容错调制算法。
实时监测隔离开关组中四个熔断器Fa、Fb、Fc以及Fx的工作状态,并确定四个熔断器的状态因子fa、fb、fc以及fx,以及确定故障桥臂矩阵F=[fa fb fc fx]。具体的,当熔断器正常工作时令其状态因子为0,当熔断器因故障桥臂造成的过电流而熔断时令其状态因子为1。
无论逆变器中任何桥臂发生故障,都将产生过电流导致隔离开关组中对应的熔断器(Fa、Fb、Fc或Fx)因自身产生的热量自动熔断。从而自动实现隔离故障桥臂的功能,保护整个***避免故障桥臂造成进一步的损害。
基于所述故障桥臂矩阵F中故障桥臂的数量,便可对故障桥臂进行定位,从而确定应相应的最优工作状态,输出工作状态因子S。
表2为容错工作状态分类表。参照表2所示,当所述故障桥臂矩阵F中故障桥臂的数量为0时S=1,当所述故障桥臂矩阵F中故障桥臂的数量为1时S=2,当所述故障桥臂矩阵F中故障桥臂的数量为2时S=3。
表2
故障桥臂矩阵F 故障桥臂 工作状态因子S
[0 0 0 0] 1
[1 0 0 0] A桥臂 2
[0 1 0 0] B桥臂 2
[0 0 1 0] C桥臂 2
[1 1 0 0] A&B桥臂 3
[0 1 1 0] B&C桥臂 3
[1 0 1 0] C&A桥臂 3
[1 0 0 1] A&X桥臂 3
[0 1 0 1] B&X桥臂 3
[0 0 1 1] C&X桥臂 3
当工作状态因子S≤2时,采用六开关容错调制算法。
基于扇区转换的空间矢量调制算法中,无论多状态容错型逆变器是处于S=1或S=1时,均可采用六开关容错调制算法。图3为本发明实施例提供的S≤2时多状态容错型逆变器的空间矢量图。参照图3,在α-β静止坐标系中,逆变器应输出的目标电压为:
Uref∠θ=Uα+jUβ (1)
其中,Uα、Uβ为目标电压分别在α、β轴上的分量。
在α-β静止坐标系中,根据目标电压Uref∠θ的幅角θ可以确定其在三相六开关运行空间矢量图中所处的扇区N。除此之外,将θ进行求余计算,可将目标电压转换至第一扇区,并得到如图3所示第一扇区的夹角θ1
Figure BDA0002640735350000073
图4a为本发明实施例提供的S≤2时多状态容错型逆变器无故障时第I扇区的开关序列图。参照图4a,假设S=1时第I扇区中功率开关管的工作状态为SI=[SAI SBI SCI SXI]。具体的开关序列以如图4a所示的七段式为例。当S≤2时,第N扇区功率开关管的工作状态SN可由下式求得:
Figure BDA0002640735350000071
其中,
Figure BDA0002640735350000072
Λa定义为六开关容错调制算法在无故障S=1或单桥臂故障S=2下的故障信号矩阵,而Λa中的元素aij取决于逆变器所处的工作状态,当逆变器无故障S=1时,故障信号aii=1,ai4=0,当逆变器发生单桥臂故障S=2时,假设当第g条桥臂发生故障,另有第h条,第k条以及第四条桥臂为冗余无故障桥臂;故障信号agg=ah4=ak4=0,ag4=ahh=akk=1。
计算四桥臂电压矢量作用时间:假设S=1时第I扇区中功率开关管的导通时间TSI=[T1 T2 T0],其中第一矢量作用时间T1、第二矢量作用时间T2、零矢量作用时间T0由下公式决定:
Figure BDA0002640735350000081
在无故障或单桥臂故障的情况下,第N扇区中功率开关管的导通时间由以下因素决定:
Figure BDA0002640735350000082
其中,
Figure BDA0002640735350000083
所提出的容错控制算法中采用直接输出PWM脉冲信号的方案,由S=1第I扇区中ABCX相的七段式开关序列,可以得到正常以及单桥臂故障不同工作状态下不同扇区的七段式开关序列,这样就间接确定了每个电压矢量的作用顺序。图4b本发明实施例提供的为S≤2时多状态容错型逆变器A相故障时第II扇区的开关序列图。假设当逆变器中发生A相单桥臂故障,此时工作状态因子为S=2。那么其第二扇区N=II时,由公式(3)可推算出四桥臂电压矢量的开关序列,如图4b所示。
当工作状态因子S=3时,采用四开关容错调制算法
图5为本发明实施例提供的S=3时多状态容错型逆变器的空间矢量图。参照图5,当S=3时需切换至四开关容错调制算法,无论目标电压Uref∠θ位于任意扇区,均可由图3中S=1三相六开关运行空间矢量图第I扇区SI的相关参数重新组合确定。
目标电压Uref∠θ在四开关运行空间矢量扇区中所处位置:
Figure BDA0002640735350000084
定义如图5的θ2为目标电压Uref∠θ与α轴所夹的锐角,由下式确定:
Figure BDA0002640735350000085
计算四桥臂开关序列:
同上,已知S=1第I扇区中功率开关管的工作状态分别为SI=[SAI SBI SCI SXI],并由下公式可计算出S=3时第n扇区功率开关管的工作状态Sn
Figure BDA0002640735350000091
其中,
Figure BDA0002640735350000092
而Λb作为在的四开关容错调制算法的一个健康信号矩阵,其中的元素bij和aij一样取决于逆变器所处的工作状态。当逆变器中发生双桥臂故障S=3时,假设仅有第l,m两条桥臂为无故障桥臂,且m>l,有健康信号b3l=1,b4m=1;其他元素bij则全为0。
计算四桥臂电压矢量作用时间
假设四桥臂每次切换时间的持续时间可以表示为tsn=[t1 t2 t0],其中第一矢量作用时间t1、第二矢量作用时间t2、零矢量作用时间t0亦可由下式决定:
Figure BDA0002640735350000093
所提出的容错控制算法中采用直接输出PWM脉冲信号的方案,由S=1第I扇区中A、B、C以及X相的七段式开关序列(如图4a所示),可以得到双桥臂故障S=3不同工作状态下不同扇区的七段式开关序列,这样就间接确定了每个电压矢量的作用顺序。图6a为本发明实施例中S=3时多状态容错型逆变器A&B相故障时第I扇区的开关序列图;图6b为本发明实施例中S=3时多状态容错型逆变器A&B相故障时第II扇区的开关序列图。参照图6a以及6b,当逆变器发生A&B双桥臂故障处于S=3状态时,根据上述公式可以得到,第1扇区以及第2扇区的开关序列。
显然,本领域的技术人员可以对本发明进行各种改动和变形而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (3)

