CN111970972A - 以超声粒子速度估计器映射的声波场 - Google Patents

以超声粒子速度估计器映射的声波场 Download PDF

Info

Publication number
CN111970972A
CN111970972A CN201980021795.5A CN201980021795A CN111970972A CN 111970972 A CN111970972 A CN 111970972A CN 201980021795 A CN201980021795 A CN 201980021795A CN 111970972 A CN111970972 A CN 111970972A
Authority
CN
China
Prior art keywords
acoustic
oscillating
transducer
region
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201980021795.5A
Other languages
English (en)
Inventor
什穆埃尔·本·埃兹拉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nina Medical Co ltd
Original Assignee
Nina Medical Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nina Medical Co ltd filed Critical Nina Medical Co ltd
Publication of CN111970972A publication Critical patent/CN111970972A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • A61B8/4488Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer the transducer being a phased array
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0833Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures
    • A61B8/085Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures for locating body or organic structures, e.g. tumours, calculi, blood vessels, nodules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4477Constructional features of the ultrasonic, sonic or infrasonic diagnostic device using several separate ultrasound transducers or probes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • A61B8/463Displaying means of special interest characterised by displaying multiple images or images and diagnostic data on one display
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5223Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for extracting a diagnostic or physiological parameter from medical diagnostic data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N7/02Localised ultrasound hyperthermia
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8915Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/895Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques characterised by the transmitted frequency spectrum
    • G01S15/8952Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques characterised by the transmitted frequency spectrum using discrete, multiple frequencies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/899Combination of imaging systems with ancillary equipment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52019Details of transmitters
    • G01S7/5202Details of transmitters for pulse systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52023Details of receivers
    • G01S7/52036Details of receivers using analysis of echo signal for target characterisation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/378Surgical systems with images on a monitor during operation using ultrasound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4405Device being mounted on a trolley
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/488Diagnostic techniques involving Doppler signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N2007/0056Beam shaping elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52053Display arrangements
    • G01S7/52057Cathode ray tube displays
    • G01S7/52074Composite displays, e.g. split-screen displays; Combination of multiple images or of images and alphanumeric tabular information

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • Surgery (AREA)
  • Radiology & Medical Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Acoustics & Sound (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Gynecology & Obstetrics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physiology (AREA)
  • Robotics (AREA)
  • Vascular Medicine (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

一第一换能器(20)在一第一频率将一第一声波场(22)传送到一介质(26)的一区域(24)中,生成被设置在所述区域中的多个散射体(28)的振荡运动。一第二换能器(30)将多个声波脉冲(32、34)传送到所述区域中,并且接收从所述区域中的一振荡的散射体散射开的每个脉冲的多个相应的回声。所述多个脉冲与所述第一声波场同步,使得当所述散射体在一第一位移极端(36)处时,一第一脉冲从所述振荡的散射体散射开,并且当所述散射体在与所述第一个位移极端相反的一第二位移极端(38)处时,一第二脉冲从所述振荡的散射体散射开。一计算机处理器(29)提取在多个被接收的回声之间的一时间偏移,计算所述散射体的一位移波幅,并且输出所述散射体的所述位移波幅的一指示。其他应用也被描述。

Description

以超声粒子速度估计器映射的声波场
相关申请的交叉引用
本申请要求给本埃兹拉(Ben-Ezra)的于2018年1月24日提交的US 62/621,140的优先权,其标题为“以超声粒子速度估计器映射的声波场”,在此被引入作为参考。
技术领域
本发明的诸多应用涉及声波场表征、测量及映射。更具体地,本发明的诸多应用涉及图像引导治疗,诸如图像引导的高强度聚焦超声(HIFU)。
背景技术
高强度聚焦超声(HIFU),也被称为高强度治疗超声(HITU),是一种用于无创治疗内部器官及组织(譬如肿瘤)的方法。超声能量也经常被用于内部器官及组织的成像。一超声A线也被称为一RF线通过使用超声换能器被获取以将一超声脉冲(ultrasonic pulse)传送到一介质或一对象的身体中,并且接收反射出在所述介质譬如一散射体(scatterer)、一粒子(particle)或一边界(boundary)内的非均质体(inhomogeneities)的所述脉冲的一回声(echo)。所述回声的数据由所述换能器检测、数字化及处理。所述回声到达所述超声换能器所花费的时间长度指示在所述换能器与所述非均质体之间的距离。在等距位置及角度处的多条A线譬如100条A线可以被使用以创建一声波图。
一条超声A线可以在一脉冲重复频率(PRF)下被重复地脉冲化。对于任何给定的A线,一期望的穿透深度(desired penetration depth)将限制所述PRF,即,将限制在多个连续脉冲之间的时间,因为每个脉冲在来自紧接前一个脉冲的所述回声被接收前通常无法被传送。如果一个A线脉冲正在从一正在移动的标靶反射,则来自呼应所述标靶的两个连续脉冲的所述多个相应的回声将在时间上被偏移(被平移)。如果所述标靶的速度在所述两个脉冲之间的时间间隔是恒定的,则所述标靶的速度将与在时间上的所述偏移成比例,并且可被计算。
由葛西千寻(Chihiro Kasai)等人在1985年IEEE声波与超声波报(Transactionson Sonics and Ultrasonics)上发表的一篇文章,题为“使用一自相关技术进行实时二维血流成像”,描述一种血流成像***,所述血流成像***结合一传统脉冲式多普勒仪及一自相关器。在一活体器官的一给定横截面内的血流被描述成实时显示,血流的方向及其变化分别通过颜色及色调的差异被表达。诸多实验以使用诸多幻影(phantoms)的一机械扫描仪及一电动扫描仪被进行,并且与理论的良好一致性被描述如所获得的。对于正常及患病心脏的临床意义的研究被描述为具有成功的结果。
由O.邦尼福斯(O.Bonnefous)等人在1986年发表的一篇超声成像文章,题为"脉冲多普勒超声的时域公式化及通过互相关的血流速度估计",描述的是得益于基于连续回声相位偏移测量的一速度估算器的发展,实时血流成像已经成为可能,但是所述方法受到脉冲多普勒设备的众所周知的诸多限制。本文介绍一种新的公式,所述公式描述的是,由于两个激发之间的诸多散射体的位移,脉冲多普勒效应对来自多个移动标靶的一云随着时间的推移的多个连续回声的影响。
本文将这种方法描述为允许有效生成计算机模拟数据,以便准确评估各种处理技术。此外,所述方法被描述为导致在时域中的诸多速度估计器的一新颖类别,其测量与局部血流速度成比例的时间偏移。首先根据一对范围门控回声计算一局部互相关函数,然后通过搜索具备最大相关性的时间位置来决定所述时间偏移。所述时间相关技术被描述为以诸多宽带换能器提供诸多准确的速度概况。所述文章描述因为在测量一时间偏移而非一相位偏移方面是没有歧义的,因此诸多脉冲多普勒的经典速度限制可以被克服。
彼得·蒙克(Peter Munk)博士于2000年在丹麦技术大学的题为“使用超声估算血流速度矢量”的论文叙述其他超声技术。
由约根·詹森(Jorgen Jensen)在1993年于IEEE生物医学工程学报(Transactions on Biomedical Engineering)上发表的文章,题为“超声时域互相关血流速度估计器的实现”,描述的是使用时域互相关的实时血流速度估计器的实现。
一种算法被提出,用于执行静态回声消除、互相关估计以及后续速度估计。所述算法使用以大约20MHz的速率采集的采样数据。所述算法对于高采样频率进行分析,提议一种用于进行实时高速数据移动及互相关的方法。基于使用数据的标志及全精度的诸多实现方案被提出。从对所述过程的分析,所述文章得出结论,所述标志数据的实现可以获致实时处理。所述文章叙述实时处理也可以获得全精度数据,但以使用许多专用信号处理芯片为代价。被提议的两个植入物都被描述为能够处理从多个方向获取的A线速度的估算。
发明内容
根据本发明的一些应用,诸多方法被描述及设备被提供用于评估一声波场的一特性,譬如位移波幅、粒子速度或强度。第一声波换能器在一第一频率在一介质的一区域中生成一第一声波场,所述第一声波场生成被设置在所述区域中的所述介质内的多个散射体的振荡运动,每个散射体在一相应的平衡位置周围振荡。这些粒子的振荡运动被称为所述声波场的所述粒子速度,并且所述诸多振荡以所述第一声波场的所述频率发生。一第二声波换能器将多个连续的脉冲传送到所述区域中,并且接收从所述区域中的一振荡的散射体散射开的每个脉冲的多个相应的回声。每个声波脉冲具有一中心频率,所述中心频率高于所述第一频率。
根据本发明的一些应用,与所述第一声波场同步的两个脉冲被用于获取所述振荡的散射体的所述位移波幅的一测量。所述在传输的第一脉冲与第二脉冲之间的时间间隔为所述第一声波场的所述周期的n+0.5倍,n为一正整数,所述正整数至少为5及/或小于或等于1000,并且所述两个脉冲与所述第一声波场同步,使得当所述振荡的散射体在相对于所述平衡位置的一第一位移极端譬如一最大正位移处时,所述第一脉冲从所述振荡的散射体散射开,并且当所述振荡的散射体在一第二位移极端譬如一最大负位移处,所述第二位移极端与相对于所述平衡位置的所述第一位移极端相反时,所述第二脉冲从所述振荡的散射体散射开。由于所述振荡的散射体的所述运动以及与所述第一声波场的所述同步,所述散射体在所述两个脉冲之间的所述时间间隔经历的位移就是所述散射体的所述位移波幅。所述多个相应的回声在多个不同的时间被接收,每个回声从它相应的脉冲被传送的时间开始测量。一计算机处理器被使用以提取在所述多个被接收的回声之间的所述时间偏移,并且基于所述被提取的时间偏移,计算所述振荡的散射体的所述位移波幅。
替代地,根据本发明的一些应用,所述多个声波脉冲与所述第一声波场不同步,譬如:所述多个声波脉冲在时间上不相等地间隔开及/或不以受控的时间间隔被传送。所述第二换能器可以将至少5个声波脉冲传送到所述区域中,并且接收从一振荡的散射体散射开的每个脉冲的多个相应的回声。一计算机处理器被用于提取一系列的多个时间偏移。在这种情况下,每个时间偏移可以在所述被接收的回声中的任何两个之间。一系列的多个位移可以基于所述被提取的时间偏移被估计,并且统计分析可以被应用以导出所述振荡的散射体的所述位移波幅。
根据本发明的一些应用,设备被提供用于决定在一第一频率被发射到一介质中的一区域中的HIFU能量的一焦点区域的位置及尺寸。使用被传送到所述区域中的多个声波脉冲,通过映射在由所述HIFU能量生成的所述声波场中的粒子的位移波幅或速度波幅,可以决定所述焦点区域的位置及尺寸,每个脉冲具有一中心频率,所述中心频率高于所述第一频率。成像超声可以在治疗期间被用于引导所述焦点区域。一第一声波换能器发射HIFU能量以在所述区域中生成一第一声波场,在所述区域中生成多个散射体的振荡运动,并且一声波探头被用于生成成像超声。如上所述,所述声波探头或一第二换能器传送与所述第一声波场同步的两个声波脉冲,并且接收从所述区域中的一振荡的散射体散射开的所述多个脉冲的多个相应的回声。一计算机处理器被用于:(a)生成所述介质的一实时声波图,(b)提取在多个被接收的回声之间的一时间偏移,(c)基于所述被提取的时间偏移,计算在所述区域中的所述第一声波场的一位移波幅,及(d)在所述声波图对应于所述区域的一部分上生成多个位移波幅的一图。在具有最大位移波幅的区域内的面积对应于所述HIFU能量的强度最高的面积,即,所述HIFU能量的所述焦点区域。
因此,根据本发明的一些应用,提供一种用于评估在一介质的一区域中的一声波场的一特性的方法,所述方法包括步骤:
驱动一第一声波换能器,在一第一频率将一第一声波场传送到所述区域中,所述第一声波场以被设置在所述区域中的多个散射体的所述第一频率生成振荡运动,每个散射体在一相应的平衡位置周围振荡;
驱动一第二声波换能器,以进行:
(a)将一第一声波脉冲及一第二声波脉冲传送到所述区域中,每个脉冲具有一中心频率,所述中心频率高于所述第一频率,并且在所述多个脉冲之间的一时间间隔为所述第一声波场的一周期的n+0.5倍,n为一正整数,及
(b)接收从所述区域中的一振荡的散射体散射开的每个脉冲的多个相应的回声,
所述第一脉冲及所述第二脉冲与所述第一声波场同步,使得当所述振荡的散射体在相对于所述平衡位置的一第一位移极端处时,所述第一脉冲从所述振荡的散射体散射开,并且当所述振荡的散射体在一第二位移极端处,所述第二位移极端与相对于所述平衡位置的所述第一位移极端相反时,所述第二脉冲从所述振荡的散射体散射开;及
使用至少一个计算机处理器:
(a)提取在所述多个被接收的回声之间的一时间偏移,所述多个被接收的回声归因于所述振荡的散射体的运动,
(b)基于所述被提取的时间偏移,计算所述振荡的散射体的一位移波幅,及
(c)驱动一输出装置以输出所述振荡的散射体的所述位移波幅的一指示。
对于一些应用,驱动所述第二声波换能器的步骤包括:驱动所述第二声波换能器以将所述第一声波脉冲及所述第二声波脉冲传送到所述区域中,每个脉冲具有一中心频率,所述中心频率比所述第一频率高5到50倍。
对于一些应用,使用至少一个计算机处理器的步骤还包括:
从所述振荡的散射体的所述位移波幅导出所述第一声波场的至少一个参数;及
驱动所述输出装置以输出所述参数的一指示。
对于一些应用,导出所述第一声波场的所述至少一个参数的步骤包括:基于所述位移波幅,计算所述振荡的散射体的一速度波幅。
对于一些应用,导出所述第一声波场的所述至少一个参数的步骤包括:基于所述速度波幅,计算所述第一声波场在所述振荡的散射体的一位置处的一强度。
对于一些应用,驱动所述第二声波换能器的步骤包括:驱动所述第二声波换能器以将所述第一声波脉冲及所述第二声波脉冲传送到所述区域中,在所述多个脉冲之间的所述时间间隔为所述第一声波场的所述周期的n+0.5倍,n为大于或等于5的一正整数。
对于一些应用,驱动所述第二声波换能器的步骤包括:驱动所述第二声波换能器以将所述第一声波脉冲及所述第二声波脉冲传送到所述区域中,在所述多个脉冲之间的所述时间间隔为所述第一声波场的所述周期的n+0.5倍,及n为小于或等于1000的一正整数。
对于一些应用,驱动所述第一声波换能器以传送所述第一声波场的步骤包括:驱动所述第一声波换能器在所述第一频率传送高强度聚焦超声(HIFU)能量到所述区域中。
对于一些应用,驱动所述第一声波换能器传送所述HIFU能量的步骤包括:驱动所述第一声波换能器在所述第一频率传送所述HIFU能量,所述第一频率为0.1至5兆赫。
对于一些应用:
驱动所述第二换能器的步骤包括:驱动所述第二换能器,以进行:
(a)在多个相应的方向上传送多对第一声波脉冲及第二声波脉冲到所述区域中,每个脉冲具有一中心频率,所述中心频率高于所述第一频率,并且在多个相应的第一脉冲与第二脉冲之间的所述时间间隔为所述第一声波场的所述周期的n+0.5倍,n为一正整数,及
(b)接收从所述区域中的一相应的振荡的散射体散射开的每个脉冲的多个相应的回声,
每对第一脉冲及第二脉冲与所述第一声波场同步,使得当所述多个振荡的散射体在相对于多个相应的平衡位置的多个相应的第一位移极端处时,所述多个第一脉冲从所述多个相应的振荡的散射体散射开,并且当所述多个振荡的散射体在多个相应的第二位移极端处,所述多个相应的第二位移极端与相对于所述多个相应的平衡位置的所述多个相应的第一位移极端相反时,所述多个第二脉冲从所述多个相应的振荡的散射体散射开;及
使用至少一个计算机处理器的步骤包括:
(a)提取在相应的多对被接收的回声之间的多个相应的时间偏移,所述相应的多对被接收的回声归因于所述多个相应的振荡的散射体的运动,
(b)基于所述多个被提取的时间偏移,计算所述多个相应的振荡的散射体的多个相应的位移波幅,
(c)驱动一输出装置以输出所述多个相应的振荡的散射体的所述多个相应的位移波幅的多个相应的指示,及
(d)生成在所述区域中的所述多个相应的位移波幅的一个二维图像。
对于一些应用,使用至少一个计算机处理器的步骤还包括:
基于所述多个位移波幅,计算所述多个相应的振荡的散射体的多个相应的速度波幅;
驱动一输出装置以输出所述多个相应的振荡的散射体的所述多个相应的速度波幅的多个相应的指示;及
生成在所述区域中的所述多个相应的速度波幅的一个二维图像。
对于一些应用,使用至少一个计算机处理器的步骤还包括:
基于所述多个速度波幅,计算所述第一声波场的多个相应的强度;
驱动一输出装置以输出所述多个相应的强度的多个相应的指示;及
生成在所述区域中的所述第一声波场的所述多个相应的强度的一个二维图像。
根据本发明的一些应用,还提供用于评估在一介质的一区域中的一声波场的一特性的设备,所述设备包括:
一第一声波换能器,被配置为在一第一频率将一第一声波场传送到所述区域中,所述第一声波场以被设置在所述区域中的多个散射体的所述第一频率生成振荡运动,每个散射体在一相应的平衡位置周围振荡;
一第二声波换能器,被配置为:
(a)将一第一声波脉冲及一第二声波脉冲传送到所述区域中,每个脉冲具有一中心频率,所述中心频率高于所述第一频率,并且在所述多个脉冲之间的一时间间隔为所述第一声波场的一周期的n+0.5倍,n为一正整数;及
(b)接收从所述区域中的一振荡的散射体散射开的每个脉冲的多个相应的回声,
所述第一脉冲及所述第二脉冲与所述第一声波场同步,使得当所述振荡的散射体在相对于所述平衡位置的一第一位移极端处时,所述第一脉冲从所述振荡的散射体散射开,并且当所述振荡的散射体在一第二位移极端处,所述第二位移极端与相对于所述平衡位置的所述第一位移极端相反时,所述第二脉冲从所述振荡的散射体散射开;及
一计算机处理器,被配置为:
(a)提取在所述多个被接收的回声之间的一时间偏移,所述多个被接收的回声归因于所述振荡的散射体的运动,
(b)基于所述被提取的时间偏移,计算所述振荡的散射体的一位移波幅,及
(c)驱动一输出装置以输出所述振荡的散射体的所述位移波幅的一指示。
对于一些应用,所述第二声波换能器被配置为:将所述第一声波脉冲及所述第二声波脉冲传送到所述区域中,每个脉冲具有一中心频率,所述中心频率比所述第一频率高5到50倍。
对于一些应用,所述计算机处理器还被配置为:从所述位移波幅导出所述第一声波场的至少一个参数;及输出所述参数的一指示。
对于一些应用,所述至少一个参数是所述振荡的散射体的一速度波幅。
对于一些应用,所述计算机处理器还被配置为:基于所述速度波幅导出所述声波场的一强度,及输出所述强度的一指示。
对于一些应用,所述第二声波换能器被配置为:将所述第一声波脉冲及所述第二声波脉冲传送到所述区域中,在所述多个脉冲之间的所述时间间隔为所述第一声波场的所述周期的n+0.5倍,及n为小于或等于1000的一正整数。
对于一些应用,所述第二声波换能器被配置为:将所述第一声波脉冲及所述第二声波脉冲传送到所述区域中,在所述多个脉冲之间的所述时间间隔为所述第一声波场的所述周期的n+0.5倍,n为大于或等于5的一正整数。
对于一些应用,所述第一声波换能器被配置为:通过将高强度聚焦超声(HIFU)能量在所述第一频率传送到所述区域中,以将所述第一声波场传送到所述区域中。
对于一些应用,所述第一声波换能器被配置为:在所述第一频率传送所述高强度聚焦超声能量,所述第一频率为0.1至5兆赫。
对于一些应用,所述设备还包括:单个壳体,所述第一超声换能器及所述声波元件被耦合到所述单个壳体,其中所述壳体将所述第一声波场及所述多个声波脉冲整齐排列为平行的或反平行的,即,所述壳体将所述第一声波场的轴线与所述多个脉冲的传播方向整齐排列为平行的或反平行的。
对于一些应用:
所述第二声波换能器被配置为:
(a)在多个相应的方向上传送多对第一声波脉冲及第二声波脉冲到所述区域中,每个脉冲具有一中心频率,所述中心频率高于所述第一频率,并且在多个相应的第一脉冲与第二脉冲之间的所述时间间隔为所述第一声波场的所述周期的n+0.5倍,及
(b)接收从所述区域中的一相应的振荡的散射体散射开的每个脉冲的多个相应的回声,
每对第一脉冲及第二脉冲与所述第一声波场同步,使得当所述多个振荡的散射体在相对于多个相应的平衡位置的多个相应的第一位移极端处时,所述多个第一脉冲从所述多个相应的振荡的散射体散射开,并且当所述多个振荡的散射体在多个相应的第二位移极端处,所述多个相应的第二位移极端与相对于所述多个相应的平衡位置的所述多个相应的第一位移极端相反时,所述多个第二脉冲从所述多个相应的振荡的散射体散射开;及
所述计算机处理器被配置为:
(a)提取在相应的多对被接收的回声之间的多个相应的时间偏移,所述相应的多对被接收的回声归因于所述多个相应的振荡的散射体的运动,
(b)基于所述多个被提取的时间偏移,计算所述多个相应的振荡的散射体的多个相应的位移波幅,
(c)驱动一输出装置以输出所述多个相应的振荡的散射体的所述多个相应的位移波幅的多个相应的指示,及
(d)生成在所述区域中的所述多个相应的位移波幅的一个二维图像。
对于一些应用,所述计算机处理器还被配置为:
基于所述多个位移波幅,计算所述多个相应的振荡的散射体的多个相应的速度波幅;
输出所述多个相应的振荡的散射体的所述多个相应的速度波幅的多个相应的指示;及
生成在所述区域中的所述多个相应的速度波幅的一个二维图像。
对于一些应用,所述计算机处理器还被配置为:
基于所述多个速度波幅,计算所述第一声波场的多个相应的强度;输出所述多个相应的强度的多个相应的指示;及
生成在所述区域中的所述第一声波场的所述多个相应的强度的一个二维图像。
根据本发明的一些应用,还提供一种用于评估在一介质的一区域中的一声波场的一特性的方法,所述方法包括步骤:
驱动一第一声波换能器,在一第一频率将一第一声波场传送到所述区域中,所述第一声波场以被设置在所述区域中的诸多散射体的所述第一频率生成振荡运动,每个散射体在一相应的平衡位置周围振荡;
驱动一第二声波换能器,以进行:
(a)传送至少5个声波脉冲到所述区域中,每个脉冲具有一中心频率,所述中心频率高于所述第一频率,及
(b)接收从所述区域中的一振荡的散射体散射开的每个脉冲的多个相应的回声;及
使用至少一个计算机处理器:
(a)提取一系列的多个时间偏移,每个时间偏移是在所述多个被接收的回声中的任何两个回声之间,所述多个被接收的回声中的任何两个回声归因于所述振荡的散射体的运动,
(b)基于所述多个被提取的时间偏移,估算所述振荡的散射体的一系列的多个相应的位移,
(c)基于所述多个被计算的位移,统计地导出所述振荡的散射体的一位移波幅,及
(d)驱动一输出装置以输出所述振荡的散射体的所述位移波幅的一指示。
对于一些应用,提取一系列的多个时间偏移的步骤包括:提取一系列的多个时间偏移,其中每个时间偏移在两个连续被接收的回声之间。
对于一些应用,提取一系列的多个时间偏移的步骤包括:选择所述多个被接收的回声中的两个回声,在所述两个回声之间的时间偏移是最大的。
对于一些应用,驱动所述第二声波换能器的步骤包括:驱动所述第二声波换能器以将至少5个声波脉冲传送到所述区域中,每个脉冲具有一中心频率,所述中心频率比所述第一频率高5至50倍。
对于一些应用,驱动所述第二声波换能器的步骤包括:驱动所述第二声波换能器以将少于50个声波脉冲传送到所述区域中。
对于一些应用,使用至少一个计算机处理器的步骤还包括:
从所述振荡的散射体的所述位移波幅导出所述第一声波场的至少一个参数;及
驱动所述输出装置输出所述参数的一指示。
对于一些应用,导出所述第一声波场的所述至少一个参数的步骤包括:基于所述位移波幅,计算所述振荡的散射体的一速度波幅。
对于一些应用,导出所述第一声波场的所述至少一个参数的步骤包括:基于所述速度波幅,计算所述第一声波场在所述振荡的散射体的一位置处的一强度。
对于一些应用,驱动所述第一声波换能器以传送所述第一声波场的步骤包括:驱动一第一声波换能器在所述第一频率将高强度聚焦超声(HIFU)能量传送到所述区域中。
对于一些应用,驱动所述第一声波换能器以传送所述HIFU能量的步骤包括:驱动所述第一声波换能器在所述第一频率传送所述HIFU能量,所述第一频率为0.1至5兆赫。
根据本发明的一些应用,还提供用于评估在一介质的一区域中的一声波场的一特性的设备,所述设备包括:
一第一声波换能器,被配置为在一第一频率将一第一声波场传送到所述区域中,所述第一声波场以被设置在所述区域中的多个散射体的所述第一频率生成振荡运动,每个散射体在一相应的平衡位置周围振荡;
一第二声波换能器,被配置为:
(a)传送至少5个声波脉冲到所述区域中,每个脉冲具有一中心频率,所述中心频率高于所述第一频率,及
(b)接收从所述区域中的一振荡的散射体散射开的每个脉冲的多个相应的回声;及
一计算机处理器,被配置为:
(a)提取一系列的多个时间偏移,每个时间偏移是在所述多个被接收的回声中的任何两个回声之间,所述多个被接收的回声中的任何两个回声归因于所述振荡的散射体的运动,
(b)基于所述多个被提取的时间偏移,估算所述振荡的散射体的一系列的多个相应的位移,
(c)基于所述多个被计算的位移,统计地导出所述振荡的散射体的一位移波幅,及
(d)输出所述振荡的散射体的所述位移波幅的一指示。
对于一些应用,所述计算机处理器被配置为提取所述多个时间偏移的系列,其中每个时间偏移在两个连续被接收的回声之间。
对于一些应用,所述第二声波换能器被配置为将所述第一个声波脉冲及所述第二声波脉冲传送到所述区域中,每个脉冲具有一中心频率,所述中心频率比所述第一频率高5到50倍。
对于一些应用,所述计算机处理器还被配置为从所述位移波幅导出所述第一声波场的至少一个参数,并且输出所述参数的一指示。
对于一些应用,所述至少一个参数是所述振荡的散射体的一速度振幅。
对于一些应用,所述计算机处理器还被配置为基于所述速度波幅以导出所述声波场的一强度,并且输出所述强度的一指示。
对于一些应用,所述第一声波换能器被配置为通过将高强度聚焦超声(HIFU)能量在所述第一频率传送到所述区域中,以将所述第一声波场传送到所述区域中。
对于一些应用,所述第一声波换能器被配置为将所述HIFU能量在所述第一频率传送,所述第一频率为0.1至5兆赫。
对于一些应用,所述设备还包括单个壳体,所述第一超声换能器及所述声波元件被耦合到所述单个壳体,其中所述壳体将所述第一声波场及所述多个声波脉冲整齐排列为平行的或反平行的。
根据本发明的一些应用,还提供用于与一高强度聚焦超声(HIFU)能量的焦点区域一起使用的设备,所述设备包括:
一第一超声换能器,被配置为通过将所述HIFU能量在一第一频率发射到一介质的一区域中,以传送一第一声波场,所述第一声波场以被设置在所述区域中的诸多散射体的所述第一频率生成振荡运动,每个散射体在一相应的平衡位置周围振荡;
一声波探头,
其中所述声波探头被配置为在一成像频率将一脉冲回声超声能量发射到所述介质中,及
其中一声波元件选自于由所述第一超声换能器、一第二超声换能器及所述声波探头组成的群组,并且所述声波元件被配置为:(i)将一第一声波脉冲及一第二声波脉冲传送到所述区域中,每个脉冲具有一中心频率,所述中心频率高于所述第一频率,并且在所述多个脉冲之间的一时间间隔为所述第一声波场的一周期的n+0.5倍,n为一正整数,及(ii)接收从所述区域中的一振荡的散射体散射开的每个脉冲的多个相应的回声,
所述第一脉冲及所述第二脉冲与所述第一声波场同步,使得当所述振荡的散射体在相对于所述平衡位置的一第一位移极端处时,所述第一脉冲从所述振荡的散射体散射开,并且当所述振荡的散射体在一第二位移极端处,所述第二位移极端与相对于所述平衡位置的所述第一位移极端相反时,所述第二脉冲从所述振荡的散射体散射开;及
一计算机处理器,被配置为:(a)基于由所述声波探头传送的所述脉冲回声超声能量的多个反射生成所述介质的一实时声波图,(b)提取在所述多个被接收的回声之间的一时间偏移,所述多个被接收的回声归因于所述振荡的散射体的运动,(c)基于所述被提取的时间偏移,计算所述振荡的散射体的一位移波幅,及(d)在所述声波图对应于所述区域的一部分上生成多个位移波幅的一图。
对于一些应用,所述声波元件包括所述第二超声换能器。
对于一些应用,所述声波元件包括所述声波探头。
对于一些应用,所述声波元件包括所述第一超声换能器。
对于一些应用,所述第一频率为0.1至5兆赫(MHz)。
对于一些应用,每个脉冲的所述中心频率比所述第一频率至少高5至50。
对于一些应用,所述成像频率为1至50兆赫(MHz)。
对于一些应用,所述计算机处理器还被配置为:(a)基于所述位移波幅,计算所述第一声波场在所述区域中的一速度波幅,及(b)在所述声波图对应于所述区域的一部分上生成多个速度波幅的一图。
对于一些应用,所述计算机处理器还被配置为:(a)基于所述速度波幅,计算所述第一声波场在所述区域中的一强度,及(b)在所述声波图对应于所述区域的一部分上生成所述第一声波场的多个强度的一图。
对于一些应用,所述介质是一对象的一身体的组织,其中所述第一超声换能器被配置为通过将所述高强度聚焦超声能量发射到所述组织中以在所述组织中引起一治疗效果。
对于一些应用,所述振荡的散射体是在所述组织中的一非均质体。
对于一些应用,所述第一超声换能器被配置为通过加热所述组织以在所述组织中引起所述治疗效果。
对于一些应用,所述计算机处理器还被配置为通过监视所述位移波幅的一时间变化以监视所述组织的一机械特性的一改变;及
当所述组织的所述机械性能达到一阈值时将所述第一声波场终止,以对所述监视作出响应。
对于一些应用,所述组织的所述机械特性是所述组织的一机械阻抗,其中所述计算机处理器被配置为:(a)通过监视所述位移波幅的一时间变化以监视所述组织的所述机械阻抗的一改变,及(b)当所述组织的所述机械阻抗达到一阈值时将所述第一声波场终止,以对所述监视作出响应。
对于一些应用,所述计算机处理器被配置为监视所述特性在1至120秒长的一时间段内的所述变化。
对于一些应用:
所述第一超声换能器被配置为在有区别的校准模式及治疗模式操作,以促进将治疗的HIFU能量施加到一标靶位置,在每个模式中发射所述HIFU能量,所述HIFU能量具备一个或多个不同的相应的参数,及
所述计算机处理器被配置为更改一个或多个相应的参数,使得当所述第一超声换能器在所述治疗模式操作时,所述HIFU能量在所述组织中引起一治疗效果,而当所述第一超声换能器在所述校准模式操作时,所述HIFU能量在所述组织中不会引起一治疗效果。
对于一些应用,所述计算机处理器被配置为更改所述HIFU能量的一HIFU脉冲的一持续时间,使得当所述第一超声换能器在所述治疗模式操作时的所述HIFU脉冲的所述持续时间要比当所述第一超声换能器在所述校准模式操作时的所述HIFU脉冲的所述持续时间更长。
对于一些应用,所述计算机处理器被配置为更改所述HIFU能量的一占空比,使得当所述第一超声换能器在所述治疗模式操作时的所述占空比高于当所述第一超声换能器在所述校准模式操作时的所述占空比。
对于一些应用,所述计算机处理器被配置为更改所述HIFU能量的一功率,使得当所述第一超声换能器在所述治疗模式操作时的所述HIFU能量的所述功率高于当所述第一超声换能器在所述校准模式操作时的所述HIFU能量的所述功率。
对于一些应用,所述计算机处理器被配置为当所述第一超声换能器在所述治疗模式操作时监视所述组织,并且根据所述监视以更改所述治疗模式的所述多个参数,以便转变对所述组织的一影响。
对于一些应用,所述仪器包括一标靶单元,所述标靶单元被配置为当所述第一超声换能器在所述校准模式操作时移动所述HIFU能量的所述焦点区域。
对于一些应用,所述标靶单元被配置为通过移动相对于所述介质的所述第一超声换能器,使得所述标靶单元的一手控动量移动在所述介质内的所述HIFU能量的所述焦点区域。
对于一些应用,所述标靶单元包括:(i)一第一换能器控制器,及(ii)一标靶电路,被配置为:(a)获取在一图上对应于所述HIFU能量的所述焦点区域的数据,所述图选自于由以下各项组成的群组:所述多个位移波幅的图、所述多个速度波幅的图及所述多个强度的图,(b)获取对应于所述介质中的一标靶位置的数据,及(c)将一电信号发送到所述第一换能器控制器,其中所述第一换能器控制器被配置为接收所述电信号,并且对所述电信号作出响应,将所述HIFU能量的所述焦点区域移向在所述介质内的所述标靶位置。
对于一些应用,所述第一换能器控制器被配置为:(a)将所述HIFU能量的所述焦点区域相对于所述第一超声换能器移动,及(b)通过对所述第一超声换能器所发射的所述HIFU能量施加相控阵控制,以改变所述HIFU能量的所述焦点区域的一尺寸。
对于一些应用,所述第一换能器控制器被配置为通过将所述第一超声换能器相对于所述介质移动,以移动所述高强度聚焦超声能量的所述焦点区域。
对于一些应用,所述设备还包括:单个壳体,所述第一超声换能器及所述声波元件被耦合到所述单个壳体,其中所述壳体将所述第一声波场及所述多个声波脉冲整齐排列为平行的或反平行的。
通过下面结合附图对诸多应用的详细描述,可以更全面地理解本发明,其中:
附图说明
图1A是根据本发明的一些应用的将一第一声波场传送到一区域中的一第一声波换能器、在所述区域中的一振荡的散射体及将多个声波脉冲朝向所述振荡的粒子传送的一第二声波换能器的一示意图例;
图1B是在x轴上示出多条A线并且在y轴上示出由所述第二换能器接收的每个相应的回声的时间的一图形。
图2是根据本发明的一些应用的在所述多个声波脉冲与所述第一声波场之间的一同步示意图。
图3A是示出根据本发明的一些应用的八条A线与在所述多个A线上示出多个相应的回声的一图形。
图3B是示出根据本发明的一些应用的沿着连续的多条A线在一特定采样点处的多个信号值的多个测量的一图形;
图4是根据本发明的一些应用的一高强度聚焦超声(HIFU)换能器及一声波探头两者被放置在一对象的皮肤上的一示意图例;及
图5是根据本发明的一些应用的被设置在单个单元上的一HIFU换能器及一声波探头的一示意图例。
具体实施方式
在一介质(medium)中传播的一声波场(acoustic field)会在所述介质中生成诸多粒子或诸多散射体的振荡运动,这样的一种现象被称为所述声波场的粒子速度。所述诸多振荡发生于所述声波场的所述频率。所述声波场的所述强度涉及:(a)压力(pressure)p,及(b)粒子速度(particle-velocity)u。在诸多谐波场中,其中频率(frequency)f、粒子速度波幅(particle-velocity amplitude)U涉及位移波幅(displacement amplitude)D,如以下公式8所示。压力及粒子速度涉及所述介质的机械阻抗,由所述公式Z=p/u。因此,假设一介质的机械阻抗Z为常数,则在强度较高的一区域中的所述多个振荡的散射体的所述位移波幅及所述速度波幅比在强度较低的一区域中的所述多个振荡的散射体的所述位移波幅及所述速度波幅更高,即,在具恒定机械阻抗Z的多个区域中,所述声波场的所述粒子速度在所述场内的强度最高的区域中是最高的。
一声波场的强度是压力p及粒子速度u的乘积,如以下公式所示:
I(t)=p(t)u(t), [公式1]
其中,I是空间中某个位置的瞬时强度,p是压力,u是在所述位置处的粒子速度。
所述介质的局部复数机械阻抗Z被定义为:
Z=p/u, [公式2]
其中p及u是相应在一特定频率下的压力及粒子速度的诸多谐波的诸多复合波幅(complex amplitudes)。机械阻抗Z是所述介质的一特性,它可能是与位置相关及与频率相关的。使用与治疗超声的数字相近的数字的说明性示例如下:
·Z=1.5兆瑞(MRayl.),
·压力波幅p=1.5兆帕(MPa),因此
·粒子速度波幅u=1.5[MPa]/1.5[MRayl.]=1[m/s]。
所述声波场的所述时均强度可以被写成以下形式:
I=r^2/(2Z), [公式3]
就压力波幅p而言提供强度I。等效地,压力p可以在公式3中由阻抗Z及粒子速度u的乘积来代替,以导出:
I=Z u^2/2, [公式4]
就粒子速度u而言给出强度I。
粒子速度u是强度I及阻抗Z的一函数,如以下公式所示:
u=sqrt(2I/Z), [公式5]
因此,对于一给定的强度I,阻抗Z的变化将导致粒子速度u的一改变。
在一给定的时间点t处,所述振荡的散射体的位置z(t)可以被写成以下形式:
z(t)=z0+D cos(2pi f t+phi), [公式6]
其中z0是所述散射体的所述平衡位置(equilibrium position),D是从所述平衡位置测量的所述位移波幅(displacement amplitude),phi是相位,f是所述声波场的频率。
在频率为f的谐波场中,粒子速度u(t)可以被写成:
u(t)=U sin(2pi f t phi2), [公式7]
其中U是所述粒子速度波幅(particle-velocity amplitude)U。
粒子速度波幅U与位移波幅D相关,如以下公式所给出的:
U=2pi f D。 [公式8]
现在参考图1A,图1A是根据本发明的一些应用的将一第一声波场(firstacoustic field)22传送到一介质26的一区域中的一第一声波换能器(first acoustictransducer)20、在所述区域24中的一振荡的散射体28,及将一诊断场(diagnostic field)23传送到所述区域中并将多个声波脉冲朝向所述振荡的散射体28传送的一第二声波换能器(second acoustic transducer)30的一示意图例。第一声波换能器20及第二声波换能器30可以被耦合到一单个壳体,诸如在图5中的壳体42,其将第一声波场22及所述多个声波脉冲整齐排列(align)为平行的或反平行的(parallel or anti-parallel),即,壳体42将第一声波场22的轴线及所述多个声波脉冲的传播方向整齐排列为平行的或反平行的。第一声波换能器20譬如通过发射高强度聚焦超声(HIFU)能量以通常至少为0.1兆赫(MHz)及/或小于5MHz的一第一频率f1将第一声波场22传送到区域24中。第一声波场22可以是例如一被聚焦的场具备一焦点或一焦点体积位于所述换能器前面的一定距离处。第一声波场22生成被设置在区域24中的诸多散射体诸如散射体28的振荡运动。所述诸多散射体的诸多振荡是第一声波场22的所述粒子速度,并且是所述声波场的一基本特性。所述诸多散射体以第一频率f1振荡,每个散射体在一相应的平衡位置诸如在图2中所示的平衡位置z0周围振荡。
对于一些应用,第二声波换能器30通过将诸多声波脉冲诸如图2所示的第一声波脉冲32及第二声波脉冲34传送到区域24中以生成诸多A线。第一声波脉冲32及第二声波脉冲34中的每个具有一中心频率f2,所述中心频率f2比第一频率f1更高,譬如高于第一频率f1至少5倍及/或小于50倍。在诸多连续的A线之间的时间间隔,譬如在第一声波脉冲32与第二声波脉冲34之间的时间间隔,是第一声波场22的周期T1的n+0.5倍,其中n是一正整数。将所述时间间隔设定为周期T1的n+0.5倍意谓着所述散射体将在所述诸多A线之间精确进行n+0.5次振荡。如果第一声波脉冲32及第二声波脉冲34与第一声波场22同步,如以下关于图2的进一步描述,则当散射体28在它的轨迹的一最大负位置z-处或在它的轨迹的一最大正位置z+处时,每个脉冲将从散射体28散射。
现在参考图1B,图1B是示出在x轴上的多条A线以及在y轴上由所述第二换能器接收到每个相应的回声的时间的一图形。如在下文关于图2进一步描述的,与第一声波场22的同步,使得能够接收一第一回声及一第二回声,所述第一回声来自从最大负位置z-处的散射体28散射的第一脉冲32,所述第二回声来自从最大正位置z+处的散射体28散射的第二脉冲34。举例来说,在所述图形中示出8条A线,它们之间具有相等的时间间隔Tprf,Tprf等于n+0.5倍的周期T1。由于所述同步,来自诸多A线1、3、5及7的诸多回声35被接收自从散射体28在z-处散射的一声波脉冲,并且来自诸多A线2、4、6及8的诸多回声33被接收自从散射体28在z+处散射的一声波脉冲。从每个A线被接收的所述多个相应的回声按着时间被绘制在y轴上,代表每个相应的回声被接收的时间,每个被测量的时间关于每个相应的脉冲被发射的时间。在多个连续回声之间的一时间偏移dT显现。时间范围为1至100微秒被显示作为一任意示例。
现在参考图2,图2是根据本发明的一些应用的在多个声波脉冲与第一声波场22之间的同步的一示意图例。在每个散射体在第一声波场22的影响下振荡的期间,每个散射体从平衡位置z0到达一最大正位移z0+D及从平衡位置z0到达一最大负位移z0-D。因此,每个振荡的散射体的总位移等于2D。所述诸多振荡在时间上是一致的,并且当位移Z(t)按着时间(t)被绘制时,所述诸多振荡将显示为一连续的正弦波。但是,为了清楚地示出同步,如下文所述,在图2中仅出现少数不同的振荡周期。
第一脉冲32及第二脉冲34可以与第一声波场22同步,使得(a)当散射体28在一第一位移极端36譬如关于平衡位置z0的最大正位移+D处时,第一脉冲32从一振荡的散射体诸如图1A中的散射体28散射。(b)当散射体28在与所述第一位移极端相反的一第二位移极端38譬如关于平衡位置z0的最大负位移-D处时,第二脉冲从散射体28散射。当散射体28位于第一位移极端36处时,脉冲32′代表从散射体28散射的第一声波脉冲32。当散射体28位于第二位移极端38处时,脉冲34′代表从散射体28散射的第二声波脉冲34。回声33是从第一声波脉冲32被接收的回声,并且回声35是从第二声波脉冲34被接收的回声。
在第一声波脉冲32与第二声波脉冲34之间的时间间隔Tprf受限于一期望的穿透深度。在每个被传送的脉冲之间,必须至少有足够的时间使第一个被传送的脉冲到达所述穿透深度、从所述散射体散射开(scatter off),及用于接收所述回声。例如:Tprf可能至少为100微秒,即,所述诸多A线以小于10千赫(kHz)的一PRF被脉冲化,而第一声波场22的第一频率f1可以高达5兆赫(MHz)。因此,散射体28可能在每条A线之间表现出数百次振荡。
如上所述,将所述诸多脉冲与第一声波场22同步,允许所述散射体进行n+0.5次振荡,同时仍确保当散射体在一位移极端处时从所述散射体被接收的每个回声。所述同步包括:(a)将所述诸多时间间隔Tprf设定为周期Tl的n+0.5倍,及(b)将所述诸多脉冲与所述诸多振荡的相位同步,以确保在所述n+0.5次振荡后,所述散射体在它的位移的一极端处,而非例如在平衡位置z0处。
结果是,在每对被接收的回声之间,散射体28经历的一总位移为2D。回声33在传送第一声波脉冲32后的时间t1处被接收,并且回声35在传送第二声波脉冲34后的时间t2处被接收。时间偏移dT等于t2-t1,并且涉及所述散射体的位移2D。至少一个计算机处理器29被用于提取在所述多个被接收的回声之间的时间偏移dT,并且基于被提取的时间偏移dT,计算振荡的散射体28的位移波幅D,与局部粒子速度有关(公式8),并且因此关于在所述振荡的散射体的位置处的第一声波场22的局部强度(公式4)。所述振荡的散射体28的位置意指在区域24中的一位置,所述区域包括振荡的散射体正在其上方振荡的整个空间。计算机处理器29输出或驱动一输出装置诸如图4所示的输出装置40以输出振荡的散射体28的所述位移波幅D的一指示。
位移D可以用于导出第一声波场22的至少一个参数,诸如速度波幅。基于所述位移波幅D,计算机处理器29可以使用公式7以计算振荡的散射体28的一速度波幅。获知所述介质的所述机械阻抗,计算机处理器29还可以使用公式4以计算在振荡的散射体28位置处的第一声波场22的强度,或者使用公式2以计算在振荡的散射体28位置处的第一声波场22的压力。如果在振荡的散射体28的位置处的一压力波幅是已知的,则计算机处理器29可以使用公式2以计算已知在振荡的散射体28的位置处的所述介质的所述机械阻抗。计算机处理器29输出或驱动一输出装置诸如输出装置40以输出第一声波场22的上述参数的诸多指示,譬如速度波幅、强度及机械阻抗,就均方根值(root-mean-squared value)、方差(variance)、最大值(maximum value)、峰对峰值(peak-to-peak value)、波幅(amplitude)及/或相位(phase)而言。
对于一些应用,第二声波换能器30在区域24中的多个相应的方向上传送多对第一声波脉冲32及第二声波脉冲34,并且接收从多个相应的振荡的散射体散射开的每个脉冲的多个相应的回声。每对脉冲与第一声波场22同步,如上所述。计算机处理器29提取在相应的被接收的回声对33及35之间的多个相应的时间偏移dT。基于所述多个被提取的时间偏移,计算机处理器29可以计算多个相应的振荡的散射体的多个相应的位移波幅D,并且输出或驱动一输出装置以输出所述多个相应的位移波幅的多个相应的指示,并且生成一个二维图像(two-dimensional image),譬如在所述区域中的所述多个相应的位移波幅的一图(map)。
如上所述,所述多个相应的振荡的散射体的多个相应的速度波幅可以基于所述多个相应的位移波幅被计算,并且在所述区域中的第一声波场22的多个相应的强度可以基于所述多个相应的速度波幅被计算。计算机处理器29可以输出或驱动一输出装置以输出所述多个速度波幅及多个强度的多个相应的指示,并且生成多个相应的二维图像,譬如在所述第一区域中的所述多个相应的速度波幅及在所述区域中的第一声波场22的多个相应的强度的多个相应的图。
对于一些应用,第二声波换能器30可以是例如一线性阵列探头(linear arrayprobe)、一凸面阵列探头(convex array probe)、一相控阵列探头(phased array probe),或被配置为用于波束形成及脉冲回声操作包括彩色多普勒成像的一诊断探头(diagnosticprobe)的任何其他标准设计。计算机处理器29被配置为以脉冲回声模式工作,并且进行波束形成技术(beam forming techniques),以便从介质26中的一特定位置获取所述回声数据。通常,相同的压电元件阵列被使用以生成一声波图(sonogram)及第一声波场22的所述多个相应的图:首先,所述声波图是使用脉冲回声超声(pulse-echo ultrasound)在一成像频率被生成的,然后所述多个相应的图被生成,如上所述。所述声波图提供诸多指导功能。例如:一标靶位置(target location)44譬如一肿瘤(tumor)可以在所述声波图上被看到,并且可以在所述图上看到第一声波场22的所述焦点区域。当被融合为一幅图像时,相对于标靶位置44的所述焦点区域的所述位置的实时反馈将被提供。诸如图4所示的一标靶单元(targeting unit)可以被用于将所述焦点区域移动到标靶位置44。
注意的是,可被出售的装置包括第二声波换能器30及计算机处理器29,但是不包括第一声波换能器20。这样的装置将具有如上所述的所有相同的特性。在这种情况下,第二声波换能器30与计算机处理器29一起可以被用于评估一已经存在的第一声波场的特性,譬如位移波幅或粒子速度。
对于一些应用,振荡的散射体28的位移波幅D可以在不用所述多个声波脉冲与第一声波场22同步的情况下被获得。第二声波换能器30可以将至少5个声波脉冲譬如小于50个声波脉冲传送到区域24中。每个脉冲具有一中心频率,所述中心频率比第一声波场22的第一频率f1至少高5倍及/或小于50倍。从一振荡的散射体诸如散射体28散射的每个脉冲的多个相应的回声被第二声波换能器30接收。计算机处理器29提取一系列的多个时间偏移。在所述系列中的每个单独的时间偏移不必一定在两个连续的回声之间,反而是每个时间偏移都可以在任何两个被接收的回声之间。例如:如果5个回声被接收,则总共10个时间偏移dT可以被提取,例如在回声1与2、2与3、3与4、4与5、1与3、1与4、1与5、2与4、2与5,以及3与5之间。对于一些应用,计算机处理器29选择所述被接收的多个回声中的两个回声,其中最大的时间偏移是所述两个回声之间。
散射体28的一系列的多个相应的位移波幅可以基于被提取的一系列的多个时间偏移被估计,然后使用统计分析以导出所述振荡的散射体28的位移波幅。一旦所述位移波幅被导出,计算机处理器29输出或驱动一输出装置以输出所述位移波幅的一指示。如上所述,一旦所述振荡的所述位移波幅被获得,所述振荡的所述速度波幅及在所述散射***置处的强度可以被计算,并且生成第一声波场22的多个相应的图。
标准算法,诸如上述的开赛(Kasai)参考文献中所描述的用于相位检测的自相关,从一被导出的相位偏移计算一假定的恒定流速,描述使用所述公式:
v=c phi(T)/(4pi f T),
其就在时间T期间被获取的所述相位phi(T)而言给出所述速度的平行分量,其中T是在多条连续A线之间的时间(Tprf),f是所述脉冲的所述中心频率。但是,在粒子速度的情况下,速度在多条连续的A线之间的时间间隔内不是恒定的。因此,根据本发明的一些应用,所述位移波幅D被计算,使用以下公式:
2D=c phi(T)/(4pi f),
并且,粒子速度波幅U被计算,使用以下公式:
U=2pi f1 D=c phi(T)f1/(4f),
其中,f1是所述第一声波场22的所述频率。
类似地,诸多互相关算法诸如上述的博纳富(Bonnefous)参考文献中所述,通常通过以下方法导出所述时间偏移dT,并且使用它以估计一假定的恒定速度:
v=c dT/(2T)。
在粒子速度的情况下,使用时间偏移以导出位移波幅D,通过以下方式:
D=c dT/2
并且,所述粒子速度波幅U,通过以下方式:
U=2pi f1 D。
现在参考图3A及图3B,根据本发明的一些应用,图3A示出8条A线的一图形,并且在所述诸多A线上示出多个相应的回声,图3B示出用于横跨多条连续的A线的一特定采样点(specific sample point)n的一被接收的信号Sk(n)的值的一图形,其中k是所述A线的索引号码(index number)。例如:在第二条A线上的一采样点编号700被写成S2(700),并且在第三条A线上的相同采样点被写成S3(700)。所述索引n可以具有从0到N-1的值,其中N是在所述A线中的多个采样点的总数。图3A示出8条连续的A线,全部从相同方向但在不同的时间被传送,并且在每对线之间的时间间隔Tprf是恒定的。举例来说,每条A线的长度为100微秒,每条A线的采样频率为100兆赫(MHz)。因此,沿着每条A线的多个样本之间有10纳秒,并且每条A线的一总数有10,000个采样点。一回声从单个散射体诸如散射体28在每条A线上被检测,所述单个散射体在空间中表现出多次振荡。如上所述,所述多个脉冲与第一声波场22同步,从而多个奇数的回声在最大负位置z-处从所述散射体被接收,并且多个偶数的回声在最大正位置z处从所述散射体被接收。相应地,所述被接收的回声的所述多个相应的时间来回交替,其中出现与振荡的散射体28的总位移2D有关的时间偏移dT。在图3A中的水平虚线N代表横跨所述多条连续A线上的一特定采样点数n=M,M的值代表在介质26中的一特定深度。S1(M)是在第一条A线上的所述采样点数M,并且S2(M)是在第二条A线上的相同采样点数M。在图3B中的所述图形示出采样点数M的信号值在多条连续的A线上的变化。如图3A所示,在第一条A线上的所述回声e1上,S1(M)是一最大者,在第二条A线上的所述回声e2上,S2(M)是一最小者。相应地,如图3B所示,采样点S1(M)的信号值v1为一最大值,并且采样点S2(M)的信号值v2为一最小值。横跨所述多条连续的A线,在所述多条奇数的A线上的所述采样点数M全部近似相同值,并且在所述多条偶数的A线上的所述采样点数M全部近似相同值(其与所述多条奇数的A线的值不同)。来自横跨所述多条连续的A线信号的相同采样点的变化的一波幅A与振荡的散射体28的位移波幅D有关,并且可以被写成:
A=2sin[2pi f2(2D/c)], [公式9]
其中f2是所述脉冲的所述中心频率,D是所述振荡的散射体的所述位移波幅,c是在所述介质中的声速。如图3B所示,所述变化是在PRF/2的频率下被看到的。
现在参考图4,图4是根据本发明的一些应用的紧靠一受试者的皮肤被放置的一HIFU换能器及一声波探头的一示意图例。设备被提供用于实时决定在介质26的区域24内的一HIFU能量束48的一焦点区域46的位置及大小。注意的是,以下描述的是一种在不使用磁共振成像(MRI)的情况下实时定位焦点区域46的方法。(MRI是一种获得一相应结果的更昂贵的方法。)一超声换能器50通过以第一频率f1将HIFU能量48发射到区域24中,而在一对象的介质26的区域24中生成第一声波场22(如图1所示)。HIFU能量48在介质26譬如一受试者的组织52内生成诸多散射体的振荡运动,所述诸多散射体以第一频率f1振荡。通常,超声换能器50以至少0.1兆赫(MHz)及/或小于5兆赫(MHz)的一频率发射HIFU能量48。一声波探头54在一成像频率譬如以至少1MHz及/或小于50MHz的频率将脉冲回声超声能量56发射到介质26中。多个超声A线,诸如A线55,包括多个声波脉冲,诸如如上所述的第一声波脉冲32及第二声波脉冲34,通过声波探头54、超声换能器50或一第二超声换能器58(配置未示出)被传送到介质26的区域24中。每个声波脉冲具有一中心频率f2,所述中心频率f2比HIFU能量48的第一频率f1高,譬如至少高5倍及/或小于50倍,并且在所述多个脉冲之间的一时间间隔为所述HIFU能量48的周期T1的n+0.5倍,n是如上所述的一正整数。(注意的是,本文中关于由超声换能器50、声波探头54或第二超声换能器58传送的所述第二声波场描述的所有选项都是可互换的。)如上所述,所述多个声波脉冲与HIFU能量同步,并且在介质26中从多个振荡的散射体诸如散射体28散射,从而导致多个相应的回声被声波探头54接收。(注意的是,关于不与第一声波场22同步的所述多个脉冲,如上所述的本发明的所有选择及特征也可以被应用在这里。)
电脑处理器29(a)从脉冲回声超声能量56的多个反射生成介质26的一实时声波图60(b)提取在所述多个被接收回声之间的一时间偏移dT,(c)基于所述被提取的时间偏移dT,计算散射体28的一位移波幅D,及(d)在对应于区域24的声波图60的一部分64上生成多个位移波幅的一图62。如上所述,多个速度波幅及强度也可以被映射成图(mapped)。
图62示出何处在第一声波场22中的多个振荡的散射体的位移波幅或速度波幅是最高的,从而示出何处是第一声波场22的强度最高者,即,何处是焦点区域46。由于图62覆盖在介质26的声波图60上,因此相对于介质26中的区域24可以看到焦点区域46。然后可以例如通过使用下文中所述的标靶单元来适当地重定位焦点区域46,以便将高强度聚焦超声能量48聚焦在介质26的区域24内的标靶位置66上。
对于一些应用,介质26是受试者68的组织52(图4)。超声换能器50通过将高强度聚焦超声能量48发射到组织52中而在组织52中生成治疗效果。对于一些应用,治疗效果是由高强度聚焦超声能量48加热组织52引起的。其他非热治疗作用也可以由高强度聚焦超声能量48引起,例如:空洞化(cavitation)、组织液化(tissue liquefaction)、细胞坏死(cellnecrosis)及细胞凋亡(cell apoptosis)。
对于一些应用,计算机处理器29还通过监视位移波幅D在至少1秒及/或小于120秒的时间段内的时间变化来监视组织52的机械性质的变化。当被监视的组织52的机械性能达到一阈值时,计算机处理器29终止HIFU能量48的传送。例如:由于暴露于HIFU能量48,组织52的机械阻抗变化。随着组织52的机械阻抗变化,振荡的散射体28的位移波幅D,例如组织52中的一非均质体(inhomogeneity)也变化。当组织52的机械阻抗达到阈值时,计算机处理器29终止HIFU能量48向组织52的传送。
为了促进将HIFU能量48施加到组织52中的标靶位置66,超声换能器50可以用有区别的校准模式及治疗模式进行操作。在每个模式中,超声换能器50发射具有一个或多个不同的相应参数的HIFU能量48。计算机处理器29更改校准模式及治疗模式的相应参数,使得当超声换能器50以治疗模式操作时,HIFU能量48在组织52中引起治疗效果,而当超声换能器50以校准模式操作时,HIFU能量48不会在组织52中引起治疗效果。例如:计算机处理器29可以更改以下一组参数中的一个或多个参数:
·HIFU能量48的一脉冲的一持续时间,以使当超声换能器50在治疗模式下工作时,脉冲的持续时间长于超声换能器50在校准模式下工作时的脉冲的时间,
·HIFU能量48的一占空比,使得当超声换能器50在所述治疗模式下工作时的所述占空比要比超声换能器50在校准模式下工作时的所述占空比更高,及/或
·HIFU能量48的功率,使得当超声换能器50以治疗模式操作时的HIFU能量48的功率高于当超声换能器50以校准模式操作时的HIFU能量48的功率。
以校准模式操作超声换能器50允许图第一声波场22的位移波幅,速度波幅及/或强度,并定位焦点区域46,而不会对组织52造成任何损害。然后,HIFU能量束48可以被重新定向以便重新定位焦点区域46,及/或可以变化焦点区域46的尺寸,使得标靶位置66在焦点区域46内。因此,当超声换能器50处于校准模式时,焦点区域46可被监视及被引导,并且一旦焦点区域46处于正确的位置,超声换能器50可被切换至治疗模式,以便让HIFU能量48在组织52中引起一治疗效果。对于一些应用,计算机处理器29在超声换能器50以治疗模式操作时监视组织52,以便监视治疗的进行情况。如果合适,当超声换能器50以治疗模式操作时,计算机处理器29可以变化超声换能器50的上述参数,以便在治疗期间变化对组织52的影响。
一标靶单元(targeting unit)70可以用于移动HIFU能量48的焦点区域46。对于一些应用,标靶单元70被配置为使得手控动量(manual movement)譬如由超声换能器50的一操作者进行,使超声换能器50相对于介质26运动,从而在介质26内移动HIFU能量48的焦点区域46。
替代地或附加地,标靶单元70可以包括一第一换能器控制器(first-transducercontroller)72及标靶电路(targeting circuitry)74。标靶电路74:(a)获得与HIFU能量48的焦点区域46在多个位移波幅、多个速度波幅或多个强度的图62上的位置相对应的数据,(b)获得与介质26中的标靶位置66相对应的数据,并且(c)将一电信号发送到第一换能器控制器72。第一换能器控制器72接收所述电信号,并对所述电信号作出响应,将HIFU能量48的焦点区域46移向在介质26内的标靶位置66。例如:第一换能器控制器72可以移动焦点区域46及/或变化焦点区域46的尺寸,通过以下方式:(a)将相控阵控制应用于HIFU能量48,或(b)通过将超声换能器50相对于介质26移动,譬如通过使用一机械手臂76及多个齿轮以将超声换能器50相对于介质26移动。对于一些应用,标靶电路74可以:(a)直接从计算机处理器29获得与焦点区域46的位置及标靶位置66相对应的数据,从而提供治疗的闭环控制,即计算机处理器29将与焦点区域46的多个相对位置及标靶位置66相对应的数据经由标靶电路74发送到标靶单元70,并且标靶单元70相应地作出响应以将焦点区域46带到标靶位置66。
替代地或附加地,标靶电路74可以:(a)从计算机处理器29获得与焦点区域46的一尺寸相对应的实时数据,并且(b)将数据发送到第一换能器控制器72,使得第一换能器控制器72可以更改焦点区域46的一尺寸,以便对HIFU能量48进行聚焦或散焦(focus ordefocus)。例如:焦点区域46的所述尺寸可以:(a)被减少以便增加在焦点区域46中的HIFU能量48的强度,或(b)被增加以便减少在焦点区域46中的HIFU能量48的强度。
现在参考图5,图5是根据本发明的一些应用的被设置在单个单元上的一HIFU换能器(HIFU transducer)及一声波探头(acoustic probe)的一示意图例。第一声波换能器20可以被成形为具有一中心孔,并且第二声波换能器30被定位在第一换能器20的后面或内部,使得第一声波场22与所述多个诊断声波脉冲被整齐排列,即,使得第一声波场的轴线与所述多个诊断声波脉冲的传播方向被整齐排列。例如:Sonic-Concepts H 184-002及其他型号具有一中央孔的直径约为40毫米(mm)。
本文所描述的本发明的诸多应用可以采用可访问自一计算机可用或计算机可读介质(譬如一非暂时性计算机可读介质)的一计算机程序产品的形式,所述计算机可用或计算机可读介质提供程序代码,供一计算机或任何指令执行***诸如计算机处理器29使用或与其结合使用。为了此描述的目的,一计算机可用或计算机可读介质可以是任何装置,所述任何装置可以包括、存储、通信、传播或输送所述程序,供所述指令执行***、设备或装置使用或与其结合使用。所述介质可以是一电子的、磁性的、光学的、电磁的、红外的或半导体***(或设备或装置)或一传播介质。通常,所述计算机可用或计算机可读介质是一非暂时性计算机可用或计算机可读介质。
计算机可读介质的诸多示例包括一半导体或固态存储器、磁带、一可移动计算机磁盘、一随机存取存储器(RAM)、一只读存储器(ROM)、一硬磁盘及一光盘。
诸多光盘的诸多当前示例包括光盘只读存储器(CD-ROM),光盘读/写(CD-R/W)及DVD。对于一些应用,云存储及/或在一远程服务器中的存储被使用。
适用于存储及/或执行程序代码的一数据处理***将包括至少一个处理器(譬如计算机处理器29),所述至少一个处理器通过一***总线直接或间接耦合到诸多存储元件。所述诸多存储器元件可以包括在程序代码的实际执行期间使用的本地存储器(localmemory)、大容量存储器(bulk storage)以及提供至少一些程序代码的临时存储以便减少在执行期间必须从大容量存储器中检索代码的次数的高速缓冲存储器(cache memories)。所述***可以读取在诸多程序存储装置上的诸多发明指令,并且遵循这些指令以执行本发明的诸多实施例的方法。
诸多网络适配器可以被耦合到所述处理器,以使所述处理器能够通过中介的私有或公共网络被耦合到诸多其他处理器或诸多远程打印机或诸多存储装置。诸多调制解调器、电缆调制解调器及诸多以太网卡只是诸多网络适配器的少数当前可用类型。
用于执行本发明的诸多应用的计算机程序代码可以用一种或多种编程语言的任何组合被编写,所述编程语言包括一面向对象的编程语言诸如Java、Smalltalk、C++等,及诸多常规过程编程语言诸如C编程语言或类似的编程语言。
将被理解的是,本文所描述的诸多方法可以通过诸多计算机程序指令被实现。这些计算机程序指令可以被提供给一通用计算机、专用计算机或其他可编程数据处理设备的一处理器,以生成一机器,使得所述诸多指令经由所述计算机的所述处理器(譬如计算机处理器29)或其他可编程数据处理设备,创建用于实现在本申请中被描述的所述诸多方法中被指定的所述诸多功能/诸多动作的装置。这些计算机程序指令还可以被存储在一计算机可读介质(譬如一非暂时性计算机可读介质)中,所述计算机可读介质可以指导一计算机或其他可编程数据处理设备以一特定方式起作用,使得被存储在所述计算机可读介质中的所述诸多指令生成一制品,所述制品包括诸多指令装置,所述指令装置实现在本申请中所描述的诸多方法中被指定的功能/动作。所述诸多计算机程序指令也可以被加载到一计算机或其他可编程数据处理设备上,以致使一系列操作步骤在所述计算机或其他可编程设备上被执行,以产生一计算机实现过程,使得在所述计算机或其他可编程设备上执行的所述诸多指令提供诸多流程,用于实现在本申请中所描述的诸多方法中被指定的诸多功能/诸多动作。
计算机处理器29通常是一硬件装置(hardware device),所述硬件装置以诸多计算机程序指令被编程,以生成一专用计算机。例如:当被编程以执行本文所描述的诸多方法时,所述计算机处理器通常充当一专用计算机处理器(special purpose computerprocessor)。通常,由诸多计算机处理器进行的本文所描述的诸多操作将一存储器其为真实的物理物品的物理状态转换为具有不同的磁极性、电荷等,这取决于被使用的存储器的技术。
本文所描述的技术及设备可以与给本埃兹拉(Ben-Ezra)的在2016年7月17日提交的标题为“多普勒引导的超声治疗”的US 62/363,295及给本埃兹拉(Ben-Ezra)的在2017年7月13日提交的标题为“多普勒引导的超声治疗(Doppler guided ultrasound therapy)”的PCT/IL2017/050799被公开作为WO2018/015944中所描述的技术及设备进行组合,两者均通过引用并入本文。
本领域技术人员将意识到的是,本发明不限于以上已经具体示出及描述的内容。而是,本发明的范围包括上述各种特征的组合及子组合,及本领域技术人员在阅读前述说明后将想到的现有技术中不存在的变型及修改。

Claims (38)

1.一种用于评估在一介质的一区域中的一声波场的一特性的方法,其特征在于:所述方法包括步骤:
驱动一第一声波换能器,在一第一频率将一第一声波场传送到所述区域中,所述第一声波场以被设置在所述区域中的多个散射体的所述第一频率生成振荡运动,每个散射体在一相应的平衡位置周围振荡;
驱动一第二声波换能器,以进行:
(a)将一第一声波脉冲及一第二声波脉冲传送到所述区域中,每个脉冲具有一中心频率,所述中心频率高于所述第一频率,并且在所述多个脉冲之间的一时间间隔为所述第一声波场的一周期的n+0.5倍,n为一正整数,及
(b)接收从所述区域中的一振荡的散射体散射开的每个脉冲的多个相应的回声,
所述第一脉冲及所述第二脉冲与所述第一声波场同步,使得当所述振荡的散射体在相对于所述平衡位置的一第一位移极端处时,所述第一脉冲从所述振荡的散射体散射开,并且当所述振荡的散射体在一第二位移极端处,所述第二位移极端与相对于所述平衡位置的所述第一位移极端相反时,所述第二脉冲从所述振荡的散射体散射开;及
使用至少一个计算机处理器:
(a)提取在所述多个被接收的回声之间的一时间偏移,所述多个被接收的回声归因于所述振荡的散射体的运动,
(b)基于所述被提取的时间偏移,计算所述振荡的散射体的一位移波幅,及
(c)驱动一输出装置以输出所述振荡的散射体的所述位移波幅的一指示。
2.根据权利要求1所述的方法,其特征在于:驱动所述第二声波换能器的步骤包括:驱动所述第二声波换能器以将所述第一声波脉冲及所述第二声波脉冲传送到所述区域中,每个脉冲具有一中心频率,所述中心频率比所述第一频率高5到50倍。
3.根据权利要求1所述的方法,其特征在于:使用至少一个计算机处理器的步骤还包括:
从所述振荡的散射体的所述位移波幅导出所述第一声波场的至少一个参数;及
驱动所述输出装置以输出所述参数的一指示。
4.根据权利要求3所述的方法,其特征在于:导出所述第一声波场的所述至少一个参数的步骤包括:基于所述位移波幅,计算所述振荡的散射体的一速度波幅。
5.根据权利要求4所述的方法,其特征在于:导出所述第一声波场的所述至少一个参数的步骤包括:基于所述速度波幅,计算所述第一声波场在所述振荡的散射体的一位置处的一强度。
6.根据权利要求1至5任一项所述的方法,其特征在于:驱动所述第二声波换能器的步骤包括:驱动所述第二声波换能器以将所述第一声波脉冲及所述第二声波脉冲传送到所述区域中,在所述多个脉冲之间的所述时间间隔为所述第一声波场的所述周期的n+0.5倍,n为大于或等于5的一正整数。
7.根据权利要求1至5任一项所述的方法,其特征在于:驱动所述第二声波换能器的步骤包括:驱动所述第二声波换能器以将所述第一声波脉冲及所述第二声波脉冲传送到所述区域中,在所述多个脉冲之间的所述时间间隔为所述第一声波场的所述周期的n+0.5倍,及n为小于或等于1000的一正整数。
8.根据权利要求1至5任一项所述的方法,其特征在于:驱动所述第一声波换能器以传送所述第一声波场的步骤包括:驱动所述第一声波换能器在所述第一频率传送高强度聚焦超声能量到所述区域中。
9.根据权利要求8所述的方法,其特征在于:驱动所述第一声波换能器传送所述高强度聚焦超声能量的步骤包括:驱动所述第一声波换能器在所述第一频率传送所述高强度聚焦超声能量,所述第一频率为0.1至5兆赫。
10.根据权利要求1至5任一项所述的方法,其特征在于:
驱动所述第二换能器的步骤包括:驱动所述第二换能器,以进行:
(a)在多个相应的方向上传送多对第一声波脉冲及第二声波脉冲到所述区域中,每个脉冲具有一中心频率,所述中心频率高于所述第一频率,并且在多个相应的第一脉冲与第二脉冲之间的所述时间间隔为所述第一声波场的所述周期的n+0.5倍,n为一正整数,及
(b)接收从所述区域中的一相应的振荡的散射体散射开的每个脉冲的多个相应的回声,
每对第一脉冲及第二脉冲与所述第一声波场同步,使得当所述多个振荡的散射体在相对于多个相应的平衡位置的多个相应的第一位移极端处时,所述多个第一脉冲从所述多个相应的振荡的散射体散射开,并且当所述多个振荡的散射体在多个相应的第二位移极端处,所述多个相应的第二位移极端与相对于所述多个相应的平衡位置的所述多个相应的第一位移极端相反时,所述多个第二脉冲从所述多个相应的振荡的散射体散射开;及
使用至少一个计算机处理器的步骤包括:
(a)提取在相应的多对被接收的回声之间的多个相应的时间偏移,所述相应的多对被接收的回声归因于所述多个相应的振荡的散射体的运动,
(b)基于所述多个被提取的时间偏移,计算所述多个相应的振荡的散射体的多个相应的位移波幅,
(c)驱动一输出装置以输出所述多个相应的振荡的散射体的所述多个相应的位移波幅的多个相应的指示,及
(d)生成在所述区域中的所述多个相应的位移波幅的一个二维图像。
11.根据权利要求10所述的方法,其特征在于:使用至少一个计算机处理器的步骤还包括:
基于所述多个位移波幅,计算所述多个相应的振荡的散射体的多个相应的速度波幅;
驱动一输出装置以输出所述多个相应的振荡的散射体的所述多个相应的速度波幅的多个相应的指示;及
生成在所述区域中的所述多个相应的速度波幅的一个二维图像。
12.根据权利要求11所述的方法,其特征在于:使用至少一个计算机处理器的步骤还包括:
基于所述多个速度波幅,计算所述第一声波场的多个相应的强度;
驱动一输出装置以输出所述多个相应的强度的多个相应的指示;及
生成在所述区域中的所述第一声波场的所述多个相应的强度的一个二维图像。
13.一种用于与一高强度聚焦超声能量的焦点区域一起使用的设备,其特征在于:包括:
一第一超声换能器,被配置为通过将所述高强度聚焦超声能量在一第一频率发射到一介质的一区域中,以传送一第一声波场,所述第一声波场以被设置在所述区域中的多个散射体的所述第一频率生成振荡运动,每个散射体在一相应的平衡位置周围振荡;
一声波探头,
其中所述声波探头被配置为在一成像频率将一脉冲回声超声能量发射到所述介质中,及
其中一声波元件选自于由所述第一超声换能器、一第二超声换能器及所述声波探头组成的群组,并且所述声波元件被配置为:(i)将一第一声波脉冲及一第二声波脉冲传送到所述区域中,每个脉冲具有一中心频率,所述中心频率高于所述第一频率,并且在所述多个脉冲之间的一时间间隔为所述第一声波场的一周期的n+0.5倍,n为一正整数,及(ii)接收从所述区域中的一振荡的散射体散射开的每个脉冲的多个相应的回声,
所述第一脉冲及所述第二脉冲与所述第一声波场同步,使得当所述振荡的散射体在相对于所述平衡位置的一第一位移极端处时,所述第一脉冲从所述振荡的散射体散射开,并且当所述振荡的散射体在一第二位移极端处,所述第二位移极端与相对于所述平衡位置的所述第一位移极端相反时,所述第二脉冲从所述振荡的散射体散射开;及
一计算机处理器,被配置为:(a)基于由所述声波探头传送的所述脉冲回声超声能量的多个反射生成所述介质的一实时声波图,(b)提取在所述多个被接收的回声之间的一时间偏移,所述多个被接收的回声归因于所述振荡的散射体的运动,(c)基于所述被提取的时间偏移,计算所述振荡的散射体的一位移波幅,及(d)在所述声波图对应于所述区域的一部分上生成多个位移波幅的一图。
14.根据权利要求13所述的设备,其特征在于:所述声波元件包括所述第二超声换能器。
15.根据权利要求13所述的设备,其特征在于:所述声波元件包括所述声波探头。
16.根据权利要求13所述的设备,其特征在于:所述声波元件包括所述第一超声换能器。
17.根据权利要求13所述的设备,其特征在于:所述第一频率为0.1至5兆赫。
18.根据权利要求13所述的设备,其特征在于:每个脉冲的所述中心频率比所述第一频率高至少5至50。
19.根据权利要求13所述的设备,其特征在于:所述成像频率是1至50兆赫。
20.根据权利要求13至19任一项所述的设备,其特征在于:所述计算机处理器还被配置为:(a)基于所述位移波幅,计算所述第一声波场在所述区域中的一速度波幅,及(b)在所述声波图对应于所述区域的一部分上生成多个速度波幅的一图。
21.根据权利要求20所述的设备,其特征在于:所述计算机处理器还被配置为:(a)基于所述速度波幅,计算所述第一声波场在所述区域中的一强度,及(b)在所述声波图对应于所述区域的一部分上生成所述第一声波场的多个强度的一图。
22.根据权利要求21所述的设备,其特征在于:所述介质是一对象的一身体的组织,其中所述第一超声换能器被配置为通过将所述高强度聚焦超声能量发射到所述组织中以在所述组织中引起一治疗效果。
23.根据权利要求22所述的设备,其特征在于:所述振荡的散射体是在所述组织中的一非均质体。
24.根据权利要求22所述的设备,其特征在于:所述第一超声换能器被配置为通过加热所述组织以在所述组织中引起所述治疗效果。
25.根据权利要求22所述的设备,其特征在于:所述计算机处理器还被配置为:通过监视所述位移波幅的一时间变化以监视所述组织的一机械特性的一改变;及
当所述组织的所述机械性能达到一阈值时,将所述第一声波场终止,以对所述监视作出响应。
26.根据权利要求25所述的设备,其特征在于:所述组织的所述机械特性是所述组织的一机械阻抗,其中所述计算机处理器被配置为:(a)通过监视所述位移波幅的一时间变化以监视所述组织的所述机械阻抗的一改变,及(b)当所述组织的所述机械阻抗达到一阈值时,将所述第一声波场终止,以对所述监视作出响应。
27.根据权利要求25所述的设备,其特征在于:所述计算机处理器被配置为监视所述特性在1至120秒长的一时间段内的所述变化。
28.根据权利要求22所述的设备,其特征在于:
所述第一超声换能器被配置为在有区别的校准模式及治疗模式操作,以促进将治疗的高强度聚焦超声能量施加到一标靶位置,在每个模式中以一个或多个不同的相应的参数发射所述高强度聚焦超声能量,及
所述计算机处理器被配置为更改一个或多个相应的参数,使得当所述第一超声换能器在所述治疗模式操作时,所述高强度聚焦超声能量在所述组织中引起一治疗效果,而当所述第一超声换能器在所述校准模式操作时,所述高强度聚焦超声能量在所述组织中不会引起一治疗效果。
29.根据权利要求28所述的设备,其特征在于:所述计算机处理器被配置为更改所述高强度聚焦超声能量的一高强度聚焦超声脉冲的一持续时间,使得当所述第一超声换能器在所述治疗模式操作时的所述高强度聚焦超声脉冲的所述持续时间要比当所述第一超声换能器在所述校准模式操作时的所述高强度聚焦超声脉冲的所述持续时间更长。
30.根据权利要求28所述的设备,其特征在于:所述计算机处理器被配置为更改所述高强度聚焦超声能量的一占空比,使得当所述第一超声换能器在所述治疗模式操作时的所述占空比高于当所述第一超声换能器在所述校准模式操作时的所述占空比。
31.根据权利要求28所述的设备,其特征在于:所述计算机处理器被配置为更改所述高强度聚焦超声能量的一功率,使得当所述第一超声换能器在所述治疗模式操作时的所述高强度聚焦超声能量的所述功率高于当所述第一超声换能器在所述校准模式操作时的所述高强度聚焦超声能量的所述功率。
32.根据权利要求28所述的设备,其特征在于:所述计算机处理器被配置为当所述第一超声换能器在所述治疗模式操作时监视所述组织,并且根据所述监视以更改所述治疗模式的所述多个参数,以便转变对所述组织的一影响。
33.根据权利要求28所述的设备,其特征在于:所述设备包括一标靶单元,所述标靶单元被配置为当所述第一超声换能器在所述校准模式操作时移动所述高强度聚焦超声能量的所述焦点区域。
34.根据权利要求33所述的设备,其特征在于:所述标靶单元被配置为通过移动相对于所述介质的所述第一超声换能器,使得所述标靶单元的一手控动量移动在所述介质内的所述高强度聚焦超声能量的所述焦点区域。
35.根据权利要求33所述的设备,其特征在于:所述标靶单元包括:(i)一第一换能器控制器,及(ii)一标靶电路,被配置为:(a)获取在一图上对应于所述高强度聚焦超声能量的所述焦点区域的数据,所述图选自于由以下各项组成的群组:所述多个位移波幅的图、所述多个速度波幅的图及所述多个强度的图,(b)获取对应于所述介质中的一标靶位置的数据,及(c)将一电信号发送到所述第一换能器控制器,其中所述第一换能器控制器被配置为接收所述电信号,并且对所述电信号作出响应,将所述高强度聚焦超声能量的所述焦点区域移向在所述介质内的所述标靶位置。
36.根据权利要求35所述的设备,其特征在于:所述第一换能器控制器被配置为:(a)将所述高强度聚焦超声能量的所述焦点区域相对于所述第一超声换能器移动,及(b)通过对所述第一超声换能器所发射的所述高强度聚焦超声能量施加相控阵控制,以改变所述高强度聚焦超声能量的所述焦点区域的一尺寸。
37.根据权利要求35所述的设备,其特征在于:所述第一换能器控制器被配置为通过将所述第一超声换能器相对于所述介质移动,以移动所述高强度聚焦超声能量的所述焦点区域。
38.根据权利要求13至19任一项所述的设备,其特征在于:所述设备还包括:单个壳体,所述第一超声换能器及所述声波元件被耦合到所述单个壳体,其中所述壳体将所述第一声波场及所述多个声波脉冲整齐排列为平行的或反平行的。
CN201980021795.5A 2018-01-24 2019-01-22 以超声粒子速度估计器映射的声波场 Pending CN111970972A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862621140P 2018-01-24 2018-01-24
US62/621,140 2018-01-24
PCT/IL2019/050089 WO2019145945A1 (en) 2018-01-24 2019-01-22 Acoustic field mapping with ultrasonic particle velocity estimator

Publications (1)

Publication Number Publication Date
CN111970972A true CN111970972A (zh) 2020-11-20

Family

ID=67395832

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980021795.5A Pending CN111970972A (zh) 2018-01-24 2019-01-22 以超声粒子速度估计器映射的声波场

Country Status (4)

Country Link
US (1) US20210045714A1 (zh)
EP (1) EP3742976A4 (zh)
CN (1) CN111970972A (zh)
WO (1) WO2019145945A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114563077A (zh) * 2020-11-27 2022-05-31 嘉善飞阔医疗科技有限公司 一种基于piv的超声手术刀输出声功率测量***
WO2024055552A1 (zh) * 2022-09-15 2024-03-21 深圳半岛医疗集团股份有限公司 超声输出脉冲的调制方法、控制器及治疗仪

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116328216B (zh) * 2023-05-10 2023-08-11 深圳半岛医疗有限公司 超声输出重复频率控制方法、设备和可读存储介质

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5086775A (en) * 1990-11-02 1992-02-11 University Of Rochester Method and apparatus for using Doppler modulation parameters for estimation of vibration amplitude
US5425370A (en) * 1994-03-23 1995-06-20 Echocath, Inc. Method and apparatus for locating vibrating devices
US20020095087A1 (en) * 2000-11-28 2002-07-18 Mourad Pierre D. Systems and methods for making noninvasive physiological assessments
US6425867B1 (en) * 1998-09-18 2002-07-30 University Of Washington Noise-free real time ultrasonic imaging of a treatment site undergoing high intensity focused ultrasound therapy
US6485423B2 (en) * 2000-01-31 2002-11-26 Bjorn A. J. Angelsen Correction of phasefront aberrations and pulse reverberations in medical ultrasound imaging
US20040034304A1 (en) * 2001-12-21 2004-02-19 Chikayoshi Sumi Displacement measurement method and apparatus, strain measurement method and apparatus elasticity and visco-elasticity constants measurement apparatus, and the elasticity and visco-elasticity constants measurement apparatus-based treatment apparatus
US20040267129A1 (en) * 2003-05-30 2004-12-30 Angelsen Bjorn A.J. Ultrasonic contrast agent detection and imaging by low frequency manipulation of high frequency scattering properties
US20070106157A1 (en) * 2005-09-30 2007-05-10 University Of Washington Non-invasive temperature estimation technique for hifu therapy monitoring using backscattered ultrasound
US20070276245A1 (en) * 2004-10-15 2007-11-29 Konofagou Elisa E System And Method For Automated Boundary Detection Of Body Structures
US20080097207A1 (en) * 2006-09-12 2008-04-24 Siemens Medical Solutions Usa, Inc. Ultrasound therapy monitoring with diagnostic ultrasound
US20100280373A1 (en) * 2009-05-04 2010-11-04 Liexiang Fan Feedback in medical ultrasound imaging for high intensity focused ultrasound
US20100286514A1 (en) * 2005-06-25 2010-11-11 University Of Southampton Contrast enhancement between linear and nonlinear scatterers
WO2013047960A1 (ko) * 2011-09-29 2013-04-04 한국보건산업진흥원 하이푸 초점 영상을 얻기 위한 초음파 영상 시스템 및 이를 이용한 초음파 영상 생성 방법
US20130184580A1 (en) * 2012-01-13 2013-07-18 General Electric Company Color flow image and spectrogram ultrasound signal sharing
US20150164480A1 (en) * 2013-12-13 2015-06-18 Kabushiki Kaisha Toshiba Ultrasonic diagnosis apparatus, image processing apparatus, and image processing method
US20160120511A1 (en) * 2013-05-30 2016-05-05 The University Of Tokyo Ultrasonic medical device
US20160262727A1 (en) * 2013-11-08 2016-09-15 The University Of North Carolina At Chapel Hill Acoustic detection of activated phase-change contrast agent
US20170080259A1 (en) * 2015-02-28 2017-03-23 Xi'an Jiaotong University Focused ultrasound split-foci control using spherical-confocal-split array with dual frequency of fundamental and harmonic superimposition
WO2017135567A1 (ko) * 2016-02-01 2017-08-10 서강대학교 산학협력단 Hifu와 초음파 영상을 위한 초음파 치료 장치 및 그 제어 방법
US9743909B1 (en) * 2013-05-15 2017-08-29 University Of Washington Through Its Center For Commercialization Imaging bubbles in a medium

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018015944A1 (en) 2016-07-17 2018-01-25 Shmuel Ben-Ezra Doppler guided ultrasound therapy

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5086775A (en) * 1990-11-02 1992-02-11 University Of Rochester Method and apparatus for using Doppler modulation parameters for estimation of vibration amplitude
US5425370A (en) * 1994-03-23 1995-06-20 Echocath, Inc. Method and apparatus for locating vibrating devices
US6425867B1 (en) * 1998-09-18 2002-07-30 University Of Washington Noise-free real time ultrasonic imaging of a treatment site undergoing high intensity focused ultrasound therapy
US6485423B2 (en) * 2000-01-31 2002-11-26 Bjorn A. J. Angelsen Correction of phasefront aberrations and pulse reverberations in medical ultrasound imaging
US20020095087A1 (en) * 2000-11-28 2002-07-18 Mourad Pierre D. Systems and methods for making noninvasive physiological assessments
US20040034304A1 (en) * 2001-12-21 2004-02-19 Chikayoshi Sumi Displacement measurement method and apparatus, strain measurement method and apparatus elasticity and visco-elasticity constants measurement apparatus, and the elasticity and visco-elasticity constants measurement apparatus-based treatment apparatus
US20040267129A1 (en) * 2003-05-30 2004-12-30 Angelsen Bjorn A.J. Ultrasonic contrast agent detection and imaging by low frequency manipulation of high frequency scattering properties
US20070276245A1 (en) * 2004-10-15 2007-11-29 Konofagou Elisa E System And Method For Automated Boundary Detection Of Body Structures
US20100286514A1 (en) * 2005-06-25 2010-11-11 University Of Southampton Contrast enhancement between linear and nonlinear scatterers
US20070106157A1 (en) * 2005-09-30 2007-05-10 University Of Washington Non-invasive temperature estimation technique for hifu therapy monitoring using backscattered ultrasound
US20080097207A1 (en) * 2006-09-12 2008-04-24 Siemens Medical Solutions Usa, Inc. Ultrasound therapy monitoring with diagnostic ultrasound
US20100280373A1 (en) * 2009-05-04 2010-11-04 Liexiang Fan Feedback in medical ultrasound imaging for high intensity focused ultrasound
WO2013047960A1 (ko) * 2011-09-29 2013-04-04 한국보건산업진흥원 하이푸 초점 영상을 얻기 위한 초음파 영상 시스템 및 이를 이용한 초음파 영상 생성 방법
US20130184580A1 (en) * 2012-01-13 2013-07-18 General Electric Company Color flow image and spectrogram ultrasound signal sharing
US9743909B1 (en) * 2013-05-15 2017-08-29 University Of Washington Through Its Center For Commercialization Imaging bubbles in a medium
US20160120511A1 (en) * 2013-05-30 2016-05-05 The University Of Tokyo Ultrasonic medical device
US20160262727A1 (en) * 2013-11-08 2016-09-15 The University Of North Carolina At Chapel Hill Acoustic detection of activated phase-change contrast agent
US20150164480A1 (en) * 2013-12-13 2015-06-18 Kabushiki Kaisha Toshiba Ultrasonic diagnosis apparatus, image processing apparatus, and image processing method
US20170080259A1 (en) * 2015-02-28 2017-03-23 Xi'an Jiaotong University Focused ultrasound split-foci control using spherical-confocal-split array with dual frequency of fundamental and harmonic superimposition
WO2017135567A1 (ko) * 2016-02-01 2017-08-10 서강대학교 산학협력단 Hifu와 초음파 영상을 위한 초음파 치료 장치 및 그 제어 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHAHRAM VAEZY, XUEGONG SHI, † ROY W. MARTIN, EMIL CHI, PETER I. NELSON, MICHAEL R. BAILEY, LAWRENCE A. CRUM: "REAL-TIME VISUALIZATION OF HIGH-INTENSITY FOCUSED ULTRASOUND TREATMENT USING ULTRASOUND IMAGING", ULTRASOUND IN MEDICINE AND BIOLOGY, vol. 27, no. 1, pages 33 - 42, XP004295662, DOI: 10.1016/S0301-5629(00)00279-9 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114563077A (zh) * 2020-11-27 2022-05-31 嘉善飞阔医疗科技有限公司 一种基于piv的超声手术刀输出声功率测量***
CN114563077B (zh) * 2020-11-27 2023-10-13 嘉善飞阔医疗科技有限公司 一种基于piv的超声手术刀输出声功率测量***
WO2024055552A1 (zh) * 2022-09-15 2024-03-21 深圳半岛医疗集团股份有限公司 超声输出脉冲的调制方法、控制器及治疗仪

Also Published As

Publication number Publication date
EP3742976A1 (en) 2020-12-02
US20210045714A1 (en) 2021-02-18
WO2019145945A1 (en) 2019-08-01
EP3742976A4 (en) 2021-10-20

Similar Documents

Publication Publication Date Title
JP4100709B2 (ja) 運動物体の運動と速度を決定するための装置
JP6129744B2 (ja) バックグランド動き効果に関する音響放射力効果の測定の調整
RU2580419C2 (ru) Дискретизация ультразвуковой виброметрии рассеяния поперечных волн с высоким пространственным разрешением
CN109688935B (zh) 多普勒导向的超声治疗
JP6259953B2 (ja) せん断波を用いる測定に関する超音波システム及び方法
JP2010526626A (ja) 関心領域の粘弾性の平均値を測定するための方法および装置
WO2008141220A1 (en) Shear modulus estimation by application of spatially modulated impulse acoustic radiation force approximation
CN111970972A (zh) 以超声粒子速度估计器映射的声波场
AU2019228303B2 (en) Hybrid elastography method, probe, and device for hybrid elastography
JP2004195228A (ja) 最適化された送信シーケンスを用いた超音波撮像における適応フィルタリング
JPH0246214B2 (zh)
Amador et al. Effects of phase aberration on acoustic radiation force-based shear wave generation
RU2794039C2 (ru) Способ гибридной эластографии, зонд и устройство для гибридной эластографии
RU2786332C2 (ru) Способ для измерения параметра затухания ультразвука методом гармонической эластографии; зонд и устройство для осуществления способа
JP5491671B2 (ja) 関心領域の粘弾性の平均値を測定するための方法
Coetzee The physics of ultrasound and Doppler
Zhu et al. Detection of scatters motion induced by mechanical vibrator using 7-chip barker-coded excitation
Yamakoshi et al. Novel imaging method of continuous shear wave by ultrasonic color flow mapping
Lai Beamforming Approaches for Ultrafast Nonlinear Ultrasound Imaging
Wang et al. P6B-7 The initial doppler blood flow measurement using an implantable CMUT array
Niederer Ultrasound imaging and Doppler flow velocity measurement
Pirnia Blood velocities estimation using ultrasound
Shieh QUANTITATIVE SIMULATION OF BACKSCATTER FROM TISSUE AND BLOOD FLOW FOR ULTRASONIC TRANSDUCERS
Barannik et al. Spatial Resolution and Measurement Accuracy of the Ultrasound Diagnostic System at Acoustic Remote Palpation Using High Intensity Focusing Ultrasound
Posada Ultrafast echocardiography

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination