CN111948574A - 一种逆变器开路故障的快速定位方法 - Google Patents

一种逆变器开路故障的快速定位方法 Download PDF

Info

Publication number
CN111948574A
CN111948574A CN202010756312.0A CN202010756312A CN111948574A CN 111948574 A CN111948574 A CN 111948574A CN 202010756312 A CN202010756312 A CN 202010756312A CN 111948574 A CN111948574 A CN 111948574A
Authority
CN
China
Prior art keywords
voltage
fault
time
phase voltage
voltage deviation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010756312.0A
Other languages
English (en)
Other versions
CN111948574B (zh
Inventor
陈勇
尹浩然
李猛
陈章勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202010756312.0A priority Critical patent/CN111948574B/zh
Publication of CN111948574A publication Critical patent/CN111948574A/zh
Application granted granted Critical
Publication of CN111948574B publication Critical patent/CN111948574B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/54Testing for continuity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16566Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533
    • G01R19/16576Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533 comparing DC or AC voltage with one threshold

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

本发明公开了一种逆变器开路故障的快速定位方法,基于混合逻辑动态模型与自适应阈值构建,包括故障电压特征的分析、期望电压的建立、实际电压的计算以及自适应阈值的设计。在本发明中,针对逆变器的开路故障状态,分析了故障下的电压特征,之后分别通过混合逻辑动态模型和电流得到期望电压和实际电压。在每个采样周期中,计算出期望电压和实际电压间的电压偏差,并将其作为故障定位变量。通过这种方式,避免了使用额外的硬件,并且易于嵌入***中。考虑到采样误差,参数误差,空载时间,延迟时间和过渡时间的影响,设计了自适应阈值。本发明能够快速而准确地定位到具体的故障开关管,可用于设备的容错***。

Description

一种逆变器开路故障的快速定位方法
技术领域
本发明属于逆变器故障检测技术领域,更为具体地讲,涉及一种逆变器开路故障的快速定位方法。
背景技术
逆变器广泛地应用于电机***、电网***以及电源等领域。但是,因为相关的电力电子器件及其驱动电路的脆弱性,使得逆变器成为***中容易发生故障的薄弱环节。逆变器发生故障后会工作在非正常状态,这将会导致***出现波动,影响***的性能,并且会增加***中其他器件的电压应力和电流应力,严重的情况下将会使***陷入崩溃。因此,逆变器的开路故障需要采取一系列的技术手段来提取***中相关的故障信息进而实现故障的诊断和定位。目前,研究学者提出了许多种逆变器开路故障的检测和定位方法。基于电压信号的方法被采用,文献[“Real-time IGBT open-circuit fault diagnosis in three-level neutral-point-clamped voltage-source rectifiers based on instantvoltage error”(L.M.A.Caseiro and A.M.S.Mendes,IEEE Transactions on IndustrialElectronics,vol.62,no.3,pp.1669-1678,March 2015)]利用相电流,相电压和直流母线电压,提出了一种基于瞬时电压误差的故障定位方法。然而,基于电压信号的方法有一定的局限性,一般需要添加额外的硬件,提高了成本。基于模型的方法被提出,文献[“Currentresidual vector-based open-switch fault diagnosis of inverters in PMSM drivesystems”(Q.An,L.Sun and L.Sun,IEEE Transactions on Power Electronics,vol.30,no.5,pp.2814-2827,May 2015)]中,作者引入了混合逻辑动态模型来构建观察者,并利用电流残差来检测故障,但该方法只能检测到故障,不能定位具体的故障开关管。
发明内容
本发明的目的是针对逆变器开路故障的定位,提供一种逆变器开路故障的快速定位方法,以缩短故障定位时间。
为实现上述发明目的,本发明逆变器开路故障的快速定位方法针对逆变器发生开路故障之后的相电压特征,建立起故障开关与电压偏差之间的关系,并基于混合逻辑动态模型获取期望电压,基于电流和电路拓扑计算得到实际电压;在考虑实际应用中参数误差、采样误差、死区时间、延迟和过渡时间的基础上,设计了自适应阈值提高鲁棒性。本发明能够有效解决逆变器开关管发生开路故障之后的快速定位问题。
本发明逆变器开路故障的快速定位方法,其特征在于,包括以下步骤:
(1)、逆变器开路故障电压分析
定义si(i=1,2,3,4,5,6)为六个开关的等效开关信号,si=1表示该开关处于打开状态,si=0代表该开关处于断开状态;
定义ik(k=a,b,c)为三相电流,σk(k=a,b,c)表示电流流向,
Figure BDA0002611696770000021
定义Vxn(x=a,b,c)代表期望相电压,Vxn *(x=a,b,c)为实际相电压,电压偏差为ΔVxn=Vxn-Vxn *
以开关管T1发生故障为例,根据电流的正负和流向可以将电压偏差ΔVxn分为两种情况:情况1:当ia>0的时候,A相电压偏差ΔVan>0,B相电压偏差ΔVbn<0,C相电压偏差ΔVcn<0,情况2:当ia≤0的时候,电压偏差不会受到故障的影响。所以一定有,A相电压偏差ΔVan≥0,B相电压偏差ΔVbn≤0,C相电压偏差ΔVcn≤0;
(2)、期望电压的建立
根据电路拓扑和基尔霍夫定律,可以获取期望电压为:
Figure BDA0002611696770000022
所以,每个采样周期内的相电压平均值可以表示为:
Figure BDA0002611696770000023
其中,Ts表示采样周期,t(k)代表第k个采样时刻;
(3)、实际电压的计算
根据电路拓扑,实际相电压为:
Figure BDA0002611696770000024
(4)、故障定位
定义Txn(k)为阈值,设计故障定位的标志Fx(x=a,b,c)为:
Figure BDA0002611696770000031
为了进一步保证鲁棒性,设计故障检测标志Fd为:
Figure BDA0002611696770000032
这里td代表着Fx=1所持续的时间,当Fd=1时,意味着检测到开路故障发生,否则没有故障。
(5)、自适应阈值的设计
考虑参数误差、采样误差影响的时候,定义μLXRXiX为LX,RX,iX的误差;所以,负载的参数误差和电流的采样误差对相电压偏差造成的影响为:
Figure BDA0002611696770000033
考虑死区时间、延迟和过渡时间影响的时候,定义Ts为采样周期,TX *代表开关管在一个采样周期内的理想开通时间,TX为开关管在一个采样周期内的实际开通时间,tdead表示死区时间,ton为开通的延迟和过渡时间,toff代表关断的延迟和过渡时间;一个采样周期内开关的实际开通时间为:
TX=TX *-(tdead+ton-toff)·sgn(i);
由死区时间,延迟和过渡时间引起的等效开关信号的最大误差可估算为:
Figure BDA0002611696770000034
所以,死区时间、延迟和过渡时间对相电压偏差造成的影响为:
Figure BDA0002611696770000035
其中sgn(·)为符号函数。所以,考虑到参数误差、采样误差、死区时间、延迟和过渡时间的影响,自适应阈值设计为Txn(k)=ΔVxn p&s max(k)+ΔVxn time max(k)。
本发明的目的是这样实现的。
本发明逆变器开路故障的快速定位方法,基于混合逻辑动态模型与自适应阈值构建,包括故障电压特征的分析、期望电压的建立、实际电压的计算以及自适应阈值的设计。在本发明中,针对逆变器的开路故障状态,分析了故障下的电压特征,之后分别通过混合逻辑动态模型和电流得到期望电压和实际电压。在每个采样周期中,计算出期望电压和实际电压间的电压偏差,并将其作为故障定位变量。通过这种方式,避免了使用额外的硬件,并且易于嵌入***中。考虑到采样误差,参数误差,空载时间,延迟时间和过渡时间的影响,设计了自适应阈值。本发明能够快速而准确地定位到具体的故障开关管,可用于设备的容错***。
附图说明
图1是本发明逆变器开路故障的快速定位方法一种具体实施方式流程示意图;
图2是本发明涉及的逆变器开关驱动信号工作模式波形图。
具体实施方式
下面结合附图对本发明的具体实施方式进行描述,以便本领域的技术人员更好地理解本发明。需要特别提醒注意的是,在以下的描述中,当已知功能和设计的详细描述也许会淡化本发明的主要内容时,这些描述在这里将被忽略。
如图1所示,本发明涉及故障电压特征的分析、期望电压的建立、实际电压的计算、故障定位以及自适应阈值的设计。
1、故障电压特征分析
在本发明中,以T1发生故障为例,结合混合逻辑动态模型分析开路故障时的电压特征,定义Vxn(x=a,b,c)代表期望相电压,Vxn *(x=a,b,c)为实际相电压,电压偏差为ΔVxn=Vxn-Vxn *。定义si(i=1,2,3,4,5,6)为六个开关的等效开关信号,si=1表示该开关处于打开状态,si=0代表该开关处于断开状态。定义ik(k=a,b,c)为三相电流,σk(k=a,b,c)表示电流流向,
Figure BDA0002611696770000041
根据电路拓扑和基尔霍夫定律,可以得到正常工作情况下的理想相电压Vxn为:
Figure BDA0002611696770000051
正常状态下,未发生故障,电压偏差为0。但是当T1发生故障之后,等效于s′1≡0,这里s′i(i=1,2,3,4,5,6)代表故障后六个电源开关的等效开关信号,然后,实际电压Vxn *可表示为:
Figure BDA0002611696770000052
因此,电压偏差ΔVxn可计算得到为:
Figure BDA0002611696770000053
根据计算得到的电压偏差,将开路故障之后的电压特征分为两种情况。情况1:当ia>0的时候,A相电压偏差ΔVan>0,B相电压偏差ΔVbn<0,C相电压偏差ΔVcn<0。情况2:当ia≤0的时候,电压偏差不会受到故障的影响。所以一定有,A相电压偏差ΔVan≥0,B相电压偏差ΔVbn≤0,C相电压偏差ΔVcn≤0。
同样,当其他开关管发生开路故障时,也可以得出类似的结论。电压偏差与故障开关之间的关系可以总结在表1中。
Figure BDA0002611696770000054
表1
2、期望电压的建立
根据电路拓扑和基尔霍夫定律,可以获取期望电压为:
Figure BDA0002611696770000055
每个采样周期的相电压平均值可以表示为:
Figure BDA0002611696770000061
这里Ts表示采样周期,t(k)代表第k个采样时刻。
3、实际电压的计算
根据电路拓扑,实际相电压为:
Figure BDA0002611696770000062
4、故障定位
定义Txn(k)为阈值,设计故障定位的标志Fx(x=a,b,c)为:
Figure BDA0002611696770000063
为了进一步保证鲁棒性,设计故障检测标志Fd为:
Figure BDA0002611696770000064
这里td代表着Fx=1所持续的时间,当Fd=1时,意味着检测到开路故障发生,否则没有故障。
基于上述分析,故障标志和故障开关之间的关系如表2所示
Figure BDA0002611696770000065
表2
5、自适应阈值的设计
实际应用中,参数误差、采样误差、死区时间、延迟和过渡时间是无法避免的,在设计阈值的时候需要考虑到这些影响。
为了便于分析参数和采样误差的影响,定义X=(x1,...,xn)T为***的输入参数,y=f(X)代表***输出。由于不可避免的环境,测量,老化和其他误差因素,输入参数中存在一定误差,并用μ=(μ1,...,μn)T表示,μ与X有关,因此y应当修正为y=f(X+μ)。
根据泰勒公式可知:
Figure BDA0002611696770000071
因此,输出的误差为:
Figure BDA0002611696770000072
定义μLXRXiX为LX,RX,iX的误差;所以,负载的参数误差和电流的采样误差对相电压偏差造成的影响为:
Figure BDA0002611696770000073
为了便于死区时间、延迟和过渡时间造成的影响,图2展示了逆变器开关驱动信号工作模式,定义Ts为采样周期,TX *代表开关管在一个采样周期内的理想开通时间,TX为开关管在一个采样周期内的实际开通时间,tdead表示死区时间,ton为开通的延迟和过渡时间,toff代表关断的延迟和过渡时间,sgn(·)为符号函数。。
开关管在一个采样周期内实际的开通时间为:
TX=TX *-(tdead+ton-toff)·sgn(i) (6)
因此,死区时间、延迟和过渡时间对等效的开关信号所造成影响可以估计为:
Figure BDA0002611696770000074
所以,对电压偏差的造成的影响为:
Figure BDA0002611696770000075
结合(5)和(8),设计自适应阈值为:
Txn(k)=ΔVxn p&s max(k)+ΔVxn time max(k) (9)
尽管上面对本发明说明性的具体实施方式进行了描述,以便于本技术领域的技术人员理解本发明,但应该清楚,本发明不限于具体实施方式的范围,对本技术领域的普通技术人员来讲,只要各种变化在所附的权利要求限定和确定的本发明的精神和范围内,这些变化是显而易见的,一切利用本发明构思的发明创造均在保护之列。

Claims (1)

1.一种逆变器开路故障的快速定位方法,其特征在于,包括以下步骤:
(1)、逆变器开路故障电压分析
定义si(i=1,2,3,4,5,6)为六个开关的等效开关信号,si=1表示该开关处于打开状态,si=0代表该开关处于断开状态;
定义ik(k=a,b,c)为三相电流,σk(k=a,b,c)表示电流流向,
Figure FDA0002611696760000015
定义Vxn(x=a,b,c)代表期望相电压,Vxn *(x=a,b,c)为实际相电压,电压偏差为ΔVxn=Vxn-Vxn *
以开关管T1发生故障为例,根据电流的正负和流向可以将电压偏差ΔVxn分为两种情况:情况1:当ia>0的时候,A相电压偏差ΔVan>0,B相电压偏差ΔVbn<0,C相电压偏差ΔVcn<0,情况2:当ia≤0的时候,电压偏差不会受到故障的影响。所以一定有,A相电压偏差ΔVan≥0,B相电压偏差ΔVbn≤0,C相电压偏差ΔVcn≤0;
(2)、期望电压的建立
根据电路拓扑和基尔霍夫定律,可以获取期望电压为:
Figure FDA0002611696760000011
所以,每个采样周期内的相电压平均值可以表示为:
Figure FDA0002611696760000012
其中,Ts表示采样周期,t(k)代表第k个采样时刻;
(3)、实际电压的计算
根据电路拓扑,实际相电压为:
Figure FDA0002611696760000013
(4)、故障定位
定义Txn(k)为阈值,设计故障定位的标志Fx(x=a,b,c)为:
Figure FDA0002611696760000014
为了进一步保证鲁棒性,设计故障检测标志Fd为:
Figure FDA0002611696760000021
这里td代表着Fx=1所持续的时间,当Fd=1时,意味着检测到开路故障发生,否则没有故障。
(5)、自适应阈值的设计
考虑参数误差、采样误差影响的时候,定义μLXRXiX为LX,RX,iX的误差;所以,负载的参数误差和电流的采样误差对相电压偏差造成的影响为:
Figure FDA0002611696760000022
考虑死区时间、延迟和过渡时间影响的时候,定义Ts为采样周期,TX *代表开关管在一个采样周期内的理想开通时间,TX为开关管在一个采样周期内的实际开通时间,tdead表示死区时间,ton为开通的延迟和过渡时间,toff代表关断的延迟和过渡时间;一个采样周期内开关的实际开通时间为:
TX=TX *-(tdead+ton-toff)·sgn(i);
由死区时间,延迟和过渡时间引起的等效开关信号的最大误差可估算为:
Figure FDA0002611696760000023
所以,死区时间、延迟和过渡时间对相电压偏差造成的影响为:
Figure FDA0002611696760000024
其中sgn(·)为符号函数。所以,考虑到参数误差、采样误差、死区时间、延迟和过渡时间的影响,自适应阈值设计为Txn(k)=ΔVxn p&s max(k)+ΔVxn time max(k)。
CN202010756312.0A 2020-07-31 2020-07-31 一种逆变器开路故障的快速定位方法 Expired - Fee Related CN111948574B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010756312.0A CN111948574B (zh) 2020-07-31 2020-07-31 一种逆变器开路故障的快速定位方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010756312.0A CN111948574B (zh) 2020-07-31 2020-07-31 一种逆变器开路故障的快速定位方法

Publications (2)

Publication Number Publication Date
CN111948574A true CN111948574A (zh) 2020-11-17
CN111948574B CN111948574B (zh) 2022-01-11

Family

ID=73338881

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010756312.0A Expired - Fee Related CN111948574B (zh) 2020-07-31 2020-07-31 一种逆变器开路故障的快速定位方法

Country Status (1)

Country Link
CN (1) CN111948574B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112798982A (zh) * 2020-12-29 2021-05-14 武汉大学 基于模型的三相变流器功率管开路故障诊断方法及***
CN113504435A (zh) * 2021-07-20 2021-10-15 中南大学 三电平逆变器开路故障诊断方法及***
CN113933752A (zh) * 2021-09-09 2022-01-14 华中科技大学 一种用于级联h桥变流器的igbt开路故障检测方法及装置
CN117970167A (zh) * 2024-03-28 2024-05-03 深圳市力生美半导体股份有限公司 开关电源故障预测装置、方法及电子设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101614786A (zh) * 2009-07-07 2009-12-30 南京航空航天大学 基于frft和ifsvc的功率电子电路在线智能故障诊断方法
CN103278727A (zh) * 2013-04-26 2013-09-04 西南交通大学 基于输出功率的三相逆变器igbt开路故障的诊断方法
US20160216332A1 (en) * 2015-01-26 2016-07-28 Rolls-Royce Plc Open switch fault detection and identification in a two-level voltage source power converter
CN108414873A (zh) * 2018-03-05 2018-08-17 南京婆娑航空科技有限公司 一种三相逆变器功率器件开路故障检测方法
CN108490353A (zh) * 2018-05-07 2018-09-04 东南大学 多相永磁同步电机驱动***故障诊断方法
US10141865B1 (en) * 2017-11-27 2018-11-27 King Saud University Hybrid CHB-TVSI multilevel voltage source inverter
CN109066688A (zh) * 2018-09-06 2018-12-21 国网安徽省电力有限公司芜湖供电公司 基于可再生能源不确定性下的概率潮流数据获取方法
CN109302092A (zh) * 2018-11-09 2019-02-01 南通大学 三相Boost集成式升压逆变器及其混合调制方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101614786A (zh) * 2009-07-07 2009-12-30 南京航空航天大学 基于frft和ifsvc的功率电子电路在线智能故障诊断方法
CN103278727A (zh) * 2013-04-26 2013-09-04 西南交通大学 基于输出功率的三相逆变器igbt开路故障的诊断方法
US20160216332A1 (en) * 2015-01-26 2016-07-28 Rolls-Royce Plc Open switch fault detection and identification in a two-level voltage source power converter
US10141865B1 (en) * 2017-11-27 2018-11-27 King Saud University Hybrid CHB-TVSI multilevel voltage source inverter
CN108414873A (zh) * 2018-03-05 2018-08-17 南京婆娑航空科技有限公司 一种三相逆变器功率器件开路故障检测方法
CN108490353A (zh) * 2018-05-07 2018-09-04 东南大学 多相永磁同步电机驱动***故障诊断方法
CN109066688A (zh) * 2018-09-06 2018-12-21 国网安徽省电力有限公司芜湖供电公司 基于可再生能源不确定性下的概率潮流数据获取方法
CN109302092A (zh) * 2018-11-09 2019-02-01 南通大学 三相Boost集成式升压逆变器及其混合调制方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MANIK JALHOTRA等: "Single and multi switch fault tolerant topology of multi level inverter", 《2018 INTERNATIONAL CONFERENCE ON POWER, INSTRUMENTATION, CONTROL AND COMPUTING (PICC)》 *
QUN-TAO AN等: "Current Residual Vector-Based Open-Switch Fault Diagnosis of Inverters in PMSM Drive Systems", 《 IEEE TRANSACTIONS ON POWER ELECTRONICS》 *
高宏伟等: "基于极电压误差标准化的五相逆变器", 《中国电机工程学报》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112798982A (zh) * 2020-12-29 2021-05-14 武汉大学 基于模型的三相变流器功率管开路故障诊断方法及***
CN112798982B (zh) * 2020-12-29 2021-12-14 武汉大学 基于模型的三相变流器功率管开路故障诊断方法及***
CN113504435A (zh) * 2021-07-20 2021-10-15 中南大学 三电平逆变器开路故障诊断方法及***
CN113504435B (zh) * 2021-07-20 2022-07-08 中南大学 三电平逆变器开路故障诊断方法及***
CN113933752A (zh) * 2021-09-09 2022-01-14 华中科技大学 一种用于级联h桥变流器的igbt开路故障检测方法及装置
CN113933752B (zh) * 2021-09-09 2022-06-17 华中科技大学 一种用于级联h桥变流器的igbt开路故障检测方法及装置
CN117970167A (zh) * 2024-03-28 2024-05-03 深圳市力生美半导体股份有限公司 开关电源故障预测装置、方法及电子设备

Also Published As

Publication number Publication date
CN111948574B (zh) 2022-01-11

Similar Documents

Publication Publication Date Title
CN111948574B (zh) 一种逆变器开路故障的快速定位方法
Zhou et al. A fast and robust open-switch fault diagnosis method for variable-speed PMSM system
US20220206082A1 (en) Model-based method and system for diagnosing open-circuit fault of power transistor of three-phase converter
CN110376471B (zh) 一种基于电压残差的级联h桥变换器故障诊断方法
CN110058111B (zh) 基于相电压残差的t型三电平逆变器故障诊断方法
CN104965148A (zh) 一种电机驱动***中逆变器功率管开路故障实时检测方法
CN109698656B (zh) 电动汽车ipm电驱***母线电流安全信号的获取方法
Trabelsi et al. An improved diagnosis technique for IGBTs open-circuit fault in PWM-VSI-fed induction motor drive
CN105629122A (zh) 一种三相全桥逆变器的静态故障诊断的电路及诊断方法
CN110609194B (zh) 基于电压空间矢量的三相整流器开路故障诊断方法
Wu et al. Open-circuit fault diagnosis of six-phase permanent magnet synchronous motor drive system based on empirical mode decomposition energy entropy
CN112532138A (zh) 两电平三相逆变拓扑的航空通用电机控制器电流冗余方法
CN114441958A (zh) 永磁同步电机驱动器igbt开路故障诊断方法
CN114172443B (zh) 一种永磁电机驱动***电流传感器故障在线诊断方法
CN109188271A (zh) 一种四相电励磁双凸极电机***及其功率管单管开路故障检测方法
CN109557410B (zh) 智能网联电动车开关磁阻电机功率变换器的故障诊断方法
Trabelsi et al. High performance single and multiple faults diagnosis in voltage source inverter fed induction motor drives
CN112198458B (zh) 一种三相电压源逆变器开路故障实时检测方法和***
CN114545133B (zh) 一种基于电流检测的单相级联h桥整流器的故障诊断方法
CN114115175B (zh) 永磁同步电机控制***的高阻抗连接故障诊断***
CN112731103B (zh) 一种双级矩阵变换器的故障诊断方法
CN110875700A (zh) 一种电机相序反接故障诊断方法及***
CN115586463A (zh) 一种具有强鲁棒性的t型三电平变换器开路故障诊断方法
Li et al. A new approach for on-line open-circuit fault diagnosis of inverters based on current trajectory
CN112564467B (zh) 一种两电平pwm变流器开路故障自愈型容错控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220111