1.一种自适应调制的多状态逆变***,其特征在于,包括:
***电容器;
四条桥臂,每条所述桥臂上具有一对互补的功率开关组;
隔离开关组,包括四个熔断器以及六个双向晶闸管,在第一桥臂、第二桥臂以及第三桥臂的输出支路上分别串联一熔断器输出三相电压,并且所述三相电压输出侧共用两条辅助支路,一条辅助支路为从第四桥臂的输出支路出发,在所述输出支路上串联一熔断器,再经由三个双向晶闸管分别与所述三相电压的输出点连接,另一条辅助支路为从所述***电容器中点引出的直流侧馈电支路出发,直接经由三个双向晶闸管分别与三相电压的输出点连接。
2.一种利用如权利要求1所述的自适应调制的多状态逆变***的调制方法,其特征在于,包括以下步骤:
实时监测所述隔离开关组中四个所述熔断器的工作状态,确定四个所述熔断器的状态因子,根据所述状态因子确定故障桥臂矩阵;
根据所述故障桥臂矩阵中故障桥臂的数量,对故障桥臂进行定位,输出工作状态因子S;
当所述故障桥臂矩阵中故障桥臂的数量为0时,S=1,当所述故障桥臂矩阵中故障桥臂的数量为1时,S=2,当所述故障桥臂矩阵中故障桥臂的数量为2时,S=3,当所述工作状态因子S≤2时,采用六开关容错调制算法;当所述工作状态因子S=3时,采用四开关容错调制算法。
3.如权利要求2所述的自适应调制的多状态逆变***的调制方法,其特征在于,当所述熔断器正常工作时令其状态因子为0,当所述熔断器熔断时令其状态因子为1。
CN202010839042.XA 2020-08-19 2020-08-19 一种自适应调制的多状态逆变***及其调制方法 Pending CN111987928A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202010839042.XA CN111987928A (zh) 2020-08-19 2020-08-19 一种自适应调制的多状态逆变***及其调制方法
US17/396,715 US11437928B2 (en) 2020-08-19 2021-08-08 Adaptively modulated multi-state inverter system and modulating method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010839042.XA CN111987928A (zh) 2020-08-19 2020-08-19 一种自适应调制的多状态逆变***及其调制方法

Publications (1)

Publication Number Publication Date
CN111987928A true CN111987928A (zh) 2020-11-24

Family

ID=73434913

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010839042.XA Pending CN111987928A (zh) 2020-08-19 2020-08-19 一种自适应调制的多状态逆变***及其调制方法

Country Status (2)

Country Link
US (1) US11437928B2 (zh)
CN (1) CN111987928A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113258759A (zh) * 2021-05-13 2021-08-13 东南大学 一种容错igbt三相全桥逆变电路的控制方法
CN113410998A (zh) * 2021-07-22 2021-09-17 上海电气风电集团股份有限公司 变流器及具有该变流器的风力发电机组

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116404859B (zh) * 2023-04-12 2023-09-19 燕山大学 一种四桥臂矩阵变换器及开关管开路故障下的调制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102497091A (zh) * 2011-12-26 2012-06-13 天津清源电动车辆有限责任公司 电动车辆用三相逆变器容错电路
CN104022717A (zh) * 2014-04-29 2014-09-03 长安大学 一种两相交流电机容错逆变器
CN104578865A (zh) * 2015-01-14 2015-04-29 东南大学 一种三电平四桥臂t型容错变流器及其控制方法
CN104617759A (zh) * 2015-01-31 2015-05-13 盐城工学院 一种相冗余型三相逆变器容错电路及其控制方法
CN106253791A (zh) * 2016-08-10 2016-12-21 上海电机学院 一种电动汽车用高容错双可靠性保险电机驱动器
CN110138252A (zh) * 2019-05-13 2019-08-16 哈尔滨理工大学 一种高可靠性容错逆变器结构及其矢量控制方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013112538B4 (de) * 2013-11-14 2018-04-05 Sma Solar Technology Ag Verfahren und Wechselrichter zum Bestimmen von Kapazitätswerten von Kapazitäten einer Energieversorgungsanlage
TWI614982B (zh) * 2016-08-25 2018-02-11 台達電子工業股份有限公司 電源轉換系統及其操作方法
CN106505903B (zh) 2016-12-05 2019-04-09 阳光电源股份有限公司 一种三相四桥臂逆变***
CN107800318B (zh) 2017-08-03 2020-11-10 中南大学 一种并网逆变器控制方法及***
CN107508481B (zh) 2017-10-20 2019-06-11 中南大学 一种两相容错逆变***及其控制方法
CN108649843A (zh) * 2018-05-31 2018-10-12 南京航空航天大学 一种具有开路容错能力的永磁起动发电***及其控制方法
CN108809203A (zh) * 2018-06-21 2018-11-13 济南大学 一种三相交流电机缺相故障后的容错控制方法
CN110943640B (zh) 2019-11-28 2021-10-15 郑州轻工业大学 一种t型逆变器fc桥臂冗余结构电力转换器拓扑结构
CN111030497B (zh) 2019-12-12 2021-02-19 山东大学 三相四桥臂逆变器并联***及其控制方法、电能治理设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102497091A (zh) * 2011-12-26 2012-06-13 天津清源电动车辆有限责任公司 电动车辆用三相逆变器容错电路
CN104022717A (zh) * 2014-04-29 2014-09-03 长安大学 一种两相交流电机容错逆变器
CN104578865A (zh) * 2015-01-14 2015-04-29 东南大学 一种三电平四桥臂t型容错变流器及其控制方法
CN104617759A (zh) * 2015-01-31 2015-05-13 盐城工学院 一种相冗余型三相逆变器容错电路及其控制方法
CN106253791A (zh) * 2016-08-10 2016-12-21 上海电机学院 一种电动汽车用高容错双可靠性保险电机驱动器
CN110138252A (zh) * 2019-05-13 2019-08-16 哈尔滨理工大学 一种高可靠性容错逆变器结构及其矢量控制方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113258759A (zh) * 2021-05-13 2021-08-13 东南大学 一种容错igbt三相全桥逆变电路的控制方法
CN113410998A (zh) * 2021-07-22 2021-09-17 上海电气风电集团股份有限公司 变流器及具有该变流器的风力发电机组

Also Published As

Publication number Publication date
US11437928B2 (en) 2022-09-06
US20220060124A1 (en) 2022-02-24

Similar Documents

Publication Publication Date Title
CN111987928A (zh) 一种自适应调制的多状态逆变***及其调制方法
CN102106074B (zh) 带有分布储能器的多相变换器的冗余控制方法
CN105811794A (zh) 多电平逆变器的参考电压信号重构的容错控制方法
Genduso et al. A general mathematical model for non-redundant fault-tolerant inverters
EP2471164A1 (en) Converter cell module, voltage source converter system comprising such a module and a method for controlling such a system
CN108809173B (zh) 共母线开绕组无刷双馈风力发电机***容错控制方法
CN115528902A (zh) 一种npc型三电平整流器外管开路故障容错控制方法
Zhang et al. A fault-tolerant T-type three-level inverter system
Li et al. Fault detection and tolerant control of open-circuit failure in MMC with full-bridge sub-modules
US20230421076A1 (en) Fault-tolerant dc-ac electric power conversion device
TW201947854A (zh) 三階t型變頻器之容錯控制系統及其容錯控制方法
CN112285607A (zh) 基于预测控制的开绕组电驱动***单管开路故障诊断方法
Cordeiro et al. Fault-tolerant design for a three-level neutral-point-clamped multilevel inverter topology
Choi et al. A novel active T-type three-level converter with open-circuit fault-tolerant control
CN110212797B (zh) 一种基于热备用矢量替代的mmc容错运行策略
CN114156933A (zh) 一种mmmc桥臂故障后应对方法
CN112736861A (zh) 一种直流能量路由器及其故障隔离方法
Cordeiro et al. Fault-tolerant design of three-phase dual-buck VSI topologies
Yang et al. Open-circuit fault detection method for submodule in modular multilevel converters
CN108233689B (zh) 一种功率变换装置及控制方法
CN206323139U (zh) 一种接线装置
CN112039326A (zh) 一种无刷直流电机逆变器的四桥臂容错***及其控制方法
Becker et al. Open-switch fault diagnosis for five-level H-bridge neutral point piloted or T-type converters
CN112152497B (zh) 一种级联型五电平逆变器的容错控制方法
Becker et al. Continuity of service of five-level h-bridge t-type converter under open-circuit switch failure

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination