CN111979257B - Recombinant DNA and application thereof - Google Patents

Recombinant DNA and application thereof Download PDF

Info

Publication number
CN111979257B
CN111979257B CN201910430555.2A CN201910430555A CN111979257B CN 111979257 B CN111979257 B CN 111979257B CN 201910430555 A CN201910430555 A CN 201910430555A CN 111979257 B CN111979257 B CN 111979257B
Authority
CN
China
Prior art keywords
leu
ala
gly
glu
val
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910430555.2A
Other languages
Chinese (zh)
Other versions
CN111979257A (en
Inventor
陈玲
周豪宏
雷云凤
刘修才
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cathay R&D Center Co Ltd
CIBT America Inc
Original Assignee
Cathay R&D Center Co Ltd
CIBT America Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cathay R&D Center Co Ltd, CIBT America Inc filed Critical Cathay R&D Center Co Ltd
Priority to CN201910430555.2A priority Critical patent/CN111979257B/en
Publication of CN111979257A publication Critical patent/CN111979257A/en
Application granted granted Critical
Publication of CN111979257B publication Critical patent/CN111979257B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/001Amines; Imines
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/01Carboxy-lyases (4.1.1)
    • C12Y401/01018Lysine decarboxylase (4.1.1.18)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/20Fusion polypeptide containing a tag with affinity for a non-protein ligand
    • C07K2319/23Fusion polypeptide containing a tag with affinity for a non-protein ligand containing a GST-tag
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/20Fusion polypeptide containing a tag with affinity for a non-protein ligand
    • C07K2319/24Fusion polypeptide containing a tag with affinity for a non-protein ligand containing a MBP (maltose binding protein)-tag
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/60Fusion polypeptide containing spectroscopic/fluorescent detection, e.g. green fluorescent protein [GFP]

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The invention provides recombinant DNA and application thereof. The recombinant DNA at least comprises a stationary phase specific promoter and a lysine decarboxylase fusion protein gene with a dissolution promoting label; wherein the pro-lytic tag is selected from a fluorescent protein, a maltose binding protein, a glutathione transferase, or a combination thereof. The invention provides a new strategy for improving the yield of polyamine produced by fermenting recombinant strains.

Description

Recombinant DNA and application thereof
Technical Field
The invention belongs to the technical field of biology, and particularly relates to recombinant DNA and application thereof, in particular to application in polyamine production.
Background
1, 5-pentanediamine (also called 1, 5-diaminopentane, cadaverine) is an important five-carbon compound in the chemical industry, has quite wide application, and can be used for manufacturing important chemical raw materials such as polyamide, polyurethane, isocyanate, pyridine, piperidine and the like. At present, the microbial method for producing 1, 5-pentanediamine mainly adopts the following two methods: microbial fermentation production and microbial in-vitro enzyme catalysis production. Lysine decarboxylase (L-lysine decarboxylase, abbreviated as LDC, EC 4.1.1.18) used in enzyme-catalyzed production is widely found in microorganisms, insects, animals and higher plants and can strip L-lysine to form 1, 5-pentanediamine and CO by removing one carboxyl group 2
In the process of producing 1, 5-pentanediamine by catalyzing lysine by using lysine decarboxylase, lysine decarboxylase cells in a free state are generally used, or a strain capable of producing lysine and lysine decarboxylase simultaneously is used for producing 1, 5-pentanediamine by fermentation, but the production modes have the defects of low recycling efficiency of enzymes or cells, difficult recovery of products and high production cost, and are not beneficial to the industrial production of 1, 5-pentanediamine. Moreover, since the concentration of 1, 5-pentanediamine which is tolerated by the cells itself is limited, excessive 1, 5-pentanediamine produced by conversion of lysine decarboxylase is expressed in the fermentation system, and thus the cells are poisoned, thereby inhibiting the growth of the cells and the process of producing L-lysine by using glucose (Qian, et al, biotechnol. Bioeng.2011; 108:93-103). Thus, new techniques for achieving higher yields of 1, 5-pentanediamine are needed.
Disclosure of Invention
The object of the present invention is to provide a recombinant DNA and its use, in particular in the production of polyamines such as 1, 5-pentanediamine.
The invention is characterized in that: through screening lysine decarboxylase from thermophilic strain, utilizing fluorescent protein and fusion expression thereof, the lysine decarboxylase can exert decarboxylation function through increasing temperature; in addition, the use of a fluorescent protein with a color may also clearly indicate the cell expressing the fusion protein. Further, by means of the promoter in the stationary phase, the expression of lysine decarboxylase can be started in the stationary phase, so that the yield reduction caused by poisoning of host cells by 1, 5-pentanediamine is greatly reduced, the yield of 1, 5-pentanediamine produced by fermenting recombinant strains is remarkably improved, the residue of lysine is remarkably reduced, and the subsequent process for extracting 1, 5-pentanediamine is simplified.
To achieve the object of the present invention, in a first aspect, the present invention provides a recombinant DNA comprising at least a stationary phase-specific promoter and a lysine decarboxylase fusion protein gene with a dissolution promoting tag; the fusion protein comprises a dissolution promoting tag and lysine decarboxylase from thermophilic bacteria, and the dissolution promoting tag and the lysine decarboxylase are connected through a Linker;
wherein the pro-lytic tag is selected from a fluorescent protein, a maltose binding protein, a glutathione transferase, or a combination thereof.
When heterologous protein expression is performed in prokaryotes such as E.coli, the maltose binding protein MBP, glutathione transferase GST, and histidine His 7 And the like can promote the solubility of the protein and the correct folding of the protein. MBP (maltose binding protein) tag protein is 42kDa in size and pi=5.03, which increases the solubility of fusion proteins overexpressed in bacteria, but the tag is large and has some effect on the structure or function of the protein. GST (glutathione-sulfhydryl transferase) tag protein, its natural size is 26KD, isoelectric point pi=6.10.
In the invention, the fluorescent protein is selected from red fluorescent protein, blue-green fluorescent protein, yellow fluorescent protein, orange fluorescent protein or optical highlighting fluorescent protein; preferably at least one of RedStar, tdtomato or mCherry. The inventors have unexpectedly found that the above fluorescent proteins can be used as a pro-lytic tag in heterologous protein expression and that their fluorescent properties can also be conveniently indicative of cells that correctly express the fusion protein.
In some embodiments, the mCherry is a red fluorescent protein from coral, the best performing monomeric red fluorescent protein evolved from DsRed (Graewe, et al Biotechnology Journal,2009,4 (6)), size 26KDa, isoelectric point pi=5.62.
In some embodiments, the amino acid sequence of mCherry is shown as SEQ ID NO. 18 and the nucleotide sequence of the mCherry encoding gene is shown as SEQ ID NO. 17, which is codon optimized.
In some embodiments, the lysine decarboxylase is selected from any one of the following (1) - (4): (1) lysine decarboxylase TeLDC from thermophilic bacteria Thermosynechoccus elongatus has an amino acid sequence shown in SEQ ID NO:1, the encoding gene is Teldc (GenBank ID BAC09418.1, SEQ ID NO: 2); (2) the amino acid sequence of the lysine decarboxylase TsLDC from Tepidanaerobacter syntrophicus is shown as SEQ ID NO. 3, and the coding gene is Tsldc (GenBank ID GAQ24853.1, SEQ ID NO. 4); (3) the amino acid sequence of the lysine decarboxylase GkLDC from Geobacillus kaustophilus is shown as SEQ ID NO. 5, and the coding gene is Gkldc (GenBank ID BAD75350.1, SEQ ID NO. 6); (4) the amino acid sequence of the lysine decarboxylase TrLDC from Thermomicrobium roseum is shown in SEQ ID NO. 7, and the coding gene is Trldc (GenBank ID ACM05730.1, SEQ ID NO. 8). Preferably, the full length nucleotide sequence is optimized according to E.coli codon bias.
In some embodiments, the lysine decarboxylase hybridizes to SEQ ID NO: any of 1,3,5 or 7 has at least 70% amino acid sequence identity, or at least 80%, at least 85%, at least 90%, at least 95% sequence identity.
In some embodiments, the Linker comprises a flexible Linker of helical form Linker or low hydrophobicity, low charge effect amino acids, which should be at least 10 amino acids in length. Preferably, the Linker is a flexible Linker, e.g. (GGGGS) 3 Or (SG) 5-8 The method comprises the steps of carrying out a first treatment on the surface of the More preferably, the Linker is (SG) 5-8 The method comprises the steps of carrying out a first treatment on the surface of the Most preferably, the Linker is SGSGSGSGSG.
In some embodiments, the fusion protein is selected from at least one of fluorescent protein-Linker-TeLDC, fluorescent protein-Linker-TsLDC, fluorescent protein-Linker-GkLDC, fluorescent protein-Linker-TrLDC, teLDC-Linker-fluorescent protein, tsLDC-Linker-fluorescent protein, or TsLDC-Linker-fluorescent protein.
In some embodiments, the fusion protein is mCherry-Linker-TeLDC, teLDC-Linker-mCherry, mCherry-Linker-TsLDC, mCherry-Linker-GkLDC, or mCherry-Linker-TrLDC.
In some embodiments, the fusion protein is any one of the recombinant nucleotide sequences set forth in SEQ ID No. 10,SEQ ID No:12,SEQ ID No:14,SEQ ID No:16, which comprises, from 5 'to 3' direction, a nucleotide sequence encoding a fluorescent protein (SEQ ID No. 5) and a nucleotide sequence encoding a thermophilic bacterial derived lysine decarboxylase.
In some embodiments, the stationary phase-specific promoter is selected from any of pcsiE (SEQ ID NO: 20), pbolA (SEQ ID NO: 21), posmY (SEQ ID NO: 22), pkatE (SEQ ID NO: 23), P1 (SEQ ID NO: 24), P2 (SEQ ID NO: 25), P3 (SEQ ID NO: 26), or P4 (SEQ ID NO: 27).
In some embodiments, the recombinant DNA comprises at least the following 3 elements: a. a stationary phase specific promoter; b. red fluorescent protein gene; and c, a lysine decarboxylase gene derived from thermophilic bacteria; wherein the elements are operatively connected in sequence a-b-c or a-c-b.
In a second aspect, the present invention provides a biomaterial comprising the recombinant DNA described above, the biomaterial being an expression cassette, a transposon, a plasmid vector, a phage vector, a viral vector, an engineering bacterium, or the like.
In a third aspect, the present invention provides a recombinant plasmid carrying the recombinant DNA described above. Preferably, the starting plasmid is a pUC or pBR322 plasmid or a derivative thereof, more preferably pUC18, pUC19, pBR322, pACYC, pET, pSC101 and any derivative thereof.
In a fourth aspect, the present invention provides a genetically engineered bacterium for producing 1, 5-pentanediamine, which is a strain having an ability to produce L-lysine and carrying the recombinant DNA, biomaterial or recombinant plasmid described above.
Wherein the original strain of the genetically engineered bacterium is selected from the group consisting of strains in the genera Escherichia and Hafnia (Hafnia); preferably, the starting strain is escherichia coli (escherichia coli), hafnia alvei (Hafnia alvei), or a strain or genetically engineered bacterium after mutagenesis or random mutation.
In a fifth aspect, the present invention provides a process for producing 1, 5-pentanediamine, comprising culturing the above-mentioned engineering bacterium by fermentation to produce 1, 5-pentanediamine.
In a sixth aspect, the present invention provides an application of the recombinant DNA in the production of 1, 5-pentanediamine, comprising (a) constructing the recombinant DNA into engineering bacteria having the ability to produce L-lysine, fermenting and culturing the recombinant bacteria and accumulating lysine, controlling the culture temperature at 20-50 ℃ at the initial stage of fermentation, and performing rapid growth of thalli and accumulation of lysine; (b) The temperature is controlled between 50 ℃ and 110 ℃ in the rest fermentation stage, so that lysine decarboxylase is active, and 1, 5-pentanediamine is produced through conversion.
As used herein, the term "about" when used to modify a value within a temperature range means that the value deviates reasonably from the value, e.g., within 1 ℃ or 2 ℃ below or above the value recited within the range is within the intended meaning of the value or range.
In some embodiments, step (a) is performed at a temperature of about 25 ℃ to about 45 ℃. In other embodiments, step (a) is performed at a temperature of about 30 ℃ to about 40 ℃. In a further embodiment, step (a) is performed at a temperature of about 35 ℃ to about 39 ℃. In some embodiments, step (b) is performed at a temperature of about 55 ℃ to about 90 ℃. In other embodiments, step (b) is performed at a temperature of about 60 ℃ to about 75 ℃. In a further embodiment, step (b) is performed at a temperature of about 60 ℃ to about 70 ℃.
In some embodiments, the method for producing 1, 5-pentanediamine comprises constructing the recombinant DNA into engineering bacteria with L-lysine production capability, preferably constructing the recombinant DNA into engineering bacteria, preferably E.coli or Hafnia alvei after codon optimization of the encoding gene, fermenting and culturing the recombinant bacteria, controlling the initial fermentation culture temperature at 20-50 ℃, such as 37+/-2 ℃, and carrying out rapid growth of thalli and lysine accumulation; the rest fermentation stage is controlled at 50-110deg.C, such as 55deg.C+ -2deg.C, to make lysine decarboxylase active or improve activity, and convert lysine to produce 1, 5-pentanediamine. Wherein, preferably, the fusion protein is fluorescent protein-Linker-lysine decarboxylase (TeLDC, tsLDC, gkLDC or TrLDC). Preferably, when the fermentation culture is carried out until the lysine content is no longer increased, the temperature of the fermentation system is raised again and is controlled to be 50-110 ℃. Preferably, the construction can be performed using recombinant DNA, expression cassette, transposon, plasmid vector, phage vector, viral vector or engineering bacteria and the like, to engineering bacteria having the ability to produce L-lysine.
By means of the technical scheme, the invention has at least the following advantages and beneficial effects:
according to the invention, through screening lysine decarboxylase derived from thermophilic strain, the dissolution promoting label is utilized to be fused and expressed with the lysine decarboxylase, when the lysine decarboxylase derived from thermophilic strain is connected with the dissolution promoting label, the lysine decarboxylase can help the lysine decarboxylase to play a role, and compared with lysine decarboxylase CadA derived from escherichia coli, the lysine decarboxylase can play a role simply by increasing the temperature; in addition, the use of a pro-lytic tag may also be clearly indicated for cells expressing the fusion protein, especially fluorescent proteins, which are easier to clearly indicate as pro-lytic tags. The method is applied to the production of 1, 5-pentanediamine, can obviously reduce the cell growth and the cytotoxicity of the 1, 5-pentanediamine generated in the production stage of the L-lysine, and a small amount of 1, 5-pentanediamine can also relieve the feedback inhibition effect of the lysine and improve the yield of the L-lysine; after the temperature is raised, L-lysine can be almost completely converted into 1, 5-pentanediamine, thereby achieving an increase in the yield of 1, 5-pentanediamine. Meanwhile, a stable-phase promoter is used, and the expression of a downstream lysine decarboxylase gene can be started after the thalli grow to the stable phase, so that the yield of the 1, 5-pentanediamine produced by fermenting the recombinant strain is comprehensively and obviously improved.
Detailed Description
The following examples are illustrative of the invention and are not intended to limit the scope of the invention. Unless otherwise indicated, the examples are in accordance with conventional experimental conditions, such as the molecular cloning laboratory Manual of Sambrook et al (Sambrook J & Russell DW, molecular Cloning: a Laboratory Manual, 2001), or in accordance with the manufacturer's instructions.
Specific steps, condition parameters and the like of PCR amplification, purification, plasmid extraction, cleavage, ligation of cleavage products, transformation and the like, which are referred to in the following examples, were carried out according to the conditions suggested in the specifications of the purchased relevant enzymes and reagents. Wherein the DNA polymerase used for PCR amplification, the restriction enzyme used for enzyme digestion and the ligase used for ligation of enzyme digestion products are all purchased from Takara Bio-engineering (Dalian) Inc. Plasmid extraction kits, DNA gel recovery kits, PCR purification kits were all purchased from corning life sciences (Wu Jiang) inc under the trademark Axygen; primers were purchased from Semer Feishul technology (China) Inc., under the trademark INVITROGEN.
The plasmid transformation methods referred to in the examples below are as follows: the ligation product was added to 100. Mu.l E.coli BL21 (DE 3) competent cells, and after 30min of ice bath, heat shock was performed at 42℃for 90s. After incubation on ice for 5min 1ml of LB was added. Coated onto corresponding resistant plates.
In the present invention, the amounts of L-lysine and 1, 5-pentanediamine in the medium can be detected by a nuclear magnetic resonance method.
The primers used in the following examples are shown in Table 1:
TABLE 1 primer information
EXAMPLE 1 cloning of lysine decarboxylase Gene cadA
The lysine decarboxylase (SEQ ID No: 30) encoding gene cadA (SEQ ID No: 31) was amplified from E.coli MG 1655K 12 (E.coli MG) using primers cadA-SacI-F (SEQ ID No: 28) and cadA-XbaI-R (SEQ ID No: 29)1655 K12, purchased from Beijing Tianzenze Biotechnology Co., ltd.) was amplified, double digested with SacI and XbaI, and ligated into the same double digested pUC18 plasmid (purchased from Takara Bio Inc.). By CaCl 2 Competent preparation is carried out by the method, the connection product is transformed into E.coli BL21 (purchased from Bao bioengineering (Dalian) Limited) cells by a heat shock method, ampicillin antibiotics are added into LB culture medium for screening, cloning PCR and sequencing are carried out to verify correctness, and plasmid is extracted to obtain pCIB60 plasmid.
The 5 'sequence of the cadA gene in the pCIB60 plasmid is optimized by further using primers cadA-F2 (SEQ ID No: 32) and cadA-R2 (SEQ ID No: 33) by taking the plasmid pCIB60 as a template, so that the cadA can be smoothly translated into protein in E.coli BL21, and the 5' sequence of the cadA gene is replaced by 5'-tgtggaattgtgagcggataacaATTTCACACAGGAAACAGCTGAGCTC-3' (SEQ ID No: 35) by 5'-tgtggaattgtgagcggataacaATTTCACACAGGAAACAGCTATGACCATGATTACGAATTCGAGCTC-3' (SEQ ID No: 34). After PCR amplification, the PCR product was digested with DpnI restriction enzyme and also transformed into E.coli BL21 by heat shock, and the plasmid pCIB71 was obtained after sequencing and verification.
EXAMPLE 2 cloning of lysine decarboxylase Teldc of thermophilic bacterium Thermosynechoccus elongatus
Lysine decarboxylase TeLDC (SEQ ID NO:1,GenBank ID BAC09418.1) from thermophilic strain Thermosynechoccus elongatus synthesizes the gene (SEQ ID NO: 2) by primer splicing after optimizing the full-length codon of the gene, and the codon optimization and gene synthesis method refers to Hoover DM&Lubkowski J Nucleic Acids Research 30:10,2002, amplified with TeLDC-SacI-F (SEQ ID No: 36) and TeLDC-XbaI-R (SEQ ID No: 37), double digested with SacI and XbaI, and ligated into the same double digested pCIB71 plasmid. By CaCl 2 Competent cells were prepared by the method, and the ligation products were transformed into E.coli BL21 (purchased from Takara Bio-engineering (Dalian) Co.) competent cells by the heat shock method, screening was performed by adding ampicillin antibiotics to LB medium, cloning PCR and sequencing to verify correct, and plasmids were extracted to obtain pCIB90 plasmids.
The 5' sequence of the Teldc gene in the pCIB90 plasmid is optimized by further using the primers TeLDC-SacI-F2 (SEQ ID No: 38) and TeLDC-SacI-R2 (SEQ ID No: 39) by taking the plasmid pCIB90 as a template, so that the TeLDC can be smoothly translated into protein in E.coli BL21, and the sequence upstream of the ATG of the initiation codon of the Teldc gene is replaced by 5'-tgtggaattgtgagctcATCGATAAGCTTGATATCGAATTCTTAACTTTAAGAAGGAATATACAT-3' (SEQ ID No: 41) from 5'-tgtggaattgtgagcggataacaATTTCACACAGGAAACAGCTGAGCTC-3' (SEQ ID No: 40). After PCR amplification, the PCR product was digested with DpnI restriction enzyme and also transformed into E.coli BL21 by heat shock, and the plasmid pCIB91 was obtained after sequencing and verification.
Example 3 construction of plasmid for fusion expression of Red fluorescent protein and thermophilic-derived lysine decarboxylase
The following methods for codon optimization and gene synthesis are referred to Hoover DM & Lubkowski J Nucleic Acids Research 30:10,2002.
(1) The red fluorescent protein MRFP (mCherry, SEQ ID No: 18) from coral was codon optimized and then synthesized by primer splicing (mCherry, SEQ ID No: 17).
(2) Construction of red fluorescent egg (MRFP) -TeLDC fusion expression plasmid: the method comprises the steps of using spliced MRFP as a template, using primers SacI-MRFP-TeLDC-F (SEQ ID No: 42) and linker-MRFP-R (SEQ ID No: 43) for amplification, using plasmid pCIB91 as a template, using primers linker-TeLDC-F (SEQ ID No: 44) and TeLDC-XbaI-R (SEQ ID No: 37) for amplification, respectively performing gel cutting recovery on a target fragment, using primers SacI-MRFP-TeLDC-F (SEQ ID No: 42) and TeLDC-XbaI-R (SEQ ID No: 37) for fusion PCR, using SacI and XbaI for double digestion after target fragment purification, and connecting the target fragment to plasmid pCIB91 subjected to the same double digestion to obtain an MRFP-TeLDC fusion protein (SEQ ID No: 9) for expression of plasmid pCIB92, wherein the 5 '-end of a TeLDC encoding gene is connected with 3' of red fluorescent protein MRR (SEQ ID No: 10) through linker (SGSGSGSGSG).
(3) Construction of a red fluorescent protein (MRFP) -TsLDC fusion expression plasmid: the lysine decarboxylase TsLDC from Tepidanaerobacter syntrophicus is synthesized by utilizing a primer splicing method, the amino acid sequence of the lysine decarboxylase TsLDC is shown as SEQ ID NO. 3, and the coding gene is Tsldc (GenBank ID GAQ24853.1, SEQ ID NO. 4). The method comprises the steps of using spliced MRFP as a template, using primers SacI-MRFP-TeLDC-F (SEQ ID No: 42) and linker-MRFP-R (SEQ ID No: 43) for amplification, using spliced genes Tsmdc as a template, using primers linker-TsLDC-F (SEQ ID No: 45) and TsLDC-XbaI-R (SEQ ID No: 46) for amplification, respectively, cutting a target fragment into glue, recovering the glue, using primers SacI-MRFP-TeLDC-F (SEQ ID No: 42) and TsLDC-XbaI-R (SEQ ID No: 46) for fusion PCR, using SacI and XbaI for double digestion after target fragment purification, and connecting the two digested plasmids into a plasmid pCIB91, and obtaining the MRFP-TeLDC fusion protein (SEQ ID No: 11) for expressing pCIB96, wherein the 5 'end of the TsLDC encoding gene is connected with 3' of red fluorescent protein MRFP (SEQ ID No: 12) through linker (SGSGSGSGSG).
(4) Construction of a red fluorescent protein (MRFP) -TrLDC fusion expression plasmid: the lysine decarboxylase GkLDC from Geobacillus kaustophilus is synthesized by utilizing primer splicing, the amino acid sequence of the lysine decarboxylase GkLDC is shown as SEQ ID NO. 5, and the coding gene is Gkldc (GenBank ID BAD75350.1, SEQ ID NO. 6). The method comprises the steps of using spliced MRFP as a template, amplifying by using primers SacI-MRFP-TeLDC-F (SEQ ID No: 42) and linker-MRFP-R (SEQ ID No: 43), using spliced genes Gkldc as the template, amplifying by using primers linker-GkLDC-F (SEQ ID No: 47) and GkLDC-XbaI-R (SEQ ID No: 48), respectively cutting and recovering a target fragment, performing fusion PCR by using primers SacI-MRFP-TeLDC-F (SEQ ID No: 42) and GkLDC-XbaI-R (SEQ ID No: 48), purifying the target fragment, and then using SacI and XbaI to cut by double enzymes, and connecting the plasmid into a plasmid pCIB91 which is cut by double enzymes to obtain an MRFP-GkLDC fusion protein (SEQ ID No: 13), wherein the 5 'end of the GkLDC encoding gene is connected with a red fluorescent protein MR linker (SGSGSGSGSG) and a red protein MRID 3' (SEQ ID No: 14).
(5) Construction of a red fluorescent protein (MRFP) -GkLDC fusion expression plasmid: the lysine decarboxylase TrLDC from Thermomicrobium roseum is synthesized by utilizing primer splicing, the amino acid sequence of the lysine decarboxylase TrLDC is shown as SEQ ID NO. 7, and the coding gene is Trldc (GenBank ID ACM05730.1, SEQ ID NO. 8). The spliced MRFP is used as a template, primers SacI-MRFP-TeLDC-F (SEQ ID No: 42) and linker-MRFP-R (SEQ ID No: 43) are used for amplification, the spliced gene Trldc is used as a template, primers linker-TrLDC-F (SEQ ID No: 49) and TrLDC-XbaI-R (SEQ ID No: 50) are used for amplification, the target fragment is subjected to gel cutting recovery, primers SacI-MRFP-TeLDC-F (SEQ ID No: 42) and TrLDC-XbaI-R (SEQ ID No: 50) are used for fusion PCR, the target fragment is purified, sacI and XbaI are used for double digestion, and the target fragment is connected into a plasmid pCIB91 which is subjected to double digestion, so that the MRFP-TrLDC fusion protein (SEQ ID No: 15) expresses plasmid pCIB98, and the 5 'end of the TrLDC encoding gene is connected with 3' of red fluorescent protein MRFP (SEQ ID No: 16) through linker (SGSGSGSGSG).
EXAMPLE 4 construction of thermophilic bacteria-derived lysine decarboxylase and Red fluorescent protein fusion expressed Strain
The constructed MRFP-TeLDC, MRFP-TsLDC, MRFP-GkLDC and MRFP-TrLDC fusion protein expression plasmids pCIB92, pCIB96, pCIB97, pCIB98 were transformed into E.coli BL21 (purchased from Takara Shuzo Co., ltd.) competent cells, plated on LB plates containing ampicillin resistance at a final concentration of 100. Mu.g/ml, and cultured upside down at 37℃overnight to obtain MRFP-TeLDC, MRFP-TsLDC, MRFP-GkLDC and MRFP-TrLDC fusion protein expression strains CIB92, CIB96, CIB97 and CIB98, respectively. 3 individual clones were individually picked and inoculated into 5ml LB liquid tubes containing ampicillin resistance at a final concentration of 100. Mu.g/ml, and incubated overnight at 37℃and 200 rpm.
EXAMPLE 5 detection of lysine decarboxylase Activity of fusion proteins MRFP-TeLDC, MRFP-TsLDC, MRFP-TrLDC and MRFP-GkLDC under different temperature conditions
Bacterial liquid OD of each strain 600 According to the measurement, the bacterial solutions of the strains which do not show obvious differences are respectively taken in equal volumes, the conversion reaction of Lys-HCl is carried out under the conditions of different temperatures (37 ℃, 55 ℃, 65 ℃ and 75 ℃), 600 mu L of each bacterial solution is taken, 400 mu L of Lys-HCl (L-lysine hydrochloride) and 5 mu L of 20mM PLP (pyridoxal phosphate) are respectively added, and the reaction time is 4 hours. The results are shown in Table 2, and there was no significant difference in lysine conversion rate at 37℃compared with CIB92 strain expressing MRFP-TeLDC fusion protein; when the reaction is carried out at 55 ℃, the lysine conversion rate of strains CIB96, CIB97 and CIB98 expressing fusion proteins MRFP-TsLDC, MRFP-GkLDC and MRFP-TrLDC appearsThe lysine conversion rate of the CIB96 strain is 83.7%, the lysine conversion rate of the CIB97 strain is 89.9%, the lysine conversion rate of the CIB98 strain is 85.1%, and the optimal temperatures of the CIB96 strain and the CIB98 strain are all around 55 ℃.
TABLE 2 determination of lysine conversion of recombinant cells expressing each lysine decarboxylase
EXAMPLE 6 construction of a Strain in which a stationary phase promoter induces expression of lysine decarboxylase
The genome of E.coli MG 1655K 12 (E.coli MG 1655K 12, available from Enze Biotechnology Co., ltd. In Beijing) was used as a template, and primers pcSiE-F (SEQ ID No: 51)/pcSiE-R (SEQ ID No: 52), pbolA-F (SEQ ID No: 53)/pbolA-R (SEQ ID No: 54), posmY-F (SEQ ID No: 55)/posmY-R (SEQ ID No: 56), pckatE-F (SEQ ID No: 57)/pckatE-R (SEQ ID No: 58), pcbolA (SEQ ID No: 20), and pckatE (SEQ ID No: 22) were used to ligate, respectively, with the same double digested plasmids pCClaIB 92, IB96, IB98, pCIB92-103, pCIB92-92, pCID No: 102, pCIB98-104, pCIB98-96, pCIB98-104, pCIB98-pCIB98, pCIB92-pCIB92.
Double-stranded DNA sequences (5 '-3') of the 4 promoters (P1, P2, P3 and P4) listed in Table 3 were synthesized, respectively, and were ligated with KpnI and ClaI cleavage sites at the 5 'and 3' ends, respectively, using KpnI and ClaI double cleavage, and then ligated into KpnI and ClaI double-cleaved plasmids pCIB92, pCIB96, pCIB97, pCIB98, respectively, to give plasmids containing these 4 promoters (Table 3), pCIB92-P1, pCIB96-P1, pCIB97-P1, pCIB98-P1, pCIB92-P2, pCIB96-P2, pCIB97-P2, pCIB98-P2, pCIB92-P3, pCIB96-P3, pCIB97-P3, pCIB98-P4, pCIB96-P4, pCIB97-P4 and pCIB98-P4, respectively, using the methods commonly used in the art for gene sequence synthesis.
Table 3 combinations of the stationary phase promoter and lysine decarboxylase and expression plasmids therefor
Example 7 comparison of lysine and 1, 5-pentanediamine yields in strains whose different promoters induced expression of lysine decarboxylase
In this example, an L-lysine-producing E.coli (Escherichia coli) Ela611b strain was used, which was deposited at the China center for type culture Collection, address: chinese university of Wuhan, post code 430072, preservation number CCTCC No: m2018736, date of preservation 2018, 11, 1.
The plasmids pCIB71, pCIB92, pCIB96, pCIB97, pCIB98 and 32 plasmids listed in Table 3 were transformed into E.coli strain Ela611b, respectively, to obtain the corresponding 37 recombinant strains, respectively. Three individual clones were individually selected into 5mL liquid medium (containing 4% glucose, 0.1% KH) using E.coli strain Ela611b as a control 2 PO 4 ,0.1% MgSO 4 ,1.6%(NH 4 ) 2 SO 4 ,0.001% FeSO 4 ,0.001% MnSO 4 0.2% yeast extract, 0.01% L-threonine, 0.005% L-isoleucine, 10. Mu.g/mL tetracycline, 100. Mu.g/mL ampicillin), and incubated overnight at 37 ℃. The following day, each strain was then transferred to 100ml fresh medium containing 30g/L glucose, 0.7% Ca (HCO) 3 ) 2 10. Mu.g/mL tetracycline and 100. Mu.g/mL ampicillin, 0.1% KH 2 PO 4 ,0.1% MgSO 4 ,1.6%(NH 4 ) 2 SO 4 ,0.001% FeSO 4 ,0.001% MnSO 4 Culturing was continued in a medium of 0.2% yeast extract, 0.01% L-threonine, 0.005% L-isoleucine at 37℃for 68 hours. After the completion of the cultivation, samples were taken, the contents of L-lysine and 1, 5-pentanediamine in each medium were detected and calculated by using nuclear magnetism (Table 4), and then the reaction was continued at 37℃for 4 hours with the control strain Ela611b and the recombinant strain Ela611 b-71; the other recombinant strains were warmed to 55℃and reacted for 4 hours, and the final L-lysine and 1, 5-pentanediamine contents in each medium were detected and calculated using nuclear magnetism (Table 4).
As can be seen from Table 4, after 68h fermentation of the recombinant strain Ela611b-71 expressing CadA, 2.8g/L of L-lysine and 3.6g/L of 1, 5-pentanediamine were detected, and as the fermentation time was prolonged, the amounts of L-lysine and 1, 5-pentanediamine detected in the fermentation broth did not significantly increase, and finally 4.0g/L of 1, 5-pentanediamine was accumulated, and 2.0g/L of L-lysine remained, probably due to the very high activity of CadA protein at the temperature of lysine growth of 37℃and the excessive catalysis of L-lysine synthesized by the strain was 1, 5-pentanediamine, and the accumulation of 1, 5-pentanediamine in the cells was toxic to the cells, which inhibited the metabolism of the cells to some extent, including L-lysine synthesis and conversion of 1, 5-pentanediamine.
In addition, as can be seen from Table 4, recombinant strains Ela611b-92, ela611b-96, ela611b-97, ela611b-98 constitutively expressed thermophilic strain-derived lysine decarboxylase produced 5.9-6.8g/L of L-lysine and 1.8-2.2g/L of 1, 5-pentanediamine at 68 hours of fermentation, indicating that these thermophilic strain-derived lysine decarboxylases have lower activity at 37 ℃, weakly convert L-lysine into 1, 5-pentanediamine, and release feedback inhibition of L-lysine to some extent, while small amounts of 1, 5-pentanediamine do not cause cytotoxicity; when the temperature is raised to 55 ℃, the activity of lysine decarboxylase is raised, the residual L-lysine can be completely converted into 1, 5-pentanediamine, and finally 5.1-5.8g/L of 1, 5-pentanediamine is accumulated, and only 0.02-0.09g/L of L-lysine remains.
By using the stationary phase promoter, it was theoretically possible to further reduce the accumulation of 1, 5-pentanediamine during lysine production by starting transcription of the downstream gene only after the bacterial cells entered the stationary phase, and it was found by test that each recombinant strain (strain numbers 7 to 38) using the stationary phase promoter had a further increase in L-lysine level and reduced the yield of 1, 5-pentanediamine produced by transformation, as compared with 4 recombinant strains (strain numbers 3 to 6) using the constitutive promoter, at 68 hours of fermentation. When the temperature is raised to 55 ℃, the activity of the fusion expression protein of the red protein and the decarboxylase from thermophilic bacteria is raised, the residual L-lysine is continuously and almost completely converted into 1, 5-pentanediamine, and finally more than 5g/L of 1, 5-pentanediamine is accumulated, and almost no L-lysine remains.
TABLE 4 detection of levels of L-lysine and 1, 5-pentanediamine in strains capable of simultaneously expressing lysine-synthesizing protein and lysine decarboxylase
Note that: n.d. indicates no detection.
While the invention has been described in detail in the foregoing general description and with reference to specific embodiments thereof, it will be apparent to one skilled in the art that modifications and improvements can be made thereto. Accordingly, such modifications or improvements may be made without departing from the spirit of the invention and are intended to be within the scope of the invention as claimed.
Sequence listing
<110> Shanghai Kaiser Biotechnology research and development center Co., ltd
CIC Energy Center
<120> a recombinant DNA and use thereof
<130> KHP181116615.0
<160> 58
<170> SIPOSequenceListing 1.0
<210> 1
<211> 437
<212> PRT
<213> thermophilic bacteria (Thermosynechoccus elongatus)
<400> 1
Met Glu Pro Leu Leu Arg Ala Leu Trp Gly Thr Ala Leu Glu Gln Asp
1 5 10 15
Leu Ser Glu Leu Pro Gly Leu Asp Asn Leu Ala Gln Pro Thr Gly Val
20 25 30
Leu Ala Glu Ala Gln Ala Val Val Ala Ala Thr Val Gly Ser Asp Arg
35 40 45
Ala Trp Phe Leu Val Asn Gly Ala Thr Gly Gly Leu Leu Ala Ala Leu
50 55 60
Leu Ala Thr Val Gly Pro Gly Asp Arg Val Leu Val Gly Arg Asn Val
65 70 75 80
His Arg Ser Val Ile Ala Gly Leu Val Leu Ala Gly Ala Lys Pro Val
85 90 95
Tyr Leu Gly Val Gly Val Asp Pro Gln Trp Gly Leu Pro Trp Pro Val
100 105 110
Thr Arg Asp Val Val Ala Ala Gly Leu Ala Ala Tyr Pro Asp Thr Lys
115 120 125
Ala Val Val Leu Val Ser Pro Thr Tyr Glu Gly Leu Cys Ser Pro Leu
130 135 140
Leu Glu Ile Ala Gln Cys Val His Asn His Gly Val Pro Leu Ile Val
145 150 155 160
Asp Glu Ala His Gly Ser His Phe Ala Tyr His Pro Ala Phe Pro Val
165 170 175
Thr Ala Leu Ala Ala Gly Ala Asp Val Val Val Gln Ser Trp His Lys
180 185 190
Thr Leu Gly Thr Leu Thr Gln Thr Ala Val Leu His Leu Lys Gly Glu
195 200 205
Arg Val Ser Ala Glu Arg Leu Ser Gln Ala Leu Asn Leu Val Gln Thr
210 215 220
Ser Ser Pro Asn Tyr Trp Leu Leu Ala Ala Leu Glu Gly Ala Gly Val
225 230 235 240
Gln Met Ala Gln Gln Gly Glu Gln Ile Tyr Gly Arg Leu Leu Gln Trp
245 250 255
Val Lys Thr Phe Glu Trp Pro Leu Pro Arg Trp Gln Pro Pro Gly Ile
260 265 270
Pro Gln Asp Pro Leu Arg Leu Thr Leu Gly Thr Trp Pro Ile Gly Leu
275 280 285
Thr Gly Phe Ala Leu Asp Glu Leu Leu Gln Pro Gln Ile Ile Ala Glu
290 295 300
Phe Pro Ser Gly Arg Ser Leu Thr Phe Cys Leu Gly Leu Gly Thr Thr
305 310 315 320
Gln Thr Met Leu Glu Thr Leu Ala Asp Arg Leu Lys Ser Val Tyr Thr
325 330 335
Glu Tyr Cys His Asn Ala Pro Leu Pro Pro Leu Ala Ile Pro Ser Ile
340 345 350
Pro Ser Cys Gln Glu Pro Ala Leu Ser Pro Arg Glu Ala Tyr Phe Cys
355 360 365
Pro Gln Arg Ser Ile Pro Leu Arg Ala Ala Leu Asn Glu Ile Ser Ala
370 375 380
Glu Thr Ile Ala Pro Tyr Pro Pro Gly Ile Pro Thr Val Ile Ala Gly
385 390 395 400
Glu Arg Phe Thr Glu Ser Val Ile Ala Thr Leu Gln Thr Leu Gln Glu
405 410 415
Leu Gly Ala Glu Met Val Gly Ala Ser Asp Pro Thr Leu Gln Thr Leu
420 425 430
Arg Ile Cys Lys Val
435
<210> 2
<211> 1314
<212> DNA
<213> thermophilic bacteria (Thermosynechoccus elongatus)
<400> 2
atggaaccat tacttcgcgc actgtggggg accgcgctgg aacaggacct tagcgaactt 60
ccgggtcttg acaatttagc gcaaccaacc ggcgtgttag ccgaagcgca agctgtggtc 120
gctgcgacgg tcggctctga tcgtgcgtgg tttctggtga acggcgctac tggcggcctg 180
cttgcggctt tacttgcgac cgtaggtccc ggcgaccggg tgctggttgg ccgtaatgtg 240
catcgtagcg tgattgcggg cttggtactg gctggcgcaa aaccggtgta tcttggcgtc 300
ggcgtcgatc cacaatgggg tctgccgtgg cccgtgaccc gggacgttgt cgcggcaggc 360
ttggctgcgt accccgacac caaggcggtc gtacttgtaa gtcctaccta tgaaggcctg 420
tgctcgccgc tgttagaaat cgcgcagtgc gtgcataatc atggcgtacc gctgattgtc 480
gacgaagcac atggcagtca tttcgcgtat catccggcat ttcctgtgac cgcgttagct 540
gctggggctg acgtcgtcgt tcagtcatgg cacaaaacgt tgggcacgct gacccaaacg 600
gcggtgctgc atctgaaagg cgaacgcgtg tcggcagagc ggctgagcca ggcgttgaat 660
ctggtgcaga cctcgagccc gaactattgg cttctggccg cacttgaagg tgccggggtc 720
cagatggcgc agcagggcga acagatttat ggccggctgc tgcagtgggt aaaaacattt 780
gagtggcctt tgccgcggtg gcagcctcca ggaatccccc aagatcctct gcgtttgacc 840
ctggggacgt ggccgattgg tttaaccgga tttgcactgg atgaactttt acaacctcag 900
ataattgcgg aatttccaag cgggcgtagc ctgacctttt gtctgggtct gggcacaaca 960
cagactatgc tggagacgct tgcagatcgc ctgaagagcg tctataccga atattgccat 1020
aatgcgccct tgcctccgtt ggcgataccg tctattccga gctgtcagga acccgcgctt 1080
tcgccgcgtg aagcgtactt ttgcccgcag cgtagcatac cgcttcgtgc agctcttaat 1140
gaaatctcgg ctgaaaccat tgccccgtac cctcccggca tacctaccgt gatcgctggg 1200
gagcgcttta ccgaaagtgt tattgcgact ctgcaaacgc tgcaggaatt aggtgcggaa 1260
atggtagggg caagcgatcc gaccttacaa accctgcgga tatgtaaagt gtaa 1314
<210> 3
<211> 482
<212> PRT
<213> thermophilic bacteria (Tepidanaerobacter syntrophicus)
<400> 3
Met Glu Lys Gln Glu Ile Asn Lys Phe Ser Lys Thr Pro Leu Ile Gln
1 5 10 15
Ala Leu Lys Glu Tyr Glu Lys Lys Asp Ser Leu Arg Phe His Met Pro
20 25 30
Gly His Lys Gly Arg Cys Pro Lys Gly Val Phe Cys Asp Ile Lys Glu
35 40 45
Asn Leu Phe Gly Trp Asp Val Thr Glu Ile Pro Gly Leu Asp Asp Phe
50 55 60
Ala Gln Pro Glu Gly Pro Ile Lys Glu Ala Gln Glu Lys Leu Ser Ala
65 70 75 80
Leu Tyr Gly Ala Asp Thr Ser Tyr Phe Leu Val Asn Gly Ala Thr Ser
85 90 95
Gly Ile Ile Ser Met Met Ala Gly Ala Leu Ser Glu Lys Asp Lys Ile
100 105 110
Leu Ile Pro Arg Thr Ser His Lys Ser Val Leu Ser Gly Leu Ile Leu
115 120 125
Thr Gly Ala Ser Ala Ala Tyr Ile Met Pro Glu Arg Cys Glu Glu Leu
130 135 140
Gly Val Tyr Ala Gln Val Glu Pro Cys Ala Ile Thr Asn Lys Leu Ile
145 150 155 160
Glu Asn Pro Asp Ile Lys Ala Ile Leu Val Thr Asn Pro Val Tyr Gln
165 170 175
Gly Phe Cys Pro Asp Ile Ala Arg Val Ala Glu Ile Ala Lys Glu Arg
180 185 190
Gly Thr Thr Leu Leu Ala Asp Glu Ala Gln Gly Pro His Phe Gly Phe
195 200 205
Ser Lys Lys Val Pro Gln Ser Ala Gly Lys Phe Ala Asp Ala Trp Val
210 215 220
Gln Ser Pro His Lys Met Leu Thr Ser Leu Thr Gln Ser Ala Trp Leu
225 230 235 240
His Ile Lys Gly Asn Arg Ile Asp Lys Glu Arg Leu Glu Asp Phe Leu
245 250 255
His Ile Val Thr Thr Ser Ser Pro Ser Tyr Ile Leu Met Ala Ser Leu
260 265 270
Asp Gly Thr Arg Glu Leu Ile Glu Glu Asn Gly Asn Ser Tyr Ile Glu
275 280 285
Lys Ala Val Glu Leu Ala Gln Lys Ala Arg Tyr Glu Ile Asn Asn Ser
290 295 300
Thr Val Phe Tyr Ala Pro Gly Gln Glu Ile Leu Gly Lys Tyr Gly Ile
305 310 315 320
Ser Ser Gln Asp Pro Leu His Leu Met Val Asn Val Ser Cys Ala Gly
325 330 335
Tyr Thr Gly Tyr Asp Ile Glu Lys Ala Leu Arg Glu Asp Phe Ser Ile
340 345 350
Tyr Ala Glu Tyr Ala Asp Leu Cys Asn Val Tyr Phe Leu Ile Thr Phe
355 360 365
Ser Asn Thr Leu Glu Asp Ile Lys Gly Leu Leu Ala Val Leu Ser His
370 375 380
Phe Lys Pro Leu Lys Asn Lys Val Lys Pro Cys Phe Trp Ile Lys Asp
385 390 395 400
Leu Pro Lys Val Ala Leu Glu Pro Lys Lys Ala Phe Lys Leu Pro Ala
405 410 415
Lys Ser Val Pro Phe Lys Asp Ser Ala Gly Ser Val Ser Lys Arg Pro
420 425 430
Leu Val Pro Tyr Pro Pro Gly Ala Pro Leu Val Met Pro Gly Glu Ile
435 440 445
Ile Glu Lys Glu His Ile Glu Met Ile Asn Glu Ile Leu Asn Ser Gly
450 455 460
Gly Tyr Cys Gln Gly Val Thr Ser Glu Lys Phe Ile Gln Val Val Thr
465 470 475 480
Asp Phe
<210> 4
<211> 1449
<212> DNA
<213> thermophilic bacteria (Tepidanaerobacter syntrophicus)
<400> 4
atggagaagc aagagattaa caagttctct aagaccccgc tcatccaagc gctgaaagaa 60
tacgagaaaa aggattctct gcgtttccac atgccaggtc acaaaggccg ttgtccaaaa 120
ggtgtttttt gcgatattaa ggagaacctg ttcggttggg atgttaccga aatcccgggt 180
ctggatgact tcgctcaacc ggaaggtccg atcaaggaag cacaggagaa actgtctgcg 240
ctgtacggtg ccgacacctc ctatttcctc gttaatggtg caacctctgg tatcatttct 300
atgatggcgg gtgctctgtc cgaaaaggac aaaatcctga tcccgcgtac cagccataag 360
agcgtactct ctggtctgat tctcactggc gcctctgcgg cgtacatcat gccggagcgt 420
tgcgaagagc tgggtgttta cgcacaggtg gaaccttgtg ccatcaccaa caaactgatc 480
gagaacccgg atatcaaagc gattctggtt accaacccag tgtaccaggg tttctgcccg 540
gacatcgcgc gtgttgcgga aatcgcgaaa gaacgcggta ccaccctgct cgcagacgaa 600
gcgcaaggcc cacatttcgg cttttccaag aaagttccgc agtctgcggg taagttcgcg 660
gatgcgtggg ttcagtcccc tcacaaaatg ctgacgagcc tgacccaatc tgcgtggctg 720
cacatcaagg gcaatcgtat cgacaaggaa cgtctggaag actttctcca catcgttacc 780
acctcttctc cgtcttacat cctcatggcg tctctggacg gtacccgcga gctgattgaa 840
gaaaacggta actcctacat tgaaaaggcg gttgaactgg ctcagaaagc gcgttatgaa 900
atcaacaact ctactgtttt ctacgcgcca ggccaggaga ttctcggtaa atacggtatt 960
tcttctcagg acccgctgca tctgatggtt aatgtttctt gcgcgggtta cacgggctac 1020
gacatcgaaa aagccctgcg tgaggacttt tctatctacg ccgaatacgc ggacctgtgt 1080
aacgtttact tcctcattac gtttagcaat accctggagg acattaaagg tctcctcgcg 1140
gttctgtctc acttcaaacc gctcaaaaac aaagttaaac cgtgcttctg gatcaaagac 1200
ctgccgaaag ttgcgctgga gccaaagaag gcgttcaaac tgccggcgaa atctgtgcct 1260
ttcaaagatt ctgctggtag cgtttctaaa cgcccgctgg ttccgtatcc gccaggtgcg 1320
ccactcgtga tgccgggtga gatcattgag aaagagcaca tcgagatgat taatgaaatt 1380
ctcaactctg gcggctactg ccagggtgtt acgtctgaaa agttcattca ggttgtaacc 1440
gatttctaa 1449
<210> 5
<211> 490
<212> PRT
<213> thermophilic bacteria (Geobacillus kaustophilus)
<400> 5
Met Ser Gln Leu Glu Thr Pro Leu Phe Thr Gly Leu Leu Glu His Met
1 5 10 15
Lys Lys Asn Pro Val Gln Phe His Ile Pro Gly His Lys Lys Gly Ala
20 25 30
Gly Met Asp Pro Glu Phe Arg Ala Phe Ile Gly Asp Asn Ala Leu Ala
35 40 45
Ile Asp Leu Ile Asn Ile Ser Pro Leu Asp Asp Leu His His Pro Lys
50 55 60
Gly Met Ile Lys Arg Ala Gln Glu Leu Ala Ala Glu Ala Phe Gly Ala
65 70 75 80
Asp Tyr Thr Phe Phe Ser Val Gln Gly Thr Ser Gly Ala Ile Met Thr
85 90 95
Met Val Met Ser Val Ala Gly Pro Gly Asp Lys Ile Ile Val Pro Arg
100 105 110
Asn Val His Lys Ser Val Met Ser Ala Ile Val Phe Ser Gly Ala Thr
115 120 125
Pro Ile Phe Ile His Pro Glu Ile Asp Lys Glu Leu Gly Ile Ser His
130 135 140
Gly Ile Thr Pro Gln Ala Val Glu Lys Ala Leu Arg Gln His Pro Asp
145 150 155 160
Ala Lys Gly Val Leu Val Ile Asn Pro Thr Tyr Phe Gly Ile Ala Gly
165 170 175
Asp Leu Lys Lys Ile Val Asp Ile Ala His Ser Tyr Asn Val Pro Val
180 185 190
Leu Val Asp Glu Ala His Gly Val His Ile His Phe His Glu Asp Leu
195 200 205
Pro Leu Ser Ala Met Gln Ala Gly Ala Asp Met Ala Ala Thr Ser Val
210 215 220
His Lys Leu Gly Gly Ser Leu Thr Gln Ser Ser Ile Leu Asn Val Arg
225 230 235 240
Glu Gly Leu Val Ser Ala Lys His Val Gln Ala Ile Leu Ser Met Leu
245 250 255
Thr Thr Thr Ser Thr Ser Tyr Leu Leu Leu Ala Ser Leu Asp Val Ala
260 265 270
Arg Lys Gln Leu Ala Thr Lys Gly Arg Glu Leu Ile Asp Lys Ala Ile
275 280 285
Arg Leu Ala Asp Trp Thr Arg Arg Gln Ile Asn Glu Ile Pro Tyr Leu
290 295 300
Tyr Cys Val Gly Glu Glu Ile Leu Gly Thr Glu Ala Thr Tyr Asp Tyr
305 310 315 320
Asp Pro Thr Lys Leu Ile Ile Ser Val Lys Glu Leu Gly Leu Thr Gly
325 330 335
His Asp Val Glu Arg Trp Leu Arg Glu Thr Tyr Asn Ile Glu Val Glu
340 345 350
Leu Ser Asp Leu Tyr Asn Ile Leu Cys Ile Ile Thr Pro Gly Asp Thr
355 360 365
Glu Arg Glu Ala Ser Leu Leu Val Glu Ala Leu Arg Arg Leu Ser Lys
370 375 380
Gln Phe Ser His Gln Ala Glu Lys Gly Ile Lys Pro Lys Val Leu Leu
385 390 395 400
Pro Asp Ile Pro Ala Leu Ala Leu Thr Pro Arg Asp Ala Phe Tyr Ala
405 410 415
Glu Thr Glu Val Val Pro Phe His Glu Ser Ala Gly Arg Ile Ile Ala
420 425 430
Glu Phe Val Met Val Tyr Pro Pro Gly Ile Pro Ile Phe Ile Pro Gly
435 440 445
Glu Ile Ile Thr Glu Glu Asn Leu Lys Tyr Ile Glu Thr Asn Leu Ala
450 455 460
Ala Gly Leu Pro Val Gln Gly Pro Glu Asp Asp Thr Leu Gln Thr Leu
465 470 475 480
Arg Val Ile Lys Glu Tyr Lys Pro Ile Arg
485 490
<210> 6
<211> 1473
<212> DNA
<213> thermophilic bacteria (Geobacillus kaustophilus)
<400> 6
atgtctcagc tcgagacccc tctgttcacc ggtctgctcg aacacatgaa gaaaaacccg 60
gtccagtttc acattccagg tcacaagaaa ggtgctggta tggaccctga gttccgtgcg 120
tttatcggtg ataacgcgct cgcgatcgac ctgatcaaca tctcccctct cgacgacctc 180
caccacccga aaggcatgat caaacgtgcg caggaactgg ctgcggaagc gtttggcgcg 240
gactacacgt tcttcagcgt tcaaggcacc agcggtgcca tcatgacgat ggtaatgtct 300
gttgcgggtc cgggcgataa gatcatcgtc cctcgtaacg ttcacaaatc tgttatgtct 360
gccatcgttt tctctggcgc gacccctatt ttcatccacc cggaaatcga taaggagctg 420
ggtattagcc acggtattac cccgcaggcc gtggagaaag ccctgcgtca acaccctgat 480
gctaaaggcg ttctggtaat caacccgact tatttcggta tcgcgggtga cctcaaaaag 540
atcgttgaca tcgcgcactc ttataatgtg ccggtcctgg tagatgaagc gcacggtgtt 600
catattcact tccacgagga cctcccactc agcgcaatgc aggcgggtgc ggatatggcg 660
gcgacgtccg tgcacaagct gggcggtagc ctgactcagt cttccattct gaacgtacgc 720
gaaggtctgg tttctgctaa acacgtgcaa gcgattctct ctatgctgac caccacttct 780
acctcttatc tgctgctggc ttccctggac gtagcgcgta aacagctggc aaccaaaggt 840
cgtgaactca tcgacaaagc catccgcctc gcggattgga cccgtcgcca gattaacgag 900
atcccgtacc tctactgcgt gggtgaagag atcctgggta ccgaagcaac ctacgactac 960
gatccgacta aactgatcat cagcgtaaaa gaactcggtc tcactggcca tgacgttgag 1020
cgttggctcc gtgaaaccta caatatcgaa gttgaactgt ctgacctcta taacatcctc 1080
tgcatcatca ccccgggtga tactgagcgc gaagcgtctc tcctggtgga agcactgcgc 1140
cgtctgtcta aacaattctc ccatcaggcc gaaaagggta tcaaacctaa ggttctcctg 1200
ccggatattc ctgccctcgc cctgacgcct cgtgacgcgt tctatgcgga aaccgaagtc 1260
gttccgttcc atgagtccgc cggtcgtatc atcgcggagt ttgtaatggt ttacccaccg 1320
ggcatcccaa tcttcatccc tggcgagatt atcactgagg aaaacctgaa atacatcgaa 1380
accaacctgg cggctggcct cccggttcag ggcccagaag acgacacgct gcagaccctc 1440
cgtgtcatta aagaatacaa accaattcgt taa 1473
<210> 7
<211> 495
<212> PRT
<213> Thermomicrobium roseum
<400> 7
Met Ser Glu Glu Gln Gln Arg Ala Pro Tyr Leu Glu Gln Trp Leu Ala
1 5 10 15
Tyr Val Asp Glu Cys Val Ile Pro Phe Thr Thr Pro Gly His Lys Gln
20 25 30
Gly Arg Gly Ala Pro Pro Glu Phe Val Ala Ala Phe Gly Glu Arg Ala
35 40 45
Leu Ala Leu Asp Ile Pro His Asp Gly Gly Thr Phe Asp Ala His Leu
50 55 60
Glu His Asp Pro Leu Val Ala Ala Glu Arg Leu Ala Ala Ala Leu Trp
65 70 75 80
Gly Ala Arg Asp Ala Val Phe Leu Val Asn Gly Ser Thr Thr Gly Asn
85 90 95
Leu Ala Ala Leu Leu Thr Leu Gly Arg Pro Gly Gln Pro Ile Val Val
100 105 110
Thr Arg Ala Met His Lys Ser Leu Leu Ala Gly Leu Val Leu Ser Gly
115 120 125
Ala Arg Pro Val Tyr Val Val Pro Ala Val His Pro Glu Ser Gly Ile
130 135 140
Leu Leu Asp Leu Pro Pro Glu Ser Val Ala Gln Ala Leu Ala Ala Trp
145 150 155 160
Pro Asp Ala Thr Ala Val Ala Leu Val Ser Pro Thr Tyr Thr Gly Val
165 170 175
Thr Ser Asp Thr Ala Glu Leu Ala Ala Leu Cys His Ala His Gly Val
180 185 190
Pro Leu Phe Val Asp Glu Ala Trp Gly Pro His Leu Pro Phe His Pro
195 200 205
Ala Leu Pro Ala Ala Ala Ile Pro Ser Gly Ala Asp Leu Ala Val Thr
210 215 220
Ser Leu His Lys Leu Ala Gly Ser Leu Thr Gln Thr Ala Leu Leu Leu
225 230 235 240
Met Ala Gly Asn Leu Val Asp Gln Ala Gln Leu Arg Ala Ala Thr Ala
245 250 255
Met Val Gln Thr Thr Ser Pro Ala Ala Phe Leu Tyr Ala Ser Leu Asp
260 265 270
Ala Ala Arg Arg Arg Leu Ala Leu Glu Gly Glu Gln Leu Leu Ala Arg
275 280 285
Thr Leu Glu Leu Ala Glu His Ala Arg Arg Glu Leu Ala Ala Ile Pro
290 295 300
Gly Leu Glu Val Val Gly Pro Glu Ile Val Ala Gly Arg Pro Gly Ala
305 310 315 320
Gly Phe Asp Arg Thr Arg Leu Val Val Asp Val Gln Gly Phe Gly Leu
325 330 335
Thr Gly Leu Glu Val Lys Arg Ile Leu Arg Arg Asp Phe Arg Ile Ala
340 345 350
Ala Glu Met Ala Asp Leu Val Ser Val Val Phe Leu Ile Thr Ile Gly
355 360 365
Asp Thr Pro Glu Thr Ile Ala Ala Leu Val Ala Ala Phe Arg Ala Leu
370 375 380
Ala Ala Asp Arg Thr Arg Pro Asp Cys Ala Ala Gly Arg Arg Ala Val
385 390 395 400
Arg Ala Leu Leu Arg Ser Thr Gly Pro Ile Val Ala Gly Ala Pro Gln
405 410 415
Ala Met Thr Pro Arg Glu Ala Phe Phe Ala Pro Ala Glu Arg Val Pro
420 425 430
Leu Ala Asp Ala Val Gly Arg Val Ala Ala Glu Pro Val Thr Pro Tyr
435 440 445
Pro Pro Gly Ile Pro Val Leu Ala Pro Gly Glu Val Val Arg Pro Glu
450 455 460
Val Val Glu Phe Leu Gln Ala Gly Arg Ala Ala Gly Met Arg Phe Asn
465 470 475 480
Gly Ala Ser Asp Pro Thr Leu Ala Thr Leu Arg Val Val Arg Ala
485 490 495
<210> 8
<211> 1488
<212> DNA
<213> Thermomicrobium roseum
<400> 8
atgtctgaag aacagcaacg tgctccgtac ctggagcaat ggctggcgta cgttgacgag 60
tgcgttatcc cgtttaccac tccgggtcac aaacaaggtc gcggtgcgcc accggagttc 120
gttgcggcgt tcggtgaacg tgcgctcgct ctggacattc cgcatgacgg tggcaccttt 180
gacgcgcatc tggaacatga cccgctcgtt gccgccgaac gtctggctgc cgcactgtgg 240
ggtgcacgcg atgcggtgtt tctggttaac ggttccacca ctggtaacct ggcggctctg 300
ctcactctcg gtcgcccagg tcagccgatt gttgttactc gtgccatgca taagagcctg 360
ctggcaggtc tggtcctgag cggtgctcgc cctgtctacg ttgtaccggc cgtacaccca 420
gaatccggta tcctcctcga tctccctccg gaatctgttg cgcaggcgct ggccgcgtgg 480
cctgatgcga cggctgtagc tctggtgtcc ccgacctaca ctggcgttac ctctgacact 540
gctgaactgg cagccctctg tcacgctcat ggtgttccac tgtttgttga tgaagcgtgg 600
ggtccgcacc tcccgttcca tccagcactc ccagcagcag ctattccgtc tggtgccgat 660
ctggcggtta cttctctgca caaactggcg ggttccctca cccaaaccgc tctcctcctg 720
atggcaggca acctcgtaga ccaagcccag ctgcgtgcag ccacggcaat ggtgcaaacc 780
accagccctg cagccttcct gtacgcgtcc ctggatgctg cccgtcgccg tctcgcgctc 840
gaaggtgaac agctcctcgc acgtactctc gagctggctg agcacgctcg ccgtgaactc 900
gccgccatcc cgggtctgga ggtggtcggt ccagaaattg ttgcgggtcg tccgggtgcc 960
ggcttcgatc gtactcgcct cgttgttgac gttcagggtt tcggtctgac tggcctcgaa 1020
gtaaagcgta tcctgcgtcg tgacttccgt attgcagctg aaatggcaga tctcgtctct 1080
gttgttttcc tcatcaccat cggtgacacc ccagagacca tcgctgccct ggtagcagct 1140
ttccgtgcac tcgctgctga ccgtacccgt ccagactgtg ctgccggtcg tcgtgcagta 1200
cgcgccctcc tccgttctac cggtccgatc gtcgcgggtg ctcctcaggc gatgaccccg 1260
cgtgaagctt tcttcgctcc agctgagcgc gttccgctcg cggatgccgt cggtcgtgtt 1320
gcagccgagc cggttacccc atatccgcct ggtattccgg tactggcccc aggtgaagtg 1380
gttcgcccgg aggtagttga attcctccag gcaggccgtg ccgctggtat gcgtttcaat 1440
ggcgcgtctg acccgactct ggcgaccctc cgtgtcgttc gtgcctaa 1488
<210> 9
<211> 683
<212> PRT
<213> Artificial sequence (Artificial Sequence)
<400> 9
Met Val Ser Lys Gly Glu Glu Asp Asn Met Ala Ile Ile Lys Glu Phe
1 5 10 15
Met Arg Phe Lys Val His Met Glu Gly Ser Val Asn Gly His Glu Phe
20 25 30
Glu Ile Glu Gly Glu Gly Glu Gly Arg Pro Tyr Glu Gly Thr Gln Thr
35 40 45
Ala Lys Leu Lys Val Thr Lys Gly Gly Pro Leu Pro Phe Ala Trp Asp
50 55 60
Ile Leu Ser Pro Gln Phe Met Tyr Gly Ser Lys Ala Tyr Val Lys His
65 70 75 80
Pro Ala Asp Ile Pro Asp Tyr Leu Lys Leu Ser Phe Pro Glu Gly Phe
85 90 95
Lys Trp Glu Arg Val Met Asn Phe Glu Asp Gly Gly Val Val Thr Val
100 105 110
Thr Gln Asp Ser Ser Leu Gln Asp Gly Glu Phe Ile Tyr Lys Val Lys
115 120 125
Leu Arg Gly Thr Asn Phe Pro Ser Asp Gly Pro Val Met Gln Lys Lys
130 135 140
Thr Met Gly Trp Glu Ala Ser Ser Glu Arg Met Tyr Pro Glu Asp Gly
145 150 155 160
Ala Leu Lys Gly Glu Ile Lys Gln Arg Leu Lys Leu Lys Asp Gly Gly
165 170 175
His Tyr Asp Ala Glu Val Lys Thr Thr Tyr Lys Ala Lys Lys Pro Val
180 185 190
Gln Leu Pro Gly Ala Tyr Asn Val Asn Ile Lys Leu Asp Ile Thr Ser
195 200 205
His Asn Glu Asp Tyr Thr Ile Val Glu Gln Tyr Glu Arg Ala Glu Gly
210 215 220
Arg His Ser Thr Gly Gly Met Asp Glu Leu Tyr Lys Ser Gly Ser Gly
225 230 235 240
Ser Gly Ser Gly Ser Gly Met Glu Pro Leu Leu Arg Ala Leu Trp Gly
245 250 255
Thr Ala Leu Glu Gln Asp Leu Ser Glu Leu Pro Gly Leu Asp Asn Leu
260 265 270
Ala Gln Pro Thr Gly Val Leu Ala Glu Ala Gln Ala Val Val Ala Ala
275 280 285
Thr Val Gly Ser Asp Arg Ala Trp Phe Leu Val Asn Gly Ala Thr Gly
290 295 300
Gly Leu Leu Ala Ala Leu Leu Ala Thr Val Gly Pro Gly Asp Arg Val
305 310 315 320
Leu Val Gly Arg Asn Val His Arg Ser Val Ile Ala Gly Leu Val Leu
325 330 335
Ala Gly Ala Lys Pro Val Tyr Leu Gly Val Gly Val Asp Pro Gln Trp
340 345 350
Gly Leu Pro Trp Pro Val Thr Arg Asp Val Val Ala Ala Gly Leu Ala
355 360 365
Ala Tyr Pro Asp Thr Lys Ala Val Val Leu Val Ser Pro Thr Tyr Glu
370 375 380
Gly Leu Cys Ser Pro Leu Leu Glu Ile Ala Gln Cys Val His Asn His
385 390 395 400
Gly Val Pro Leu Ile Val Asp Glu Ala His Gly Ser His Phe Ala Tyr
405 410 415
His Pro Ala Phe Pro Val Thr Ala Leu Ala Ala Gly Ala Asp Val Val
420 425 430
Val Gln Ser Trp His Lys Thr Leu Gly Thr Leu Thr Gln Thr Ala Val
435 440 445
Leu His Leu Lys Gly Glu Arg Val Ser Ala Glu Arg Leu Ser Gln Ala
450 455 460
Leu Asn Leu Val Gln Thr Ser Ser Pro Asn Tyr Trp Leu Leu Ala Ala
465 470 475 480
Leu Glu Gly Ala Gly Val Gln Met Ala Gln Gln Gly Glu Gln Ile Tyr
485 490 495
Gly Arg Leu Leu Gln Trp Val Lys Thr Phe Glu Trp Pro Leu Pro Arg
500 505 510
Trp Gln Pro Pro Gly Ile Pro Gln Asp Pro Leu Arg Leu Thr Leu Gly
515 520 525
Thr Trp Pro Ile Gly Leu Thr Gly Phe Ala Leu Asp Glu Leu Leu Gln
530 535 540
Pro Gln Ile Ile Ala Glu Phe Pro Ser Gly Arg Ser Leu Thr Phe Cys
545 550 555 560
Leu Gly Leu Gly Thr Thr Gln Thr Met Leu Glu Thr Leu Ala Asp Arg
565 570 575
Leu Lys Ser Val Tyr Thr Glu Tyr Cys His Asn Ala Pro Leu Pro Pro
580 585 590
Leu Ala Ile Pro Ser Ile Pro Ser Cys Gln Glu Pro Ala Leu Ser Pro
595 600 605
Arg Glu Ala Tyr Phe Cys Pro Gln Arg Ser Ile Pro Leu Arg Ala Ala
610 615 620
Leu Asn Glu Ile Ser Ala Glu Thr Ile Ala Pro Tyr Pro Pro Gly Ile
625 630 635 640
Pro Thr Val Ile Ala Gly Glu Arg Phe Thr Glu Ser Val Ile Ala Thr
645 650 655
Leu Gln Thr Leu Gln Glu Leu Gly Ala Glu Met Val Gly Ala Ser Asp
660 665 670
Pro Thr Leu Gln Thr Leu Arg Ile Cys Lys Val
675 680
<210> 10
<211> 2052
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 10
atggtgtcta aaggcgagga agataatatg gcgattatca aagaatttat gcgttttaaa 60
gtgcatatgg aaggcagcgt gaatgggcat gagtttgaaa ttgaaggcga aggagaaggc 120
cgtccgtatg aaggcaccca gaccgctaaa ctgaaagtga ccaaaggcgg accactgccg 180
tttgcgtggg acattctgag cccgcagttt atgtatggca gcaaagcgta tgtgaaacat 240
ccggcggata ttccggatta tctgaaactg agctttccgg agggcttcaa atgggaacgt 300
gtgatgaatt ttgaagatgg cggcgtggtg accgtgaccc aggatagcag cctgcaagac 360
ggcgaattca tttacaaggt gaagctgcgt ggcaccaact ttcccagcga tggcccggtg 420
atgcagaaaa agaccatggg ctgggaggcg agcagcgaac gtatgtaccc ggaggatggc 480
gcgctgaagg gcgaaattaa gcagcgtctg aagttaaaag atggtgggca ctatgatgcg 540
gaagtgaaaa ccacctataa agcgaaaaaa ccggtgcagt taccaggcgc ttataatgtg 600
aacattaagc tggatattac cagccataat gaagattata ccattgtgga acagtatgag 660
cgtgcggagg gacggcatag cacgggcgga atggatgaac tgtataaatc tggttctggt 720
tctggttctg gttctggtat ggaaccatta cttcgcgcac tgtgggggac cgcgctggaa 780
caggacctta gcgaacttcc gggtcttgac aatttagcgc aaccaaccgg cgtgttagcc 840
gaagcgcaag ctgtggtcgc tgcgacggtc ggctctgatc gtgcgtggtt tctggtgaac 900
ggcgctactg gcggcctgct tgcggcttta cttgcgaccg taggtcccgg cgaccgggtg 960
ctggttggcc gtaatgtgca tcgtagcgtg attgcgggct tggtactggc tggcgcaaaa 1020
ccggtgtatc ttggcgtcgg cgtcgatcca caatggggtc tgccgtggcc cgtgacccgg 1080
gacgttgtcg cggcaggctt ggctgcgtac cccgacacca aggcggtcgt acttgtaagt 1140
cctacctatg aaggcctgtg ctcgccgctg ttagaaatcg cgcagtgcgt gcataatcat 1200
ggcgtaccgc tgattgtcga cgaagcacat ggcagtcatt tcgcgtatca tccggcattt 1260
cctgtgaccg cgttagctgc tggggctgac gtcgtcgttc agtcatggca caaaacgttg 1320
ggcacgctga cccaaacggc ggtgctgcat ctgaaaggcg aacgcgtgtc ggcagagcgg 1380
ctgagccagg cgttgaatct ggtgcagacc tcgagcccga actattggct tctggccgca 1440
cttgaaggtg ccggggtcca gatggcgcag cagggcgaac agatttatgg ccggctgctg 1500
cagtgggtaa aaacatttga gtggcctttg ccgcggtggc agcctccagg aatcccccaa 1560
gatcctctgc gtttgaccct ggggacgtgg ccgattggtt taaccggatt tgcactggat 1620
gaacttttac aacctcagat aattgcggaa tttccaagcg ggcgtagcct gaccttttgt 1680
ctgggtctgg gcacaacaca gactatgctg gagacgcttg cagatcgcct gaagagcgtc 1740
tataccgaat attgccataa tgcgcccttg cctccgttgg cgataccgtc tattccgagc 1800
tgtcaggaac ccgcgctttc gccgcgtgaa gcgtactttt gcccgcagcg tagcataccg 1860
cttcgtgcag ctcttaatga aatctcggct gaaaccattg ccccgtaccc tcccggcata 1920
cctaccgtga tcgctgggga gcgctttacc gaaagtgtta ttgcgactct gcaaacgctg 1980
caggaattag gtgcggaaat ggtaggggca agcgatccga ccttacaaac cctgcggata 2040
tgtaaagtgt aa 2052
<210> 11
<211> 728
<212> PRT
<213> Artificial sequence (Artificial Sequence)
<400> 11
Met Val Ser Lys Gly Glu Glu Asp Asn Met Ala Ile Ile Lys Glu Phe
1 5 10 15
Met Arg Phe Lys Val His Met Glu Gly Ser Val Asn Gly His Glu Phe
20 25 30
Glu Ile Glu Gly Glu Gly Glu Gly Arg Pro Tyr Glu Gly Thr Gln Thr
35 40 45
Ala Lys Leu Lys Val Thr Lys Gly Gly Pro Leu Pro Phe Ala Trp Asp
50 55 60
Ile Leu Ser Pro Gln Phe Met Tyr Gly Ser Lys Ala Tyr Val Lys His
65 70 75 80
Pro Ala Asp Ile Pro Asp Tyr Leu Lys Leu Ser Phe Pro Glu Gly Phe
85 90 95
Lys Trp Glu Arg Val Met Asn Phe Glu Asp Gly Gly Val Val Thr Val
100 105 110
Thr Gln Asp Ser Ser Leu Gln Asp Gly Glu Phe Ile Tyr Lys Val Lys
115 120 125
Leu Arg Gly Thr Asn Phe Pro Ser Asp Gly Pro Val Met Gln Lys Lys
130 135 140
Thr Met Gly Trp Glu Ala Ser Ser Glu Arg Met Tyr Pro Glu Asp Gly
145 150 155 160
Ala Leu Lys Gly Glu Ile Lys Gln Arg Leu Lys Leu Lys Asp Gly Gly
165 170 175
His Tyr Asp Ala Glu Val Lys Thr Thr Tyr Lys Ala Lys Lys Pro Val
180 185 190
Gln Leu Pro Gly Ala Tyr Asn Val Asn Ile Lys Leu Asp Ile Thr Ser
195 200 205
His Asn Glu Asp Tyr Thr Ile Val Glu Gln Tyr Glu Arg Ala Glu Gly
210 215 220
Arg His Ser Thr Gly Gly Met Asp Glu Leu Tyr Lys Ser Gly Ser Gly
225 230 235 240
Ser Gly Ser Gly Ser Gly Met Glu Lys Gln Glu Ile Asn Lys Phe Ser
245 250 255
Lys Thr Pro Leu Ile Gln Ala Leu Lys Glu Tyr Glu Lys Lys Asp Ser
260 265 270
Leu Arg Phe His Met Pro Gly His Lys Gly Arg Cys Pro Lys Gly Val
275 280 285
Phe Cys Asp Ile Lys Glu Asn Leu Phe Gly Trp Asp Val Thr Glu Ile
290 295 300
Pro Gly Leu Asp Asp Phe Ala Gln Pro Glu Gly Pro Ile Lys Glu Ala
305 310 315 320
Gln Glu Lys Leu Ser Ala Leu Tyr Gly Ala Asp Thr Ser Tyr Phe Leu
325 330 335
Val Asn Gly Ala Thr Ser Gly Ile Ile Ser Met Met Ala Gly Ala Leu
340 345 350
Ser Glu Lys Asp Lys Ile Leu Ile Pro Arg Thr Ser His Lys Ser Val
355 360 365
Leu Ser Gly Leu Ile Leu Thr Gly Ala Ser Ala Ala Tyr Ile Met Pro
370 375 380
Glu Arg Cys Glu Glu Leu Gly Val Tyr Ala Gln Val Glu Pro Cys Ala
385 390 395 400
Ile Thr Asn Lys Leu Ile Glu Asn Pro Asp Ile Lys Ala Ile Leu Val
405 410 415
Thr Asn Pro Val Tyr Gln Gly Phe Cys Pro Asp Ile Ala Arg Val Ala
420 425 430
Glu Ile Ala Lys Glu Arg Gly Thr Thr Leu Leu Ala Asp Glu Ala Gln
435 440 445
Gly Pro His Phe Gly Phe Ser Lys Lys Val Pro Gln Ser Ala Gly Lys
450 455 460
Phe Ala Asp Ala Trp Val Gln Ser Pro His Lys Met Leu Thr Ser Leu
465 470 475 480
Thr Gln Ser Ala Trp Leu His Ile Lys Gly Asn Arg Ile Asp Lys Glu
485 490 495
Arg Leu Glu Asp Phe Leu His Ile Val Thr Thr Ser Ser Pro Ser Tyr
500 505 510
Ile Leu Met Ala Ser Leu Asp Gly Thr Arg Glu Leu Ile Glu Glu Asn
515 520 525
Gly Asn Ser Tyr Ile Glu Lys Ala Val Glu Leu Ala Gln Lys Ala Arg
530 535 540
Tyr Glu Ile Asn Asn Ser Thr Val Phe Tyr Ala Pro Gly Gln Glu Ile
545 550 555 560
Leu Gly Lys Tyr Gly Ile Ser Ser Gln Asp Pro Leu His Leu Met Val
565 570 575
Asn Val Ser Cys Ala Gly Tyr Thr Gly Tyr Asp Ile Glu Lys Ala Leu
580 585 590
Arg Glu Asp Phe Ser Ile Tyr Ala Glu Tyr Ala Asp Leu Cys Asn Val
595 600 605
Tyr Phe Leu Ile Thr Phe Ser Asn Thr Leu Glu Asp Ile Lys Gly Leu
610 615 620
Leu Ala Val Leu Ser His Phe Lys Pro Leu Lys Asn Lys Val Lys Pro
625 630 635 640
Cys Phe Trp Ile Lys Asp Leu Pro Lys Val Ala Leu Glu Pro Lys Lys
645 650 655
Ala Phe Lys Leu Pro Ala Lys Ser Val Pro Phe Lys Asp Ser Ala Gly
660 665 670
Ser Val Ser Lys Arg Pro Leu Val Pro Tyr Pro Pro Gly Ala Pro Leu
675 680 685
Val Met Pro Gly Glu Ile Ile Glu Lys Glu His Ile Glu Met Ile Asn
690 695 700
Glu Ile Leu Asn Ser Gly Gly Tyr Cys Gln Gly Val Thr Ser Glu Lys
705 710 715 720
Phe Ile Gln Val Val Thr Asp Phe
725
<210> 12
<211> 2187
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 12
atggtgtcta aaggcgagga agataatatg gcgattatca aagaatttat gcgttttaaa 60
gtgcatatgg aaggcagcgt gaatgggcat gagtttgaaa ttgaaggcga aggagaaggc 120
cgtccgtatg aaggcaccca gaccgctaaa ctgaaagtga ccaaaggcgg accactgccg 180
tttgcgtggg acattctgag cccgcagttt atgtatggca gcaaagcgta tgtgaaacat 240
ccggcggata ttccggatta tctgaaactg agctttccgg agggcttcaa atgggaacgt 300
gtgatgaatt ttgaagatgg cggcgtggtg accgtgaccc aggatagcag cctgcaagac 360
ggcgaattca tttacaaggt gaagctgcgt ggcaccaact ttcccagcga tggcccggtg 420
atgcagaaaa agaccatggg ctgggaggcg agcagcgaac gtatgtaccc ggaggatggc 480
gcgctgaagg gcgaaattaa gcagcgtctg aagttaaaag atggtgggca ctatgatgcg 540
gaagtgaaaa ccacctataa agcgaaaaaa ccggtgcagt taccaggcgc ttataatgtg 600
aacattaagc tggatattac cagccataat gaagattata ccattgtgga acagtatgag 660
cgtgcggagg gacggcatag cacgggcgga atggatgaac tgtataaatc tggttctggt 720
tctggttctg gttctggtat ggagaagcaa gagattaaca agttctctaa gaccccgctc 780
atccaagcgc tgaaagaata cgagaaaaag gattctctgc gtttccacat gccaggtcac 840
aaaggccgtt gtccaaaagg tgttttttgc gatattaagg agaacctgtt cggttgggat 900
gttaccgaaa tcccgggtct ggatgacttc gctcaaccgg aaggtccgat caaggaagca 960
caggagaaac tgtctgcgct gtacggtgcc gacacctcct atttcctcgt taatggtgca 1020
acctctggta tcatttctat gatggcgggt gctctgtccg aaaaggacaa aatcctgatc 1080
ccgcgtacca gccataagag cgtactctct ggtctgattc tcactggcgc ctctgcggcg 1140
tacatcatgc cggagcgttg cgaagagctg ggtgtttacg cacaggtgga accttgtgcc 1200
atcaccaaca aactgatcga gaacccggat atcaaagcga ttctggttac caacccagtg 1260
taccagggtt tctgcccgga catcgcgcgt gttgcggaaa tcgcgaaaga acgcggtacc 1320
accctgctcg cagacgaagc gcaaggccca catttcggct tttccaagaa agttccgcag 1380
tctgcgggta agttcgcgga tgcgtgggtt cagtcccctc acaaaatgct gacgagcctg 1440
acccaatctg cgtggctgca catcaagggc aatcgtatcg acaaggaacg tctggaagac 1500
tttctccaca tcgttaccac ctcttctccg tcttacatcc tcatggcgtc tctggacggt 1560
acccgcgagc tgattgaaga aaacggtaac tcctacattg aaaaggcggt tgaactggct 1620
cagaaagcgc gttatgaaat caacaactct actgttttct acgcgccagg ccaggagatt 1680
ctcggtaaat acggtatttc ttctcaggac ccgctgcatc tgatggttaa tgtttcttgc 1740
gcgggttaca cgggctacga catcgaaaaa gccctgcgtg aggacttttc tatctacgcc 1800
gaatacgcgg acctgtgtaa cgtttacttc ctcattacgt ttagcaatac cctggaggac 1860
attaaaggtc tcctcgcggt tctgtctcac ttcaaaccgc tcaaaaacaa agttaaaccg 1920
tgcttctgga tcaaagacct gccgaaagtt gcgctggagc caaagaaggc gttcaaactg 1980
ccggcgaaat ctgtgccttt caaagattct gctggtagcg tttctaaacg cccgctggtt 2040
ccgtatccgc caggtgcgcc actcgtgatg ccgggtgaga tcattgagaa agagcacatc 2100
gagatgatta atgaaattct caactctggc ggctactgcc agggtgttac gtctgaaaag 2160
ttcattcagg ttgtaaccga tttctaa 2187
<210> 13
<211> 736
<212> PRT
<213> Artificial sequence (Artificial Sequence)
<400> 13
Met Val Ser Lys Gly Glu Glu Asp Asn Met Ala Ile Ile Lys Glu Phe
1 5 10 15
Met Arg Phe Lys Val His Met Glu Gly Ser Val Asn Gly His Glu Phe
20 25 30
Glu Ile Glu Gly Glu Gly Glu Gly Arg Pro Tyr Glu Gly Thr Gln Thr
35 40 45
Ala Lys Leu Lys Val Thr Lys Gly Gly Pro Leu Pro Phe Ala Trp Asp
50 55 60
Ile Leu Ser Pro Gln Phe Met Tyr Gly Ser Lys Ala Tyr Val Lys His
65 70 75 80
Pro Ala Asp Ile Pro Asp Tyr Leu Lys Leu Ser Phe Pro Glu Gly Phe
85 90 95
Lys Trp Glu Arg Val Met Asn Phe Glu Asp Gly Gly Val Val Thr Val
100 105 110
Thr Gln Asp Ser Ser Leu Gln Asp Gly Glu Phe Ile Tyr Lys Val Lys
115 120 125
Leu Arg Gly Thr Asn Phe Pro Ser Asp Gly Pro Val Met Gln Lys Lys
130 135 140
Thr Met Gly Trp Glu Ala Ser Ser Glu Arg Met Tyr Pro Glu Asp Gly
145 150 155 160
Ala Leu Lys Gly Glu Ile Lys Gln Arg Leu Lys Leu Lys Asp Gly Gly
165 170 175
His Tyr Asp Ala Glu Val Lys Thr Thr Tyr Lys Ala Lys Lys Pro Val
180 185 190
Gln Leu Pro Gly Ala Tyr Asn Val Asn Ile Lys Leu Asp Ile Thr Ser
195 200 205
His Asn Glu Asp Tyr Thr Ile Val Glu Gln Tyr Glu Arg Ala Glu Gly
210 215 220
Arg His Ser Thr Gly Gly Met Asp Glu Leu Tyr Lys Ser Gly Ser Gly
225 230 235 240
Ser Gly Ser Gly Ser Gly Met Ser Gln Leu Glu Thr Pro Leu Phe Thr
245 250 255
Gly Leu Leu Glu His Met Lys Lys Asn Pro Val Gln Phe His Ile Pro
260 265 270
Gly His Lys Lys Gly Ala Gly Met Asp Pro Glu Phe Arg Ala Phe Ile
275 280 285
Gly Asp Asn Ala Leu Ala Ile Asp Leu Ile Asn Ile Ser Pro Leu Asp
290 295 300
Asp Leu His His Pro Lys Gly Met Ile Lys Arg Ala Gln Glu Leu Ala
305 310 315 320
Ala Glu Ala Phe Gly Ala Asp Tyr Thr Phe Phe Ser Val Gln Gly Thr
325 330 335
Ser Gly Ala Ile Met Thr Met Val Met Ser Val Ala Gly Pro Gly Asp
340 345 350
Lys Ile Ile Val Pro Arg Asn Val His Lys Ser Val Met Ser Ala Ile
355 360 365
Val Phe Ser Gly Ala Thr Pro Ile Phe Ile His Pro Glu Ile Asp Lys
370 375 380
Glu Leu Gly Ile Ser His Gly Ile Thr Pro Gln Ala Val Glu Lys Ala
385 390 395 400
Leu Arg Gln His Pro Asp Ala Lys Gly Val Leu Val Ile Asn Pro Thr
405 410 415
Tyr Phe Gly Ile Ala Gly Asp Leu Lys Lys Ile Val Asp Ile Ala His
420 425 430
Ser Tyr Asn Val Pro Val Leu Val Asp Glu Ala His Gly Val His Ile
435 440 445
His Phe His Glu Asp Leu Pro Leu Ser Ala Met Gln Ala Gly Ala Asp
450 455 460
Met Ala Ala Thr Ser Val His Lys Leu Gly Gly Ser Leu Thr Gln Ser
465 470 475 480
Ser Ile Leu Asn Val Arg Glu Gly Leu Val Ser Ala Lys His Val Gln
485 490 495
Ala Ile Leu Ser Met Leu Thr Thr Thr Ser Thr Ser Tyr Leu Leu Leu
500 505 510
Ala Ser Leu Asp Val Ala Arg Lys Gln Leu Ala Thr Lys Gly Arg Glu
515 520 525
Leu Ile Asp Lys Ala Ile Arg Leu Ala Asp Trp Thr Arg Arg Gln Ile
530 535 540
Asn Glu Ile Pro Tyr Leu Tyr Cys Val Gly Glu Glu Ile Leu Gly Thr
545 550 555 560
Glu Ala Thr Tyr Asp Tyr Asp Pro Thr Lys Leu Ile Ile Ser Val Lys
565 570 575
Glu Leu Gly Leu Thr Gly His Asp Val Glu Arg Trp Leu Arg Glu Thr
580 585 590
Tyr Asn Ile Glu Val Glu Leu Ser Asp Leu Tyr Asn Ile Leu Cys Ile
595 600 605
Ile Thr Pro Gly Asp Thr Glu Arg Glu Ala Ser Leu Leu Val Glu Ala
610 615 620
Leu Arg Arg Leu Ser Lys Gln Phe Ser His Gln Ala Glu Lys Gly Ile
625 630 635 640
Lys Pro Lys Val Leu Leu Pro Asp Ile Pro Ala Leu Ala Leu Thr Pro
645 650 655
Arg Asp Ala Phe Tyr Ala Glu Thr Glu Val Val Pro Phe His Glu Ser
660 665 670
Ala Gly Arg Ile Ile Ala Glu Phe Val Met Val Tyr Pro Pro Gly Ile
675 680 685
Pro Ile Phe Ile Pro Gly Glu Ile Ile Thr Glu Glu Asn Leu Lys Tyr
690 695 700
Ile Glu Thr Asn Leu Ala Ala Gly Leu Pro Val Gln Gly Pro Glu Asp
705 710 715 720
Asp Thr Leu Gln Thr Leu Arg Val Ile Lys Glu Tyr Lys Pro Ile Arg
725 730 735
<210> 14
<211> 2211
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 14
atggtgtcta aaggcgagga agataatatg gcgattatca aagaatttat gcgttttaaa 60
gtgcatatgg aaggcagcgt gaatgggcat gagtttgaaa ttgaaggcga aggagaaggc 120
cgtccgtatg aaggcaccca gaccgctaaa ctgaaagtga ccaaaggcgg accactgccg 180
tttgcgtggg acattctgag cccgcagttt atgtatggca gcaaagcgta tgtgaaacat 240
ccggcggata ttccggatta tctgaaactg agctttccgg agggcttcaa atgggaacgt 300
gtgatgaatt ttgaagatgg cggcgtggtg accgtgaccc aggatagcag cctgcaagac 360
ggcgaattca tttacaaggt gaagctgcgt ggcaccaact ttcccagcga tggcccggtg 420
atgcagaaaa agaccatggg ctgggaggcg agcagcgaac gtatgtaccc ggaggatggc 480
gcgctgaagg gcgaaattaa gcagcgtctg aagttaaaag atggtgggca ctatgatgcg 540
gaagtgaaaa ccacctataa agcgaaaaaa ccggtgcagt taccaggcgc ttataatgtg 600
aacattaagc tggatattac cagccataat gaagattata ccattgtgga acagtatgag 660
cgtgcggagg gacggcatag cacgggcgga atggatgaac tgtataaatc tggttctggt 720
tctggttctg gttctggtat gtctcagctc gagacccctc tgttcaccgg tctgctcgaa 780
cacatgaaga aaaacccggt ccagtttcac attccaggtc acaagaaagg tgctggtatg 840
gaccctgagt tccgtgcgtt tatcggtgat aacgcgctcg cgatcgacct gatcaacatc 900
tcccctctcg acgacctcca ccacccgaaa ggcatgatca aacgtgcgca ggaactggct 960
gcggaagcgt ttggcgcgga ctacacgttc ttcagcgttc aaggcaccag cggtgccatc 1020
atgacgatgg taatgtctgt tgcgggtccg ggcgataaga tcatcgtccc tcgtaacgtt 1080
cacaaatctg ttatgtctgc catcgttttc tctggcgcga cccctatttt catccacccg 1140
gaaatcgata aggagctggg tattagccac ggtattaccc cgcaggccgt ggagaaagcc 1200
ctgcgtcaac accctgatgc taaaggcgtt ctggtaatca acccgactta tttcggtatc 1260
gcgggtgacc tcaaaaagat cgttgacatc gcgcactctt ataatgtgcc ggtcctggta 1320
gatgaagcgc acggtgttca tattcacttc cacgaggacc tcccactcag cgcaatgcag 1380
gcgggtgcgg atatggcggc gacgtccgtg cacaagctgg gcggtagcct gactcagtct 1440
tccattctga acgtacgcga aggtctggtt tctgctaaac acgtgcaagc gattctctct 1500
atgctgacca ccacttctac ctcttatctg ctgctggctt ccctggacgt agcgcgtaaa 1560
cagctggcaa ccaaaggtcg tgaactcatc gacaaagcca tccgcctcgc ggattggacc 1620
cgtcgccaga ttaacgagat cccgtacctc tactgcgtgg gtgaagagat cctgggtacc 1680
gaagcaacct acgactacga tccgactaaa ctgatcatca gcgtaaaaga actcggtctc 1740
actggccatg acgttgagcg ttggctccgt gaaacctaca atatcgaagt tgaactgtct 1800
gacctctata acatcctctg catcatcacc ccgggtgata ctgagcgcga agcgtctctc 1860
ctggtggaag cactgcgccg tctgtctaaa caattctccc atcaggccga aaagggtatc 1920
aaacctaagg ttctcctgcc ggatattcct gccctcgccc tgacgcctcg tgacgcgttc 1980
tatgcggaaa ccgaagtcgt tccgttccat gagtccgccg gtcgtatcat cgcggagttt 2040
gtaatggttt acccaccggg catcccaatc ttcatccctg gcgagattat cactgaggaa 2100
aacctgaaat acatcgaaac caacctggcg gctggcctcc cggttcaggg cccagaagac 2160
gacacgctgc agaccctccg tgtcattaaa gaatacaaac caattcgtta a 2211
<210> 15
<211> 741
<212> PRT
<213> Artificial sequence (Artificial Sequence)
<400> 15
Met Val Ser Lys Gly Glu Glu Asp Asn Met Ala Ile Ile Lys Glu Phe
1 5 10 15
Met Arg Phe Lys Val His Met Glu Gly Ser Val Asn Gly His Glu Phe
20 25 30
Glu Ile Glu Gly Glu Gly Glu Gly Arg Pro Tyr Glu Gly Thr Gln Thr
35 40 45
Ala Lys Leu Lys Val Thr Lys Gly Gly Pro Leu Pro Phe Ala Trp Asp
50 55 60
Ile Leu Ser Pro Gln Phe Met Tyr Gly Ser Lys Ala Tyr Val Lys His
65 70 75 80
Pro Ala Asp Ile Pro Asp Tyr Leu Lys Leu Ser Phe Pro Glu Gly Phe
85 90 95
Lys Trp Glu Arg Val Met Asn Phe Glu Asp Gly Gly Val Val Thr Val
100 105 110
Thr Gln Asp Ser Ser Leu Gln Asp Gly Glu Phe Ile Tyr Lys Val Lys
115 120 125
Leu Arg Gly Thr Asn Phe Pro Ser Asp Gly Pro Val Met Gln Lys Lys
130 135 140
Thr Met Gly Trp Glu Ala Ser Ser Glu Arg Met Tyr Pro Glu Asp Gly
145 150 155 160
Ala Leu Lys Gly Glu Ile Lys Gln Arg Leu Lys Leu Lys Asp Gly Gly
165 170 175
His Tyr Asp Ala Glu Val Lys Thr Thr Tyr Lys Ala Lys Lys Pro Val
180 185 190
Gln Leu Pro Gly Ala Tyr Asn Val Asn Ile Lys Leu Asp Ile Thr Ser
195 200 205
His Asn Glu Asp Tyr Thr Ile Val Glu Gln Tyr Glu Arg Ala Glu Gly
210 215 220
Arg His Ser Thr Gly Gly Met Asp Glu Leu Tyr Lys Ser Gly Ser Gly
225 230 235 240
Ser Gly Ser Gly Ser Gly Met Ser Glu Glu Gln Gln Arg Ala Pro Tyr
245 250 255
Leu Glu Gln Trp Leu Ala Tyr Val Asp Glu Cys Val Ile Pro Phe Thr
260 265 270
Thr Pro Gly His Lys Gln Gly Arg Gly Ala Pro Pro Glu Phe Val Ala
275 280 285
Ala Phe Gly Glu Arg Ala Leu Ala Leu Asp Ile Pro His Asp Gly Gly
290 295 300
Thr Phe Asp Ala His Leu Glu His Asp Pro Leu Val Ala Ala Glu Arg
305 310 315 320
Leu Ala Ala Ala Leu Trp Gly Ala Arg Asp Ala Val Phe Leu Val Asn
325 330 335
Gly Ser Thr Thr Gly Asn Leu Ala Ala Leu Leu Thr Leu Gly Arg Pro
340 345 350
Gly Gln Pro Ile Val Val Thr Arg Ala Met His Lys Ser Leu Leu Ala
355 360 365
Gly Leu Val Leu Ser Gly Ala Arg Pro Val Tyr Val Val Pro Ala Val
370 375 380
His Pro Glu Ser Gly Ile Leu Leu Asp Leu Pro Pro Glu Ser Val Ala
385 390 395 400
Gln Ala Leu Ala Ala Trp Pro Asp Ala Thr Ala Val Ala Leu Val Ser
405 410 415
Pro Thr Tyr Thr Gly Val Thr Ser Asp Thr Ala Glu Leu Ala Ala Leu
420 425 430
Cys His Ala His Gly Val Pro Leu Phe Val Asp Glu Ala Trp Gly Pro
435 440 445
His Leu Pro Phe His Pro Ala Leu Pro Ala Ala Ala Ile Pro Ser Gly
450 455 460
Ala Asp Leu Ala Val Thr Ser Leu His Lys Leu Ala Gly Ser Leu Thr
465 470 475 480
Gln Thr Ala Leu Leu Leu Met Ala Gly Asn Leu Val Asp Gln Ala Gln
485 490 495
Leu Arg Ala Ala Thr Ala Met Val Gln Thr Thr Ser Pro Ala Ala Phe
500 505 510
Leu Tyr Ala Ser Leu Asp Ala Ala Arg Arg Arg Leu Ala Leu Glu Gly
515 520 525
Glu Gln Leu Leu Ala Arg Thr Leu Glu Leu Ala Glu His Ala Arg Arg
530 535 540
Glu Leu Ala Ala Ile Pro Gly Leu Glu Val Val Gly Pro Glu Ile Val
545 550 555 560
Ala Gly Arg Pro Gly Ala Gly Phe Asp Arg Thr Arg Leu Val Val Asp
565 570 575
Val Gln Gly Phe Gly Leu Thr Gly Leu Glu Val Lys Arg Ile Leu Arg
580 585 590
Arg Asp Phe Arg Ile Ala Ala Glu Met Ala Asp Leu Val Ser Val Val
595 600 605
Phe Leu Ile Thr Ile Gly Asp Thr Pro Glu Thr Ile Ala Ala Leu Val
610 615 620
Ala Ala Phe Arg Ala Leu Ala Ala Asp Arg Thr Arg Pro Asp Cys Ala
625 630 635 640
Ala Gly Arg Arg Ala Val Arg Ala Leu Leu Arg Ser Thr Gly Pro Ile
645 650 655
Val Ala Gly Ala Pro Gln Ala Met Thr Pro Arg Glu Ala Phe Phe Ala
660 665 670
Pro Ala Glu Arg Val Pro Leu Ala Asp Ala Val Gly Arg Val Ala Ala
675 680 685
Glu Pro Val Thr Pro Tyr Pro Pro Gly Ile Pro Val Leu Ala Pro Gly
690 695 700
Glu Val Val Arg Pro Glu Val Val Glu Phe Leu Gln Ala Gly Arg Ala
705 710 715 720
Ala Gly Met Arg Phe Asn Gly Ala Ser Asp Pro Thr Leu Ala Thr Leu
725 730 735
Arg Val Val Arg Ala
740
<210> 16
<211> 2226
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 16
atggtgtcta aaggcgagga agataatatg gcgattatca aagaatttat gcgttttaaa 60
gtgcatatgg aaggcagcgt gaatgggcat gagtttgaaa ttgaaggcga aggagaaggc 120
cgtccgtatg aaggcaccca gaccgctaaa ctgaaagtga ccaaaggcgg accactgccg 180
tttgcgtggg acattctgag cccgcagttt atgtatggca gcaaagcgta tgtgaaacat 240
ccggcggata ttccggatta tctgaaactg agctttccgg agggcttcaa atgggaacgt 300
gtgatgaatt ttgaagatgg cggcgtggtg accgtgaccc aggatagcag cctgcaagac 360
ggcgaattca tttacaaggt gaagctgcgt ggcaccaact ttcccagcga tggcccggtg 420
atgcagaaaa agaccatggg ctgggaggcg agcagcgaac gtatgtaccc ggaggatggc 480
gcgctgaagg gcgaaattaa gcagcgtctg aagttaaaag atggtgggca ctatgatgcg 540
gaagtgaaaa ccacctataa agcgaaaaaa ccggtgcagt taccaggcgc ttataatgtg 600
aacattaagc tggatattac cagccataat gaagattata ccattgtgga acagtatgag 660
cgtgcggagg gacggcatag cacgggcgga atggatgaac tgtataaatc tggttctggt 720
tctggttctg gttctggtat gtctgaagaa cagcaacgtg ctccgtacct ggagcaatgg 780
ctggcgtacg ttgacgagtg cgttatcccg tttaccactc cgggtcacaa acaaggtcgc 840
ggtgcgccac cggagttcgt tgcggcgttc ggtgaacgtg cgctcgctct ggacattccg 900
catgacggtg gcacctttga cgcgcatctg gaacatgacc cgctcgttgc cgccgaacgt 960
ctggctgccg cactgtgggg tgcacgcgat gcggtgtttc tggttaacgg ttccaccact 1020
ggtaacctgg cggctctgct cactctcggt cgcccaggtc agccgattgt tgttactcgt 1080
gccatgcata agagcctgct ggcaggtctg gtcctgagcg gtgctcgccc tgtctacgtt 1140
gtaccggccg tacacccaga atccggtatc ctcctcgatc tccctccgga atctgttgcg 1200
caggcgctgg ccgcgtggcc tgatgcgacg gctgtagctc tggtgtcccc gacctacact 1260
ggcgttacct ctgacactgc tgaactggca gccctctgtc acgctcatgg tgttccactg 1320
tttgttgatg aagcgtgggg tccgcacctc ccgttccatc cagcactccc agcagcagct 1380
attccgtctg gtgccgatct ggcggttact tctctgcaca aactggcggg ttccctcacc 1440
caaaccgctc tcctcctgat ggcaggcaac ctcgtagacc aagcccagct gcgtgcagcc 1500
acggcaatgg tgcaaaccac cagccctgca gccttcctgt acgcgtccct ggatgctgcc 1560
cgtcgccgtc tcgcgctcga aggtgaacag ctcctcgcac gtactctcga gctggctgag 1620
cacgctcgcc gtgaactcgc cgccatcccg ggtctggagg tggtcggtcc agaaattgtt 1680
gcgggtcgtc cgggtgccgg cttcgatcgt actcgcctcg ttgttgacgt tcagggtttc 1740
ggtctgactg gcctcgaagt aaagcgtatc ctgcgtcgtg acttccgtat tgcagctgaa 1800
atggcagatc tcgtctctgt tgttttcctc atcaccatcg gtgacacccc agagaccatc 1860
gctgccctgg tagcagcttt ccgtgcactc gctgctgacc gtacccgtcc agactgtgct 1920
gccggtcgtc gtgcagtacg cgccctcctc cgttctaccg gtccgatcgt cgcgggtgct 1980
cctcaggcga tgaccccgcg tgaagctttc ttcgctccag ctgagcgcgt tccgctcgcg 2040
gatgccgtcg gtcgtgttgc agccgagccg gttaccccat atccgcctgg tattccggta 2100
ctggccccag gtgaagtggt tcgcccggag gtagttgaat tcctccaggc aggccgtgcc 2160
gctggtatgc gtttcaatgg cgcgtctgac ccgactctgg cgaccctccg tgtcgttcgt 2220
gcctaa 2226
<210> 17
<211> 711
<212> DNA
<213> mushroom coral (mushroom coral)
<400> 17
atggtgtcta aaggcgagga agataatatg gcgattatca aagaatttat gcgttttaaa 60
gtgcatatgg aaggcagcgt gaatgggcat gagtttgaaa ttgaaggcga aggagaaggc 120
cgtccgtatg aaggcaccca gaccgctaaa ctgaaagtga ccaaaggcgg accactgccg 180
tttgcgtggg acattctgag cccgcagttt atgtatggca gcaaagcgta tgtgaaacat 240
ccggcggata ttccggatta tctgaaactg agctttccgg agggcttcaa atgggaacgt 300
gtgatgaatt ttgaagatgg cggcgtggtg accgtgaccc aggatagcag cctgcaagac 360
ggcgaattca tttacaaggt gaagctgcgt ggcaccaact ttcccagcga tggcccggtg 420
atgcagaaaa agaccatggg ctgggaggcg agcagcgaac gtatgtaccc ggaggatggc 480
gcgctgaagg gcgaaattaa gcagcgtctg aagttaaaag atggtgggca ctatgatgcg 540
gaagtgaaaa ccacctataa agcgaaaaaa ccggtgcagt taccaggcgc ttataatgtg 600
aacattaagc tggatattac cagccataat gaagattata ccattgtgga acagtatgag 660
cgtgcggagg gacggcatag cacgggcgga atggatgaac tgtataaata a 711
<210> 18
<211> 236
<212> PRT
<213> mushroom coral (mushroom coral)
<400> 18
Met Val Ser Lys Gly Glu Glu Asp Asn Met Ala Ile Ile Lys Glu Phe
1 5 10 15
Met Arg Phe Lys Val His Met Glu Gly Ser Val Asn Gly His Glu Phe
20 25 30
Glu Ile Glu Gly Glu Gly Glu Gly Arg Pro Tyr Glu Gly Thr Gln Thr
35 40 45
Ala Lys Leu Lys Val Thr Lys Gly Gly Pro Leu Pro Phe Ala Trp Asp
50 55 60
Ile Leu Ser Pro Gln Phe Met Tyr Gly Ser Lys Ala Tyr Val Lys His
65 70 75 80
Pro Ala Asp Ile Pro Asp Tyr Leu Lys Leu Ser Phe Pro Glu Gly Phe
85 90 95
Lys Trp Glu Arg Val Met Asn Phe Glu Asp Gly Gly Val Val Thr Val
100 105 110
Thr Gln Asp Ser Ser Leu Gln Asp Gly Glu Phe Ile Tyr Lys Val Lys
115 120 125
Leu Arg Gly Thr Asn Phe Pro Ser Asp Gly Pro Val Met Gln Lys Lys
130 135 140
Thr Met Gly Trp Glu Ala Ser Ser Glu Arg Met Tyr Pro Glu Asp Gly
145 150 155 160
Ala Leu Lys Gly Glu Ile Lys Gln Arg Leu Lys Leu Lys Asp Gly Gly
165 170 175
His Tyr Asp Ala Glu Val Lys Thr Thr Tyr Lys Ala Lys Lys Pro Val
180 185 190
Gln Leu Pro Gly Ala Tyr Asn Val Asn Ile Lys Leu Asp Ile Thr Ser
195 200 205
His Asn Glu Asp Tyr Thr Ile Val Glu Gln Tyr Glu Arg Ala Glu Gly
210 215 220
Arg His Ser Thr Gly Gly Met Asp Glu Leu Tyr Lys
225 230 235
<210> 19
<211> 276
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 19
ggataaccgt attaccgcct ttgagtgagc tgataccgct cgccgcagcc gaacgaccga 60
gcgcagcgag tcagtgagcg aggaagcgga agagcgccca atacgcaaac cgcctctccc 120
cgcgcgttgg ccgattcatt aatgcagctg gcacgacagg tttcccgact ggaaagcggg 180
cagtgagcgc aacgcaatta atgtgagtta gctcactcat taggcacccc aggctttaca 240
ctttatgctt ccggctcgta tgttgtgtgg aattgt 276
<210> 20
<211> 235
<212> DNA
<213> Escherichia coli (Escherichia coli)
<400> 20
tgctttttcc gatcgtcacg gcgatgttta tcgcgaacag atggtggact ttatccttag 60
cgcgttgaat ccgcagaact aacccatgat cgctagcacg ataatcattc acaaaaccac 120
cttaagacat gctaatccac tggtcagaac agtttaagat gagaaaaatt ctgtgacgct 180
tgccaacatt tctgatgatt agcattccct tcgccatttc cttgagcaaa cttta 235
<210> 21
<211> 238
<212> DNA
<213> Escherichia coli (Escherichia coli)
<400> 21
tgtttggtaa aaattcccgc catcataaca ttgccaacgg cgaggggaag tgggtaaggc 60
atgtaaattc atcatgttga cgaaataatc gcccctggta aaagaaacac tgatgcgagg 120
cctgtgtttc aatctttaaa tcagtaaact tcatacgctt gacggaaaaa ccaggacgaa 180
acctaaatat ttgttgttaa gctgcaatgg aaacggtaaa agcggctagt atttaaag 238
<210> 22
<211> 233
<212> DNA
<213> Escherichia coli (Escherichia coli)
<400> 22
ctcgcttaca tcgctaccag catggtcaac ctgcgcctgg cacaggaacg ttatccggac 60
gttcagttcc accagacccg cgagcattaa ttcttgcctc cagggcgcgg tagccgctgc 120
gccctgtcaa tttcccttcc ttattagccg cttacggaat gttcttaaaa cattcacttt 180
tgcttatgtt ttcgctgata tcccgagcgg tttcaaaatt gtgatctata ttt 233
<210> 23
<211> 237
<212> DNA
<213> Escherichia coli (Escherichia coli)
<400> 23
gcagaaatga ctctcccatc agtacaaacg caacatattt gccacgcagc atccagacat 60
cacgaaacga atccatcttt atcgcatgtt ctggcggcgc gggttccgtg cgtgggacat 120
agctaataat ctggcggttt tgctggcgga gcggtttctt cattactggc ttcactaaac 180
gcatattaaa aatcagaaaa actgtagttt agccgattta gcccctgtac gtcccgc 237
<210> 24
<211> 37
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 24
tcccgccaaa tccctaaaat tgttctatac tgtattg 37
<210> 25
<211> 37
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 25
tcccgccaaa ttattaaaat tgttctatac tgtattg 37
<210> 26
<211> 41
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 26
cgcgttcccg cctttagggg caattgttct atactgtatt g 41
<210> 27
<211> 37
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 27
tcccgccaaa tctgcaaaat tgttctatac tgtattg 37
<210> 28
<211> 30
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 28
tccgagctca tgaacgttat tgcaatattg 30
<210> 29
<211> 28
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 29
gcctctagac cacttccctt gtacgagc 28
<210> 30
<211> 715
<212> PRT
<213> Escherichia coli (Escherichia coli)
<400> 30
Met Asn Val Ile Ala Ile Leu Asn His Met Gly Val Tyr Phe Lys Glu
1 5 10 15
Glu Pro Ile Arg Glu Leu His Arg Ala Leu Glu Arg Leu Asn Phe Gln
20 25 30
Ile Val Tyr Pro Asn Asp Arg Asp Asp Leu Leu Lys Leu Ile Glu Asn
35 40 45
Asn Ala Arg Leu Cys Gly Val Ile Phe Asp Trp Asp Lys Tyr Asn Leu
50 55 60
Glu Leu Cys Glu Glu Ile Ser Lys Met Asn Glu Asn Leu Pro Leu Tyr
65 70 75 80
Ala Phe Ala Asn Thr Tyr Ser Thr Leu Asp Val Ser Leu Asn Asp Leu
85 90 95
Arg Leu Gln Ile Ser Phe Phe Glu Tyr Ala Leu Gly Ala Ala Glu Asp
100 105 110
Ile Ala Asn Lys Ile Lys Gln Thr Thr Asp Glu Tyr Ile Asn Thr Ile
115 120 125
Leu Pro Pro Leu Thr Lys Ala Leu Phe Lys Tyr Val Arg Glu Gly Lys
130 135 140
Tyr Thr Phe Cys Thr Pro Gly His Met Gly Gly Thr Ala Phe Gln Lys
145 150 155 160
Ser Pro Val Gly Ser Leu Phe Tyr Asp Phe Phe Gly Pro Asn Thr Met
165 170 175
Lys Ser Asp Ile Ser Ile Ser Val Ser Glu Leu Gly Ser Leu Leu Asp
180 185 190
His Ser Gly Pro His Lys Glu Ala Glu Gln Tyr Ile Ala Arg Val Phe
195 200 205
Asn Ala Asp Arg Ser Tyr Met Val Thr Asn Gly Thr Ser Thr Ala Asn
210 215 220
Lys Ile Val Gly Met Tyr Ser Ala Pro Ala Gly Ser Thr Ile Leu Ile
225 230 235 240
Asp Arg Asn Cys His Lys Ser Leu Thr His Leu Met Met Met Ser Asp
245 250 255
Val Thr Pro Ile Tyr Phe Arg Pro Thr Arg Asn Ala Tyr Gly Ile Leu
260 265 270
Gly Gly Ile Pro Gln Ser Glu Phe Gln His Ala Thr Ile Ala Lys Arg
275 280 285
Val Lys Glu Thr Pro Asn Ala Thr Trp Pro Val His Ala Val Ile Thr
290 295 300
Asn Ser Thr Tyr Asp Gly Leu Leu Tyr Asn Thr Asp Phe Ile Lys Lys
305 310 315 320
Thr Leu Asp Val Lys Ser Ile His Phe Asp Ser Ala Trp Val Pro Tyr
325 330 335
Thr Asn Phe Ser Pro Ile Tyr Glu Gly Lys Cys Gly Met Ser Gly Gly
340 345 350
Arg Val Glu Gly Lys Val Ile Tyr Glu Thr Gln Ser Thr His Lys Leu
355 360 365
Leu Ala Ala Phe Ser Gln Ala Ser Met Ile His Val Lys Gly Asp Val
370 375 380
Asn Glu Glu Thr Phe Asn Glu Ala Tyr Met Met His Thr Thr Thr Ser
385 390 395 400
Pro His Tyr Gly Ile Val Ala Ser Thr Glu Thr Ala Ala Ala Met Met
405 410 415
Lys Gly Asn Ala Gly Lys Arg Leu Ile Asn Gly Ser Ile Glu Arg Ala
420 425 430
Ile Lys Phe Arg Lys Glu Ile Lys Arg Leu Arg Thr Glu Ser Asp Gly
435 440 445
Trp Phe Phe Asp Val Trp Gln Pro Asp His Ile Asp Thr Thr Glu Cys
450 455 460
Trp Pro Leu Arg Ser Asp Ser Thr Trp His Gly Phe Lys Asn Ile Asp
465 470 475 480
Asn Glu His Met Tyr Leu Asp Pro Ile Lys Val Thr Leu Leu Thr Pro
485 490 495
Gly Met Glu Lys Asp Gly Thr Met Ser Asp Phe Gly Ile Pro Ala Ser
500 505 510
Ile Val Ala Lys Tyr Leu Asp Glu His Gly Ile Val Val Glu Lys Thr
515 520 525
Gly Pro Tyr Asn Leu Leu Phe Leu Phe Ser Ile Gly Ile Asp Lys Thr
530 535 540
Lys Ala Leu Ser Leu Leu Arg Ala Leu Thr Asp Phe Lys Arg Ala Phe
545 550 555 560
Asp Leu Asn Leu Arg Val Lys Asn Met Leu Pro Ser Leu Tyr Arg Glu
565 570 575
Asp Pro Glu Phe Tyr Glu Asn Met Arg Ile Gln Glu Leu Ala Gln Asn
580 585 590
Ile His Lys Leu Ile Val His His Asn Leu Pro Asp Leu Met Tyr Arg
595 600 605
Ala Phe Glu Val Leu Pro Thr Met Val Met Thr Pro Tyr Ala Ala Phe
610 615 620
Gln Lys Glu Leu His Gly Met Thr Glu Glu Val Tyr Leu Asp Glu Met
625 630 635 640
Val Gly Arg Ile Asn Ala Asn Met Ile Leu Pro Tyr Pro Pro Gly Val
645 650 655
Pro Leu Val Met Pro Gly Glu Met Ile Thr Glu Glu Ser Arg Pro Val
660 665 670
Leu Glu Phe Leu Gln Met Leu Cys Glu Ile Gly Ala His Tyr Pro Gly
675 680 685
Phe Glu Thr Asp Ile His Gly Ala Tyr Arg Gln Ala Asp Gly Arg Tyr
690 695 700
Thr Val Lys Val Leu Lys Glu Glu Ser Lys Lys
705 710 715
<210> 31
<211> 2148
<212> DNA
<213> Escherichia coli (Escherichia coli)
<400> 31
atgaacgtta ttgcaatatt gaatcacatg ggggtttatt ttaaagaaga acccatccgt 60
gaacttcatc gcgcgcttga acgtctgaac ttccagattg tttacccgaa cgaccgtgac 120
gacttattaa aactgatcga aaacaatgcg cgtctgtgcg gcgttatttt tgactgggat 180
aaatataatc tcgagctgtg cgaagaaatt agcaaaatga acgagaacct gccgttgtac 240
gcgttcgcta atacgtattc cactctcgat gtaagcctga atgacctgcg tttacagatt 300
agcttctttg aatatgcgct gggtgctgct gaagatattg ctaataagat caagcagacc 360
actgacgaat atatcaacac tattctgcct ccgctgacta aagcactgtt taaatatgtt 420
cgtgaaggta aatatacttt ctgtactcct ggtcacatgg gcggtactgc attccagaaa 480
agcccggtag gtagcctgtt ctatgatttc tttggtccga ataccatgaa atctgatatt 540
tccatttcag tatctgaact gggttctctg ctggatcaca gtggtccaca caaagaagca 600
gaacagtata tcgctcgcgt ctttaacgca gaccgcagct acatggtgac caacggtact 660
tccactgcga acaaaattgt tggtatgtac tctgctccag caggcagcac cattctgatt 720
gaccgtaact gccacaaatc gctgacccac ctgatgatga tgagcgatgt tacgccaatc 780
tatttccgcc cgacccgtaa cgcttacggt attcttggtg gtatcccaca gagtgaattc 840
cagcacgcta ccattgctaa gcgcgtgaaa gaaacaccaa acgcaacctg gccggtacat 900
gctgtaatta ccaactctac ctatgatggt ctgctgtaca acaccgactt catcaagaaa 960
acactggatg tgaaatccat ccactttgac tccgcgtggg tgccttacac caacttctca 1020
ccgatttacg aaggtaaatg cggtatgagc ggtggccgtg tagaagggaa agtgatttac 1080
gaaacccagt ccactcacaa actgctggcg gcgttctctc aggcttccat gatccacgtt 1140
aaaggtgacg taaacgaaga aacctttaac gaagcctaca tgatgcacac caccacttct 1200
ccgcactacg gtatcgtggc gtccactgaa accgctgcgg cgatgatgaa aggcaatgca 1260
ggtaagcgtc tgatcaacgg ttctattgaa cgtgcgatca aattccgtaa agagatcaaa 1320
cgtctgagaa cggaatctga tggctggttc tttgatgtat ggcagccgga tcatatcgat 1380
acgactgaat gctggccgct gcgttctgac agcacctggc acggcttcaa aaacatcgat 1440
aacgagcaca tgtatcttga cccgatcaaa gtcaccctgc tgactccggg gatggaaaaa 1500
gacggcacca tgagcgactt tggtattccg gccagcatcg tggcgaaata cctcgacgaa 1560
catggcatcg ttgttgagaa aaccggtccg tataacctgc tgttcctgtt cagcatcggt 1620
atcgataaga ccaaagcact gagcctgctg cgtgctctga ctgactttaa acgtgcgttc 1680
gacctgaacc tgcgtgtgaa aaacatgctg ccgtctctgt atcgtgaaga tcctgaattc 1740
tatgaaaaca tgcgtattca ggaactggct cagaatatcc acaaactgat tgttcaccac 1800
aatctgccgg atctgatgta tcgcgcattt gaagtgctgc cgacgatggt aatgactccg 1860
tatgctgcat tccagaaaga gctgcacggt atgaccgaag aagtttacct cgacgaaatg 1920
gtaggtcgta ttaacgccaa tatgatcctt ccgtacccgc cgggagttcc tctggtaatg 1980
ccgggtgaaa tgatcaccga agaaagccgt ccggttctgg agttcctgca gatgctgtgt 2040
gaaatcggcg ctcactatcc gggctttgaa accgatattc acggtgcata ccgtcaggct 2100
gatggccgct ataccgttaa ggtattgaaa gaagaaagca aaaaataa 2148
<210> 32
<211> 44
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 32
atttcacaca ggaaacagct atgaacgtta ttgcaatatt gaat 44
<210> 33
<211> 20
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 33
agctgtttcc tgtgtgaaat 20
<210> 34
<211> 69
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 34
tgtggaattg tgagcggata acaatttcac acaggaaaca gctatgacca tgattacgaa 60
ttcgagctc 69
<210> 35
<211> 49
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 35
tgtggaattg tgagcggata acaatttcac acaggaaaca gctgagctc 49
<210> 36
<211> 29
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 36
ggcgagctca tggaaccatt acttcgcgc 29
<210> 37
<211> 32
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 37
ggctctagat tacactttac atatccgcag gg 32
<210> 38
<211> 59
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 38
cttgatatcg aattcttaac tttaagaagg aatatacata tggaaccatt acttcgcgc 59
<210> 39
<211> 57
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 39
gttaagaatt cgatatcaag cttatcgatg agctcacaat tccacacaac atacgag 57
<210> 40
<211> 49
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 40
tgtggaattg tgagcggata acaatttcac acaggaaaca gctgagctc 49
<210> 41
<211> 65
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 41
tgtggaattg tgagctcatc gataagcttg atatcgaatt cttaacttta agaaggaata 60
tacat 65
<210> 42
<211> 72
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 42
ggcgagctca tcgataagct tgatatcgaa ttcttaactt taagaaggaa tatacatatg 60
gtgtctaaag gc 72
<210> 43
<211> 54
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 43
accagaacca gaaccagaac cagaaccaga tttatacagt tcatccattc cgcc 54
<210> 44
<211> 57
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 44
tctggttctg gttctggttc tggttctggt atggaaccat tacttcgcgc actgtgg 57
<210> 45
<211> 57
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 45
tctggttctg gttctggttc tggttctggt atggagaagc aagagattaa caagttc 57
<210> 46
<211> 34
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 46
ggctctagat tagaaatcgg ttacaacctg aatg 34
<210> 47
<211> 57
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 47
tctggttctg gttctggttc tggttctggt atgtctcagc tcgagacccc tctgttc 57
<210> 48
<211> 37
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 48
ggctctagat taacgaattg gtttgtattc tttaatg 37
<210> 49
<211> 57
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 49
tctggttctg gttctggttc tggttctggt atgtctgaag aacagcaacg tgctccg 57
<210> 50
<211> 32
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 50
ggctctagat taggcacgaa cgacacggag gg 32
<210> 51
<211> 28
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 51
ggggtacctg ctttttccga tcgtcacg 28
<210> 52
<211> 31
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 52
ccatcgatta aagtttgctc aaggaaatgg c 31
<210> 53
<211> 27
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 53
ggggtacctg tttggtaaaa attcccg 27
<210> 54
<211> 31
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 54
ccatcgatct ttaaatacta gccgctttta c 31
<210> 55
<211> 29
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 55
ggggtaccct cgcttacatc gctaccagc 29
<210> 56
<211> 30
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 56
ccatcgataa atatagatca caattttgaa 30
<210> 57
<211> 28
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 57
ggggtaccgc agaaatgact ctcccatc 28
<210> 58
<211> 25
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 58
ggatcgatgc gggacgtaca ggggc 25

Claims (9)

1. Recombinant DNA, characterized in that it comprises at least the following 3 elements: a. a stationary phase specific promoter; b. red fluorescent protein gene; and c, a lysine decarboxylase gene derived from thermophilic bacteria; wherein the elements are operatively connected in sequence a-b-c and b, c are connected by a Linker, said Linker being (SG) 5-8
The red fluorescent protein gene codes mCherry protein, and the amino acid sequence of the mCherry protein is shown as SEQ ID NO. 18; the protein coded by the lysine decarboxylase gene derived from thermophilic bacteria is TeLDC, tsLDC, gkLDC or TrLDC, and the amino acid sequences of the protein are shown as SEQ ID NO. 1,3,5 or 7 respectively; the stable phase specific promoter is selected from P1, P2, P3 or P4, and the nucleotide sequences of the stable phase specific promoter are shown in SEQ ID NO. 24-27 respectively.
2. A biological material comprising the recombinant DNA of claim 1, said biological material being an expression cassette, a transposon, a plasmid vector, a phage vector, a viral vector, or an engineered bacterium.
3. A recombinant plasmid carrying the recombinant DNA according to claim 1.
4. The recombinant plasmid according to claim 3, wherein the starting plasmid of the recombinant plasmid is pUC or pBR322 plasmid.
5. The recombinant plasmid according to claim 3, wherein the starting plasmid of the recombinant plasmid is pUC18, pUC19, pACYC, pET or pSC101.
6. A genetically engineered bacterium producing 1, 5-pentanediamine, wherein the genetically engineered bacterium carries the recombinant DNA of claim 1, the biological material of claim 2, or the recombinant plasmid of any one of claims 3-5;
wherein the original strain of the genetically engineered bacterium is escherichia coliE. coli)。
7. The genetically engineered bacterium of claim 6, wherein the starting strain is a collection number cctccc No: m2018736 E.coli.
A method for producing 8.1,5-pentanediamine, comprising culturing the genetically engineered bacterium of claim 6 or 7 by fermentation to produce 1, 5-pentanediamine.
9. The use of the recombinant DNA of claim 1 for producing 1, 5-pentanediamine, characterized in that (a) the recombinant DNA of claim 1 is constructed into engineering bacteria having the ability to produce L-lysine, the recombinant bacteria are fermented and cultured and lysine is accumulated, and the initial fermentation culture temperature is controlled to be 20-50 ℃; (b) The temperature is controlled between 50 ℃ and 110 ℃ in the rest fermentation stage, so that lysine decarboxylase is active, and 1, 5-pentanediamine is produced through conversion.
CN201910430555.2A 2019-05-22 2019-05-22 Recombinant DNA and application thereof Active CN111979257B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910430555.2A CN111979257B (en) 2019-05-22 2019-05-22 Recombinant DNA and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910430555.2A CN111979257B (en) 2019-05-22 2019-05-22 Recombinant DNA and application thereof

Publications (2)

Publication Number Publication Date
CN111979257A CN111979257A (en) 2020-11-24
CN111979257B true CN111979257B (en) 2023-10-13

Family

ID=73436334

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910430555.2A Active CN111979257B (en) 2019-05-22 2019-05-22 Recombinant DNA and application thereof

Country Status (1)

Country Link
CN (1) CN111979257B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117467695B (en) * 2023-12-27 2024-05-03 南京鸿瑞杰生物医疗科技有限公司 Method for improving secretion of reporter protein by over-expressing pichia pastoris molecular chaperones

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106834324A (en) * 2017-01-19 2017-06-13 河南农业大学 A kind of recombinant expression carrier that can promote solubility expression of protein and improve expression quantity
CN107922931A (en) * 2015-06-12 2018-04-17 普拉克生物化学公司 Heat-staple Cas9 nucleases
WO2019006723A1 (en) * 2017-07-06 2019-01-10 Cathay R&D Center Co., Ltd. Heterologous expression of thermophilic lysine decarboxylase and uses thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105316270B (en) * 2014-06-27 2019-01-29 宁夏伊品生物科技股份有限公司 Engineering bacterium for catalytically producing 1, 5-pentanediamine and application thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107922931A (en) * 2015-06-12 2018-04-17 普拉克生物化学公司 Heat-staple Cas9 nucleases
CN106834324A (en) * 2017-01-19 2017-06-13 河南农业大学 A kind of recombinant expression carrier that can promote solubility expression of protein and improve expression quantity
WO2019006723A1 (en) * 2017-07-06 2019-01-10 Cathay R&D Center Co., Ltd. Heterologous expression of thermophilic lysine decarboxylase and uses thereof

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Artificial Fusion of mCherry Enhances Trehalose Transferase Solubility and Stability";Luuk Mestrom et al.;《Applied and Environmental Microbiology》;20190404;第85卷(第8期);第5页、补充材料第26页 *
"Classification and Strength Measurement of Stationary-Phase Promoters by Use of a Newly Developed Promoter Cloning Vector";Tomohiro Shimada et al.;《JOURNAL OF BACTERIOLOGY》;20041130;第186卷(第21期);第7112-7122页 *
"Regulation of Escherichia coli topA Gene Transcription: Involvement of a sigmaS-Dependent Promoter";Haiyan Qi et al.;《J.Mol.Biol.》;19971231;第267卷;第481-489页 *
"大肠杆菌稳定期特异性启动子的筛选及pSP表达载体的构建";刘博;《中国优秀硕士学位论文全文数据库》;20080215(第2期);第14页第1段 *
"无细胞蛋白合成体系实现胰岛素原可溶性表达";胡元 等;《生物工程学报》;20170325;第33卷(第3期);第467-477页 *

Also Published As

Publication number Publication date
CN111979257A (en) 2020-11-24

Similar Documents

Publication Publication Date Title
JP5091330B2 (en) Increased lysine production by gene amplification
US20030017553A1 (en) Nucleotide sequences for transcriptional regulation in corynebacterium glutamicum
KR102345898B1 (en) Methods for generating glucose permeabilization enzyme libraries and uses thereof
CN105441497B (en) Method for producing cadaverine by coupling microbial fermentation and microbial conversion
CN105899664A (en) Recombinant microorganism for improved production of fine chemicals
KR20180011313A (en) Recombinant microorganism for improved production of fine chemicals
KR20170128509A (en) Recombinant microorganism for improved production of fine chemicals
WO2021058691A1 (en) Method for the production of beta-alanine or salts thereof
CN113667682A (en) YH66-RS11190 gene mutant and application thereof in preparation of L-valine
CN111394288A (en) Recombinant corynebacterium glutamicum, construction method thereof and method for producing tetrahydropyrimidine by using recombinant corynebacterium glutamicum
CN111978407B (en) Heterologous expression method of lysine decarboxylase from thermophilic bacteria and application thereof
JP3408737B2 (en) Protein involved in nitrile hydratase activation and gene encoding the same
CN111979257B (en) Recombinant DNA and application thereof
CN113151136A (en) Strain for producing gamma-DL-PGA and method for synthesizing gamma-PGA with different D/L monomer ratios by using same
CN109504748A (en) A method of it is specific in SNPs detection to improve RAA technology
CN113166741A (en) Multiple deterministic assembly of DNA libraries
CN116589541A (en) FNR mutant and application thereof in gene expression regulation and control
CN115838713A (en) Protease and application thereof in L-carnosine synthesis
CN111662903B (en) Logarithmic phase specific promoter and application thereof
CN115948402A (en) Recombinant Shewanella capable of producing 5-aminolevulinic acid and application thereof
CN111321141B (en) Stationary phase specific promoter and application thereof
CN110872595B (en) Acid-resistant expression cassette and application thereof in fermentation production of organic acid
CN101892228B (en) Engineering bacteria with high tolerance to acrylamide and acrylonitrile for producing nitrile hydratase and application thereof
CN108456668B (en) Ribosome binding site, recombinant expression plasmid, transformant and application thereof
JPH09224688A (en) Dna sequence obtained from b.cereus, vector containing the same dna sequence, bacteria belonging to the family escherichia, production of leucine dehydrogenase and production of l-amino acid of non-protein origin

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant