CN111937272A - 无线电力传输***的接收器单元 - Google Patents

无线电力传输***的接收器单元 Download PDF

Info

Publication number
CN111937272A
CN111937272A CN201980024991.8A CN201980024991A CN111937272A CN 111937272 A CN111937272 A CN 111937272A CN 201980024991 A CN201980024991 A CN 201980024991A CN 111937272 A CN111937272 A CN 111937272A
Authority
CN
China
Prior art keywords
receiver
auxiliary
coil
primary
output terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201980024991.8A
Other languages
English (en)
Inventor
维斯瓦纳坦·卡纳卡萨拜
迪帕克·阿拉温达
苏马·梅马娜·纳拉亚纳·巴特
阿德南·库图巴丁·博霍利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of CN111937272A publication Critical patent/CN111937272A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • H02J50/402Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices the two or more transmitting or the two or more receiving devices being integrated in the same unit, e.g. power mats with several coils or antennas with several sub-antennas
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/4815Resonant converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Near-Field Transmission Systems (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

提出了一种无线电力传输***的接收器单元。该接收器单元包括主接收器线圈、围绕该主接收器线圈的中心轴布置的多个辅助接收器线圈、以及接收器驱动子单元。该接收器驱动子单元包括可操作地耦合到该主接收器线圈并且具有主输出端子的主转换器。该接收器驱动子单元可以包括可操作地耦合到该多个辅助接收器线圈上的多个辅助转换器。该多个辅助转换器可操作地彼此耦合以形成辅助输出端子,该辅助输出端子串联耦合到该主输出端子以形成公共输出端子。在一些实现中,接收器驱动单元可以形成在集成电子部件的基板上。该集成电子部件可以进一步包括通信子单元和所布置的控制器。

Description

无线电力传输***的接收器单元
相关申请的交叉引用
本专利申请要求于2018年4月19日提交的题为“无线电力传输***的接收器单元及其相关方法(A RECEIVER UNIT OF A WIRELESS POWER TRANSFER SYSTEM AND ANASSOCIATED METHOD THEREOF)”的印度专利申请第201841014948号以及于2018年9月7日提交的题为“无线电力传输***的接收器单元的集成电子部件(INTEGRATED ELECTRONICCOMPONENT OF A RECEIVER UNIT OF A WIRELESS POWER TRANSFER SYSTEM)”的印度专利申请第201843033690号的优先权,其内容通过引用结合于此。
技术领域
本公开的某些方面一般涉及电力传输***,并且更具体地涉及无线电力传输***。在一个方面,本公开涉及无线电力传输***的接收器单元。
背景技术
一种无线电力传输***包括发送器线圈、接收器线圈和对应电子电路。通常,由于发送器线圈和接收器线圈之间的未对准,损害了发送器线圈和接收器线圈之间的电力传输效率。
已经提出了不同的技术来克服由于发送器线圈和接收器线圈之间的未对准而引起的电力传输中的缺点。这些技术中的一些使用可控开关、自适应控制器、位置传感器和光学相机,这可以导致具有相关功率损耗的复杂电力传输***。此外,电子电路的封装仍然是一个挑战。
因此,需要一种无线电力传输***的增强型接收器单元和相关方法。
发明内容
在所附权利要求的范围内的***、方法和设备的各种实现每个都具有若干方面,其中没有单独一个可以单独负责在此描述的期望属性。在不限制所附权利要求书的范围的情况下,可在本文中描述一些突出特征。
根据本说明书的一个方面,提出了一种无线电力传输***的接收器单元。该接收器单元包括主接收器线圈、围绕该主接收器线圈的中心轴布置的多个辅助接收器线圈、以及接收器驱动子单元。该接收器驱动子单元包括可操作地耦合到该主接收器线圈的主转换器,其中该主转换器包括主输出端子。此外,该接收器驱动子单元包括可操作地耦合到该多个辅助接收器线圈的多个辅助转换器,其中该多个辅助转换器可操作地彼此耦合以形成辅助输出端子,且其中该辅助输出端子串联耦合到该主输出端子。
根据本说明书的另一方面,提出了一种无线电力传输***。该无线电力传输***包括发送器单元,以及可操作地耦合到该发送器单元的接收器单元。该接收器单元包括主接收器线圈、围绕该主接收器线圈的中心轴布置的多个辅助接收器线圈、以及接收器驱动子单元。该接收器驱动子单元包括可操作地耦合到该主接收器线圈的主转换器,其中该主转换器包括主输出端子;以及多个辅助转换器,其可操作地耦合到该多个辅助接收器线圈,其中该多个辅助转换器可操作地彼此耦合以形成辅助输出端子,且其中该辅助输出端子串联耦合到该主输出端子。
根据本说明书的另一方面,提供了一种操作无线电力传输***的接收器单元的方法。该方法包括基于主接收器线圈和多个辅助接收器线圈与发送器线圈的对准,在主接收器线圈和多个辅助接收器线圈中的至少一个处感应第一电压。此外,该方法包括基于第一电压生成主转换器的主输出端子处的第二电压和在多个辅助转换器的辅助输出端子处的第三电压。此外,该方法包括将第二电压和第三电压的组合发送到负载。
根据本说明书的另一方面,提出了一种无线电力传输***的接收器单元。该接收器单元包括主接收器线圈、围绕该主接收器线圈的中心轴布置的多个辅助接收器线圈、以及集成电子部件。该集成电子部件包括基板、形成在基板上的接收器驱动子单元,其中接收器驱动子单元包括:可操作地耦合到主接收器线圈的主转换器,其中主转换器包括主输出端子;和多个辅助转换器,多个辅助转换器可操作地耦合到多个辅助接收器线圈,其中多个辅助转换器可操作地彼此耦合以形成辅助输出端子,辅助输出端子串联耦合到主输出端子以形成公共输出端子。此外,集成电子部件包括通信子单元和控制器,通信子单元形成在所述基板上并可操作地耦合到接收器驱动子单元,控制器被布置在所述基板上并可操作地耦合到公共输出端子、主转换器的交流端子、多个辅助转换器的交流端子以及通信子单元中的至少一个,其中控制器被配置为确定与公共输出端子、主转换器的交流端子和多个辅助转换器的交流端子中的至少一个相对应的一个或多个电路参数,并且基于一个或多个电路参数来控制至少通信子单元。
根据本说明书的另一方面,提出了一种无线电力传输***。该无线电力传输***包括发送器单元、可操作地耦合到该发送器单元的接收器单元,其中该接收器单元包括主接收器线圈、围绕该主接收器线圈的中心轴布置的多个辅助接收器线圈、以及集成电子部件。集成电子部件包括基板和形成在基板上的接收器驱动子单元。接收器驱动子单元包括可操作地耦合到所述主接收器线圈的主转换器,其中主转换器包括主输出端子;以及多个辅助转换器,其可操作地耦合到所述多个辅助接收器线圈,其中多个辅助转换器可操作地彼此耦合以形成辅助输出端子,辅助输出端子串联耦合到主输出端子以形成公共输出端子。集成电子部件还包括通信子单元和控制器,通信子单元布置在基板上并可操作地耦合到接收器驱动子单元,控制器被布置在所述基板上并可操作地耦合到公共输出端子、主转换器的交流端子、多个辅助转换器的交流端子以及通信子单元中的至少一个,其中控制器被配置为确定与公共输出端子、主转换器的交流端子和多个辅助转换器的交流端子中的至少一个相对应的一个或多个电路参数,并且基于一个或多个电路参数来控制至少通信子单元。
根据本说明书的另一方面,提出了一种操作无线电力传输***的方法。该方法包括由控制器确定与公共输出端子、主转换器的交流端子和多个辅助转换器的交流端子中的至少一个相对应的一个或多个电路参数,其中公共输出端子通过将辅助输出端子串联连接到主转换器的主输出端子而形成,其中辅助输出端子通过将接收器驱动子单元的多个辅助转换器可操作地彼此耦合而形成。此外,该方法包括基于一个或多个电路参数来控制通信子单元的操作,其中通信子单元可操作地耦合到接收器驱动子单元。此外,该方法包括基于主接收器线圈和多个辅助接收器线圈与发送器线圈的对准,通过发送器单元的发送器线圈在主接收器线圈和多个辅助接收器线圈中的至少一个处感应第一电压,其中多个辅助转换器可操作地耦合到多个辅助接收器线圈,并且主转换器可操作地耦合到主接收器线圈。另外,该方法包括在公共输出端子处产生第二电压。
根据本说明书的另一方面,提出了一种用于无线电力传输***的接收器单元的集成电子部件。集成电子部件包括基板、形成在所述基板上的接收器驱动子单元,其中接收器驱动子单元包括被配置为可操作地耦合到主接收器线圈的主转换器,其中主转换器包括主输出端子;以及多个辅助转换器,其被配置为可操作地耦合到多个辅助接收器线圈,其中多个辅助转换器可操作地彼此耦合以形成辅助输出端子,辅助输出端子串联耦合到主输出端子以形成公共输出端子。此外,集成电子部件包括通信子单元,其形成在基板上并且可操作地耦合到接收器驱动子单元。此外,集成电子部件包括控制器,其被布置在基板上并且可操作地耦合到接收器驱动子单元和通信子单元中的至少一个,其中控制器被配置为确定与接收器驱动子单元相对应的一个或多个电路参数,并且基于一个或多个电路参数来控制至少通信子单元。
附图说明
当参照附图阅读以下详细描述时,将更好地理解本公开的这些和其他特征、方面和优点,在附图中,相同的附图标记和名称在整个附图中表示相同的元件。根据说明书、附图和权利要求书,其它特征、方面和优点将变得显而易见。注意,以下附图的相对尺寸可以不按比例绘制。
图1A是示例性无线电力传输***的框图。
图1B是另一示例性无线电力传输***的框图。
图2是示例性接收器单元的示意图。
图3是另一示例性接收器单元的示意图。
图4是另一示例性接收器单元的示意图。
图5是示例性无线电力传输***的详细电路图。
图6是另一示例性无线电力传输***的详细电路图。
图7是另一示例性无线电力传输***的详细电路图。
图8是用于无线电力传输***中的示例性无线电力传输单元的示意图。
图9A和图9B是示例性无线电力传输单元的一部分的截面图。
图10A是示例性无线电力传输***的接收器线圈的示意图。
图10B是示出示例性接收器线圈的另一示意图。
具体实施方式
以下描述针对用于描述本公开的创新方面的某些实现。然而,本领域的普通技术人员将容易地认识到,本文的教导可以以多种不同的方式应用。所描述的实现可以在能够发送和接收无线电力的任何设备、***或网络中实现。
如将在下文中详细描述的,公开了无线电力传输(WPT)***的各种实施例。特别地,该***和方法公开了采用具有围绕主接收器线圈的中心轴布置的多个辅助接收器线圈的接收器单元。此外,各个实施例公开了辅助接收器线圈相对于主接收器线圈的不同布置。此外,实施例公开了辅助接收器线圈相对于相关联的辅助转换器的布置。该接收器单元可以用于无线充电***中,例如但不限于移动电话、膝上型计算机、电动车辆、消费电子产品等。在一些实现中,该***和方法公开了接收器线圈相对于相关联的转换器的布置。另外,公开了接收器单元的集成电子部件的不同实施例。
可以实现本公开中描述的主题的特定实现以实现以下潜在优点中的一个或多个。在一些实现中,主接收器线圈和多个辅助接收器线圈的布置可以帮助增强与发送器线圈的通信,并且即使在主接收器线圈与发送器线圈未对准的情况下,也允许发送器线圈与接收器线圈之间的有效电力传输。在一些实现中,辅助转换器的布置可以在不使用控制器的情况下帮助激活和去激活辅助转换器的二极管。此外,无线电力传输***可在不使用传感器或任何其它检测技术(例如,相机)的情况下调整发送器单元与接收器单元之间的未对准。在一些实现中,主转换器、辅助转换器和接收器单元的其他相关电子器件可以形成在基板上以形成集成电子部件。因此,接收器单元的相应电子器件的占用面积可以显著减小。
图1A是示例性无线电力传输***100的框图。该无线电力传输***100包括无线电力传输单元102和电源104。在所示实施例中,无线电力传输单元102包括发送器单元106、接收器单元108和场聚焦线圈110。发送器单元106经由场聚焦线圈110磁耦合到接收器单元108。场聚焦线圈110用于将磁场从发送器单元106聚焦到接收器单元108。在另一实施例中,场聚焦线圈110可以不存在于无线电力传输单元102中。
发送器单元106包括耦合到发送器(Tx)线圈114的发送器(Tx)驱动子单元112。在一个实施例中,发送器驱动子单元112可以是转换器。发送器驱动子单元112包括半导体开关,例如绝缘栅双极型晶体管、金属氧化物半导体场效应晶体管、场效应晶体管、注入增强栅晶体管、集成栅换向晶闸管、氮化镓基开关、碳化硅基开关、砷化镓基开关、二极管等。在一个实施例中,发送器线圈114可以是缠绕的铜线。
接收器单元108包括接收器(Rx)线圈116和接收器(Rx)驱动子单元118。根据本说明书的方面,接收器线圈116包括主接收器线圈120和多个辅助接收器线圈122。多个辅助接收器线圈122围绕主接收器线圈120的中心轴布置。多个辅助接收器线圈122在本文中也可互换地称为辅助接收器线圈阵列。在一些实现中,主接收器线圈120和多个辅助接收器线圈122中的每一个可以包括缠绕的铜线。
在一些实现中,示例性接收器单元108可以形成双线圈无线电力传输***、三线圈无线电力传输***和四线圈无线电力传输***的一部分。可以理解,双线圈无线电力传输***包括接收器单元和发送器单元。此外,除了接收器单元和发送器单元之外,三线圈电力传输***还包括场聚焦线圈。除了接收器单元、场聚焦线圈和发送器单元之外,四线圈电力传输***还包括相位补偿线圈。
在一个实施例中,主接收器线圈120和多个辅助接收器线圈122是谐振线圈。特别地,主接收器线圈120和多个辅助接收器线圈122中的每一个可以耦合到相应的电容器(未示出)。在一些实现中,主接收器线圈120和多个辅助接收器线圈122与在100kHz至200kHz的频率范围内定义的无线电力协会(Wireless Power ConsortiumTM)(WPC)标准(QiTM)兼容。
此外,接收器驱动子单元118包括主转换器124和多个辅助转换器126。主接收器线圈120耦合到主转换器124。主转换器124包括主输出端子并且被配置为在操作期间对主接收器线圈120处感应的电压进行整流。主转换器124和多个辅助转换器126中的每一个包括多个第一开关(未示出)。多个第一开关包括半导体开关,例如绝缘栅双极型晶体管、金属氧化物半导体场效应晶体管、场效应晶体管、注入增强栅晶体管、集成栅换向晶闸管、氮化镓基开关、碳化硅基开关、砷化镓基开关、二极管等。
主接收器线圈120耦合到主转换器124。主转换器124包括主输出端子(未示出)并且被配置为对在主接收器线圈120处感应的电压进行整流。此外,辅助接收器线圈122耦合到辅助转换器126。辅助转换器126被配置为对在辅助接收器线圈122处感应的电压进行整流。在一个实施例中,每个辅助接收器线圈122耦合到相应的辅助转换器126。在一个实施例中,主转换器124和多个辅助转换器126中的至少一个是无源整流器。在一个具体实施例中,无源整流器是二极管整流器。在另一实施例中,主转换器124和多个辅助转换器126中的至少一个包括混合整流器和有源整流器。
此外,多个辅助转换器126彼此耦合以形成辅助输出端子(未示出)。根据本说明书的各方面,主转换器124的主输出端子串联耦合到辅助输出端子以形成公共输出端子(未示出)。此外,负载(未示出)可以跨接在主输出端子和辅助输出端子两端。例如,负载可以耦合到公共输出端子。
可以注意到,传统的无线电力传输***通常可以包括单个接收器线圈。该接收器线圈有助于向诸如电池的负载提供电压。在一种情况下,如果接收器线圈未与发送器线圈对准,则为了在接收器线圈中感应期望的电压,当接收器线圈与发送器线圈对准时,发送器线圈中的电流必须高于发送器线圈中的电流。结果,损害了传统无线电力传输***的效率。使用示例性无线电力传输***100可以克服传统无线电力传输***的缺点。
如上所述,示例性接收器单元108除了主接收器线圈120之外还包括辅助接收器线圈122。主接收器线圈120和辅助接收器线圈122的组合被配置为经由主转换器124和辅助转换器126向负载提供期望的电压,即使在主接收器线圈120相对于发送器线圈114未对准的情况下。
这里可以注意到,如果发送器线圈114的中心轴与主接收器线圈120的中心轴对准,则主接收器线圈120与发送器线圈114对准。发送器线圈114的中心轴是穿过发送器线圈114的中心的轴线。类似地,主接收器线圈120的中心轴是穿过主接收器线圈120的中心的轴线。
在一个实施例中,当接收器线圈116与发送器线圈114对准时,发送器单元106向负载提供电力。特别地,在无线电力传输***100的操作期间,由电力源104提供的电力由发送器驱动子单元112从一种形式转换为另一种形式,并提供给发送器线圈114。更具体地,从电源104馈送的低频或直流(DC)电力由发送器驱动子单元112转换为高频电力。因此,发送器线圈114被激励并且在发送器线圈114处产生磁场。基于主接收器线圈120和多个辅助接收器线圈122相对于发送器线圈114的对准,发送器线圈114处的磁场在主接收器线圈120和多个辅助接收器线圈122处感应出电压。
在主接收器线圈120和多个辅助接收器线圈122处感应的电压的组合可以被称为第一电压。在主接收器线圈120和多个辅助接收器线圈122处感应的电压被分别传输到主转换器124和多个辅助转换器126。在主转换器124的主输出端子产生整流电压,并且在多个辅助转换器126的辅助输出端产生另一整流电压。根据本说明书的各方面,在主输出端子处获得的电压和在辅助输出端子处获得的电压的组合被提供给负载(未示出)。在主输出端子处获得的电压和在辅助输出端子处获得的电压的组合可以被称为第二电压。
这里应当注意,如果发送器线圈114的中心轴与主接收器线圈120的中心轴对准,则主接收器线圈120与发送器线圈114对准。当主接收器线圈120与发送器线圈114对准时,主接收器线圈120与发送器线圈114具有最大磁耦合。在发送器线圈114和主接收器线圈120之间的最大磁耦合的情况下,与在主接收器线圈120相对于发送器线圈114的未对准状态期间在主接收器线圈120处感应的电压相比,在主接收器线圈120两端感应更高的电压。在这种情况下,辅助接收器线圈122两端感应的电压是相当低的值。然而,跨主转换器124的主输出端子和辅助转换器126的辅助输出端子的累积电压是相对较高的值,例如‘X’伏特。
在主接收器线圈120相对于发送器线圈114未对准的另一情况下,辅助接收器线圈122中的至少一个可与发送器线圈114对准。这里应当注意,如果发送器线圈114的中心轴与辅助接收器线圈122的中心轴对准,则发送器线圈114与辅助接收器线圈122对准。在这种情况下,在与发送器线圈114对准的特定辅助接收器线圈122处感应的电压高于在其他辅助线圈122中感应的电压。在此,主转换器124的主端子和辅助转换器126的辅助端子之间的累积电压还是较高的值,例如‘Y’伏特,其中‘Y’伏特大致等于‘X’伏特。在没有显著增加在发送器线圈114中流动的电流的幅度的情况下感应累积电压‘Y’伏特。因此,即使在主接收器线圈120相对于发送器线圈114未对准的情况下,也向负载提供所需的期望电压,而不会显著增加在发送器线圈114中流动的电流的大小。因此,即使在主接收器线圈120相对于发送器线圈114未对准的情况下,也不会损害无线电力传输***100中的电力传输效率。
另外,在传统的无线电力传输***中,如果接收器线圈相对于发送器线圈未对准,则接收器线圈与发送器线圈之间的通信被阻碍。根据本说明书的实施例,与具有没有辅助接收器线圈的接收器单元的传统无线电力传输***相比,使用辅助接收器线圈122增强了接收器单元108和发送器单元106之间的通信。
可以注意到,在典型的无线电力传输***中,发送器单元被配置为与接收器单元通信。具体地,接收器单元向发送器单元发送关于接收器单元的状态的配置和控制反馈信号,使得发送器单元可以确定是否向接收器单元发送电力。在一个实施例中,接收器单元的状态可以是接收器单元存在于发送器单元附近。在传统的无线电力传输***中,当接收器线圈相对于发送器线圈未对准时,接收器单元与发送器单元之间的通信受到影响,因此,发送器单元无法从接收器单元接收反馈信号。接收器单元和发送器单元之间缺乏通信使得发送器单元停止向接收器单元供电。根据本公开的示例性实施例,即使当主接收器线圈120相对于发送器线圈114处于未对准状态时,辅助接收器线圈122的使用也有助于接收器单元108与发送器单元106之间的连续通信。根据本说明书的方面,即使主接收器线圈120相对于发送器线圈114未对准,辅助接收器线圈122中的至少一个也与发送器线圈114对准。因此,接收器单元108继续向发送器单元106发送反馈信号。这有助于保持发送器单元106和接收器单元108之间通信的连续性。
图1B是基于关于图1A描述的无线电力传输***100的另一示例性无线电力传输***的框图。该无线电力传输***100包括无线电力传输单元102和电源104。在所示实施例中,无线电力传输单元102包括发送器单元106、接收器单元108和场聚焦线圈110,如图1A中所述。在图1B的示例中,接收器单元108包括集成电子部件117。
通常,接收器单元的开关和其它电子器件是焊接到印刷电路板的分立电子部件。这些分立电子部件的使用增加了这种接收器单元的占用面积。因此,在诸如移动电话、膝上型电脑等紧凑设备中使用接收器单元可能是一个挑战。与传统接收器单元相关联的上述缺点可以通过使用示例性集成电子部件117来克服。具体地,集成电子部件117包括接收器单元108的电子器件。更具体地,集成电子部件117包括形成在基板132上的接收器驱动子单元118的第一开关、通信子单元130的第二开关、解调器136、第一开关之间的连接件、通信子单元130和接收器驱动子单元118之间的连接件。以类似的方式,可以在基板132上形成接收器单元108的任何其它相关电子开关。在一个实施例中,基板可以是薄硅晶片。此外,控制器128设置在基板132上。此外,基板132被封装在封装单元134中以提供外部延伸的连接引脚。
集成电子部件117具有基本上较低的占用面积,从而便于将集成电子部件117容易地结合到诸如移动电话的紧凑设备中。此外,集成电子部件117的使用有助于减少电路寄生效应,例如跟踪阻抗和相关的电压降。此外,与使用具有分立电子部件的传统接收器驱动子单元相比,使用集成电子部件117有助于提高未对准容限。
集成电子部件117是集成电路(IC)。在一个实施例中,集成电子部件117可以是专用集成电路(ASIC)、超大规模集成(VLSI)芯片、微机电***(MEMS)、或片上***(SoC)。集成电子部件117还包括接收器驱动子单元118、控制器128、通信子单元130和基板132。控制器128、通信子单元130和接收器驱动子单元118布置/形成在基板132上。在一个实施例中,基板132可以包括硅晶片。
控制器128包括微控制器、微处理器、处理单元、微型计算机、数字信号处理器(DSP)、现场可编程门阵列(FPGA)和/或任何其他可编程电路等。此外,控制器128可操作地耦合到接收器驱动子单元118和通信子单元130。特别地,控制器128可操作地耦合到接收器驱动子单元118的公共输出端子和交流(AC)端子。接收器驱动子单元118的交流端子包括主转换器124的交流端子和辅助转换器126的交流端子。通信子单元130包括至少一个第二开关。至少一个第二开关包括半导体开关,例如绝缘栅双极型晶体管、金属氧化物半导体场效应晶体管、场效应晶体管、注入增强栅晶体管、集成栅换向晶闸管、氮化镓基开关、碳化硅基开关、砷化镓基开关、二极管等。
控制器128被配置为确定接收器驱动子单元118的一个或多个电路参数。具体地,控制器128被配置为确定公共输出端子、主转换器124的交流端子和多个辅助转换器126的交流端子中的至少一个的一个或多个电路参数。这里使用的术语“电路参数”可以指电压、电流、频率和电力。此外,控制器128被配置为基于所确定的电路参数来控制通信子单元130的操作。具体地,通信子单元130的控制操作包括激活/去激活至少一个第二开关。
这里应当注意,通信子单元130的控制操作引起接收器单元108的阻抗的变化。特别地,负载主接收器线圈120的阻抗和负载辅助接收器线圈122的阻抗(如从发送器单元106端看到的)是变化的。作为阻抗变化的结果,发送器单元106处的电流变化。因此,在发送器单元106和接收器单元108之间建立通信。
在另一实施例中,发送器单元106还被配置为与接收器单元108通信。因此,需要发送器单元106和接收器单元108之间的双向通信。通过改变发送器单元106处的电压信号的频率/幅度,将信息从发送器单元106发送到接收器单元108。在一个实例中,从发送器单元106发送的信息可表示发送器单元106的电力提供能力。在另一实例中,从发送器单元106发送的信息可表示对应发送器单元106的识别包。作为发送器单元106处的电压信号的频率/幅度的变化的结果,主转换器124和多个辅助转换器126的交流端子中的至少一个处的电压信号被改变。随后,在主转换器124和多个辅助转换器126的交流端子中的至少一个上的电压信号由通信子单元130的解调器136解调。因此,在接收器单元108处解译从发送器单元106发送的信息。此外,解调器136向控制器128提供解调信号以用于后续动作。在一个实施例中,通过使用诸如但不限于频率和/或幅度解调、频移键控解调和幅移键控解调的技术来获得解调信号。
图2是示例性接收器单元108的示意图200。例如,接收器单元108可用于图1A和图1B的无线电力传输***100中。在所示实施例中,接收器单元108耦合到负载202。在一个实施例中,负载202包括电池组或电池充电器。接收器单元108包括接收器线圈116和集成电子部件117。接收器线圈116包括主接收器线圈120和两个辅助接收器线圈122a、122b。主接收器线圈120和辅助接收器线圈122a、122b是谐振线圈。主接收器线圈120耦合到电容器Crx1。此外,辅助接收器线圈122a耦合到电容器Ca1,且辅助接收器线圈122b耦合到另一电容器Ca2
集成电子部件117包括基板132、接收器驱动子单元118、控制器128和通信子单元130。接收器驱动子单元118和通信子单元130形成在基板上。此外,控制器128设置在基板上。此外,基板132与接收器驱动子单元118、控制器128和通信子单元130一起布置在封装单元(未示出)内,以形成紧凑的集成电子部件117。在一个示例中,基板132与接收器驱动子单元118、控制器128和通信子单元130一起气密密封在封装单元中。
在所示实施例中,接收器驱动子单元118包括主转换器124和多个辅助转换器126a、126b。主接收器线圈120耦合到主转换器124。辅助接收器线圈122a耦合到辅助转换器126a,且另一辅助接收器线圈122b耦合到辅助转换器126b。此外,诸如二极管的替代开关204跨接在辅助转换器126a、126b两端。替代开关204也可以被称为第三开关。
主转换器124包括第一开关206。此外,辅助转换器126a、126b包括第一开关208。在所示实施例中,第一开关206、208包括二极管。在另一实施例中,第一开关206、208可以包括半导体开关,例如绝缘栅双极型晶体管、金属氧化物半导体场效应晶体管、场效应晶体管、注入增强栅晶体管、集成栅换向晶闸管、氮化镓基开关、碳化硅基开关、砷化镓基开关等。此外,主转换器124和辅助转换器126a、126b包括无源整流器。在另一实施例中,主转换器124和辅助转换器126a、126b可以包括混合整流器和有源整流器。在此使用的术语‘混合整流器’是指具有无源开关和有源开关的组合的整流器电路。
主转换器124包括主输出端子210。辅助转换器126a与辅助转换器126b并联耦合以形成辅助输出端子212。此外,主输出端子210串联耦合到辅助输出端子212以形成公共输出端子214。此外,负载202跨接在公共输出端子214两端。
此外,主转换器124包括具有两个分支216a、216b的交流端子216。辅助转换器126a包括交流端子218,且辅助转换器126b包括交流端子220。交流端子218包括两个分支218a、218b。此外,交流端子220包括两个分支220a、220b。
此外,接收器单元108包括形成在基板132上的输出使能开关228。此外,接收器单元108包括耦合到输出使能开关228的电容器C1和Cdc。电容器C1并联耦合到公共输出端子214。此外,负载202并联耦合到电容器Cdc。这里应当注意,电容器C1和Cdc以及负载202不形成集成电子部件117的一部分。
另外,接收器单元108包括多个阻抗部件230。为了便于表示,多个阻抗部件230也表示为Z1、Z2、Z3、Z4、Z5和Z6。多个阻抗部件230布置在集成电子部件117的外部。
通信子单元130包括彼此耦合的多个第二开关222。为了便于表示,多个第二开关222也表示为S1、S2、S3、S4、S5和S6。多个第二开关222包括半导体开关,例如绝缘栅双极型晶体管、金属氧化物半导体场效应晶体管、场效应晶体管、注入增强栅晶体管、集成栅换向晶闸管、氮化镓基开关、碳化硅基开关、砷化镓基开关、二极管等。
此外,通信子单元130耦合到交流端子216、218、220。具体地,第二开关222经由阻抗部件230耦合到交流端子216、218、220。更具体地,开关S1经由阻抗部件Z1耦合到分支216a,而开关S2经由阻抗部件Z2耦合到分支216b。此外,开关S3经由阻抗部件Z3耦合到分支218a,而开关S4经由阻抗部件Z4耦合到分支218b。此外,开关S5经由阻抗部件Z5耦合到分支220a,且开关S6经由阻抗部件Z6耦合到分支220b。
控制器128耦合到电流传感器224和电压传感器226。具体地,控制器128被配置为确定电路参数,例如公共输出端子214处的电流和电压的值。更具体地,控制器128被配置为接收由电流传感器224测量的公共输出端子214处的电流值。在另一实施例中,电流传感器224可以位于与开关228串联的电容器C1之后。此外,控制器128被配置为接收由电压传感器226测量的公共输出端子214处的电压值。此外,控制器128被配置为激活及/或去激活输出使能开关228。此外,控制器128被配置为基于所确定的电路参数来激活和/或去激活通信子单元130的第二开关222。
制造集成电子部件117的方法包括设计要在基板132上形成的电路的第一步骤。在图2所示的示例中,电路包括第一开关206、208、第一开关206、208之间的连接件、第二开关222、第二开关222之间的连接件、第一开关206、208和第二开关222之间的连接件、输出使能开关228、替代开关204、替代开关204到辅助输出端子212的连接件、输出使能开关228到公共输出端子214的连接件、以及解调器136。
在第二步骤中,使用诸如Verilog、MATLAB、Simulink、VHDL等的不同工具来设计需要布置在基板132上的电路的电路布局。电路布局包括对应于N+扩散层、P+扩散层、金属层、N-阱层、接触切割层、多晶硅层等不同处理层的不同图案。
在第三步骤中,为每个处理层制造掩模。例如,一个掩模可以对应于N+扩散层,而另一掩模可以对应于接触切割层。以类似的方式,制造用于其它处理层的掩模。在此应该注意的是,通过在对应的玻璃片上蚀刻每个处理层的图案来形成掩模。产生对应于处理层的多个这样的掩模。
此外,在第四步骤中,使用光刻技术使用每个掩模在基板132上形成相应的图案以形成相应的处理层。因此,在基板132上形成处理层以形成电路。
在第五步骤中,将控制器128布置在基板132上的指定位置处以建立到第二开关222、输出使能开关228和公共输出端子214的连接。随后,在第六步骤中,将基板132布置在封装单元134中以提供外部延伸的连接引脚。
在无线电力传输***100的操作期间,在初始状态期间,诸如在时刻t=0,主接收器线圈120或辅助接收器线圈122a、122b由发送器线圈114供电。此外,在时间t=0,发送器单元106可以被配置为向接收器单元108发送ping信号。在一个实施例中,ping信号可以是发送器单元106处的电力变化,其可以引起接收器单元108处的电路参数的变化。在一个示例中,这些电路参数可以包括公共输出端子214处的电压、电流或功率(或其任何组合)。而且,在时刻t=0,输出使能开关228可以处于去激活状态。
随后,例如,在时刻t=t1,接收器单元108确认从发送器单元106发送的ping信号。具体地,接收器单元108可以被配置为发送具有一个或多个比特模式(例如11比特模式)的信息。在一个实施例中,比特模式可以表示由接收器单元108接收的信号强度和/或接收器单元108的识别信息。从发送器单元106发送的ping信号和由接收器单元108发送的确认指示接收器单元108和发送器单元106之间的通信。此外,在时刻t=t2,其中t2>t1,输出使能开关228可以被激活。可以通过由控制器128向输出使能开关228提供栅控信号来激活输出使能开关228。
此外,为了实现发送器单元106和接收器单元108之间的通信,控制器128基于公共输出端子214处的电路参数的测量来控制开关S1和S2的切换。具体地,控制器128被配置为通过提供相应的栅控信号给开关S1和S2来激活和/或去激活开关S1和S2。在一个实施例中,当开关S1被激活时,开关S2也被激活。如发送器单元106端所看到的,负载主接收器线圈120的阻抗基于开关S1和S2的激活和/或去激活而变化。因此,改变了发送器单元106处的电流值。发送器单元106处的电流变化是比特模式的形式,其被配置为向发送器单元106提供信息。
在一个示例中,信息表示接收器单元108的性能参数。该信息由接收器单元108以规则的间隔发送到发送器单元106。具体地,由接收器单元108发送表示所连接的负载的类型、负载202所要求的功率、电压或电流的量、控制误差(例如,输出电压误差)的信息。因此,发送器单元106处的控制器可被配置为调节从发送器单元106提供的电力以满足负载的任何需求。
此外,开关S1至S6同步切换。在一个实施例中,控制器128基于公共输出端子214处的电路参数的测量来控制开关S3和S4的切换。从发送器单元106端看,负载辅助接收器线圈122a的阻抗基于开关S3和S4的切换而变化。因此,改变了发送器单元106处的电流值。发送器单元106处的电流变化是比特模式(例如11比特模式)的形式,其被配置为向发送器单元106提供信息。发送器单元106的控制器可以被配置为调节从发送器单元106提供的电力以满足负载202的需求。与仅具有开关S1和S2的实施例相比,耦合到主接收器线圈120及辅助接收器线圈122a、122b的开关S1、S2、S3、S4、S5和S6的组合促进增强接收器单元108与发送器单元106之间的通信。
在一个实施例中,当主接收器线圈120与发送器线圈114对准时,辅助转换器126a、126b可以向负载202贡献低值的电压。在这样的实施例中,替代开关204为电流提供路径以防止电流流过辅助转换器126a、126b。因此,避免了辅助转换器126a、126b中的损耗。
在某些其他实施例中,如果发送器单元106正在供应电力,但代替接收器线圈120、122a、122b,异物在发送器单元106附近,则异物可能不与发送器单元106通信。因此,发送器单元106不提供电力,从而防止在异物的位置处的局部加热。在一个示例中,该异物可以是任何金属物体。
在又一实施例中,与接收器线圈120、122a、122b中的至少一个结合的异物可以从发送器单元106汲取电力。在这样的实施例中,通过将在接收器线圈120、122a或122b处接收的电力值与从发送器单元106发送的电力值进行比较来检测异物的存在。如果从发送器单元106发送的电力的值与在接收器线圈120、122a或122b处接收的电力的值之间的差高于确定的阈值,则检测到异物的存在。因此,发送器单元106终止电力供应,从而防止在异物的位置处的局部加热。
虽然图2的实施例示出了彼此并联耦合的辅助转换器126a、126b,但是在其他实施例中,辅助转换器126a、126b也可以彼此串联耦合。此外,尽管示出了两个辅助接收器线圈120a、120b和对应的辅助转换器126a、126b,但是在其他实施例中,辅助接收器线圈和对应的辅助转换器的数量可以根据应用而变化。
图3是无线电力传输***100的接收器单元108的一个实施例300的示意图。如前所述,接收器单元108耦合到负载202。接收器单元108包括接收器线圈116和集成电子部件117。
在所示实施例中,集成电子部件117包括基板132、控制器128和通信子单元130。此外,集成电子部件117包括二极管302和输出使能开关228。在图3的示例中,通信子单元130可操作地耦合到公共输出端子214。在一个实施例中,通信子单元130的第二开关222经由对应的阻抗部件230可操作地耦合到公共输出端子214。
如先前所论述,控制器128被配置为测量电路参数,例如公共输出端子214的电压、电流和/或功率。控制器128被配置为基于所测量的电路参数来控制第二开关222的激活和/或去激活。此外,控制器128被配置为控制输出使能开关228的激活和/或去激活。
在一个实施例中,集成电子部件117是集成电路。在一个实施例中,集成电路是专用集成电路(ASIC)。集成电子部件117以提供外部延伸连接引脚的方式封装。在所示实施例中,连接引脚可在位置X1、X2、X3、X4、X5、X6、X7、X8、X9、X10、X11处获得。诸如接收器线圈120、122a、122b、阻抗部件230和负载202的外部部件可以耦合到位置X1、X2、X3、X4、X5、X6、X7、X8、X9、X10、X11处的连接引脚。此外,集成电子部件117可以包括用于连接到其它外部电气或电子部件(这里没有公开)的附加连接引脚。
在无线电力传输***100的操作期间,在时刻t=0,接收器单元108由发送器单元106供电。此外,在时间t=0,发送器单元106可以被配置为向接收器单元108发送ping信号。接收器单元108确认从发送器单元106发送的ping信号。控制器128在接收器单元108的确认之后激活输出使能开关228。
为了从接收器单元108通信到发送器单元106,控制器128可以激活或去激活第二开关222。当第二开关222被激活时,阻抗部件230跨接公共输出端子214。因此,负载接收器线圈120、122a、122b的阻抗如发送器单元106所看到的那样变化。作为阻抗变化的结果,发送器线圈114处的电流可以以在发送器单元106处获得11比特模式的方式变化。因此,信息从接收器单元108发送到发送器单元106。该信息可以表示需要提供给负载202的电力值或控制误差。一旦在发送器单元106处接收到信息,发送器单元106处的功率、电压、电流或频率(或其组合)可由控制器128控制。
如上所述,当第二开关222被激活时,阻抗部件230跨接公共输出端子214。如果二极管302不存在,那么第二开关222的激活还提供经由第二开关222、阻抗部件230、输出使能开关228、电容器Cdc且返回到第二开关222的一个闭合路径。此外,经由第二开关222、阻抗部件230、电容器C1并返回到第二开关222提供另一闭合路径。在这种情况下,电容器C1和Cdc可以经由相应的闭合路径放电。
电容器Cdc为负载电容器。电容器Cdc的放电导致在负载端子处存储的能量的损失。在一个示例中,负载端子包括移动电话的电池的充电器级的输入端子。因此,需要防止电容器Cdc的放电。此外,C1是电容器,跨过该电容器由控制器128测量公共输出端子214的电路参数。电容器C1的放电可能导致电容器C1两端的电压的不期望的变化。电容器C1两端的电压变化可能导致公共输出端子处的电路参数的不准确测量。因此,需要防止电容器C1的放电。
为了避免电容器C1和Cdc放电,采用二极管302。二极管302的使用阻挡来自电容器C1和Cdc的电流的流动。因此,防止了电容器C1和Cdc的放电。
图4是接收器单元108的另一个实施例400的示意图。如前所述,接收器单元108耦合到负载202。接收器单元108包括主接收器线圈120、辅助接收器线圈122a、122b和集成电子部件117。集成电子部件117包括基板132、主转换器124、辅助转换器126a、126b、控制器128、通信子单元130和输出使能开关228。
通信子单元130包括开关404、408和非(NOT)逻辑门406。开关404可以替代地被称为第二开关。向开关404的栅极端子提供栅极信号。使用NOT逻辑门406将该栅极信号反相,并且将反相的栅极信号提供给开关408的栅极端子。基于开关404、408的栅极端子处的栅极信号来确定开关404、408的激活/去激活。在一个实施例中,当对应于开关404、408的栅极信号为高时,开关404、408被配置为被激活。在另一实施例中,当对应于开关404、408的栅极信号为低时,开关404、408被配置为被去激活。
该接收器单元108还包括阻抗部件402。阻抗部件402布置在集成电子部件117的外部。此外,接收器单元108包括跨接在公共输出端子214两端的电容器C1。此外,电容器Cdc跨接在负载202两端。输出使能开关228耦合到电容器C1和Cdc。电容器C1和Cdc也布置在集成电子部件117的外部。
在接收器单元108的操作期间,辅助接收器线圈122a、122b和主接收器线圈120中的至少一者由发送器线圈114供电。随后,基于发送器单元106和接收器单元108之间的通信来激活输出使能开关228。此外,控制器128测量公共输出端子214处的电路参数。此外,控制器128基于所测量的电路参数来控制通信子单元130的操作。具体地,控制器128基于所测量的电路参数来控制开关404的操作。因此,开关404被激活和/或去激活。当开关404被激活时,阻抗部件402跨接在公共输出端子214两端。因此,如从发送器单元106看到的,负载接收器线圈120、122a、122b的阻抗改变。阻抗的变化被反映为发送器单元106处的电流变化。
作为开关404激活和/或去激活的结果,发送器线圈114处的电流以在发送器单元106处获得比特模式的方式变化。因此,信息从接收器单元108发送到发送器单元106。
可以注意到,如果开关404和408两者在同一时间段被激活,则经由开关404、阻抗部件402、开关408、输出使能开关228、电容器Cdc并且返回到开关404形成闭合路径。因此,电容器Cdc可经由开关408、阻抗部件402和开关404放电。以类似的方式,电容器C1可以放电。为了避免电容器C1和Cdc放电,开关408必须被去激活。根据本说明书的方面,当开关404被激活时,开关408被去激活。在开关404的栅极端子处提供的栅极信号由非逻辑门406反相并提供给开关408的栅极端子。因此,开关408被去激活。作为开关408去激活的结果,电容器C1和Cdc从公共输出端子214断开,从而防止电容器C1和Cdc放电。
此外,控制器128分别测量主转换器124的交流端子216和辅助转换器126a、126b的交流端子218、220处的电路参数。控制器128进一步基于主转换器124的交流端子216处的电路参数来确定主转换器124的第一开关410的切换模式。此外,控制器128基于与辅助转换器126a、126b的交流端子218、220相对应的电路参数来确定辅助转换器126a、126b的第一开关412的切换模式。在此所使用的术语“切换模式”可以指激活/去激活第一开关412的模式。虽然图4的示例涉及使用控制器128来切换第一开关410、412,但是也可以设想使用单独的控制器来切换第一开关410、412。
图5是根据本说明书的一个实施例的无线电力传输***500的详细电路图。无线电力传输***100包括电源104、发送器单元106、接收器单元108和负载508。电源104耦合到发送器单元106。发送器单元106磁耦合到接收器单元108。此外,接收器单元108电耦合到负载508。
接收器单元108包括接收器驱动子单元118和接收器线圈116。接收器线圈116包括主接收器线圈120和多个辅助接收器线圈122。多个辅助接收器线圈122表示为A1、A2、A3和A4
接收器驱动子单元118包括主转换器124和多个辅助转换器502。多个辅助转换器502被表示为R1、R2、R3和R4。在一个实施例中,主转换器124和多个辅助转换器502是无源整流器。具体地,主转换器124和多个辅助转换器502是全桥无源二极管整流器。主转换器124包括主输出端子504。多个辅助转换器502彼此耦合以形成辅助输出端子506。在所示实施例中,多个辅助转换器502彼此并联耦合。主转换器124与多个辅助转换器502串联耦合。具体地,主输出端子504与辅助输出端子506串联耦合。此外,负载508跨接在主输出端子504和辅助输出端子506两端。
具体地,电源104耦合到发送器驱动子单元112。在一个实施例中,电源104是直流(DC)电源。在操作期间,由电源104提供的DC电力由发送器驱动子单元112转换为交流(AC)电力。因此,电流流过发送器线圈114并且产生磁场。因此,发送器线圈114磁耦合到接收器线圈116。
由于发送器线圈114和接收器线圈116之间的磁耦合,在接收器线圈116两端感应出电压。具体地,基于与发送器线圈114的对准,在主接收器线圈120和辅助接收器线圈122两端感应电压。在主接收器线圈120和辅助接收器线圈122两端感应的电压可替代地称为第一电压。为了易于表示,跨越主接收器线圈120感应的第一电压表示为Vrx,且跨多个辅助线圈A1、A2、A3和A4感应的第一电压分别表示为V1、V2、V3和V4。此外,在主接收器线圈120处感应的第一电压被整流,并且在主输出端子504处获得输出电压Va。在主输出端子504处获得的输出电压Va也被称为第二电压。在辅助接收器线圈122处感应的第一电压被整流,并且在辅助输出端子506处获得输出电压Vb。在辅助输出端子506处获得的输出电压Vb也被称为第三电压。此外,第二电压Va和第三电压Vb的组合被提供给负载508。在一个实施例中,电压Va和Vb的总和被提供给负载508。
在实施例中,当主接收器线圈120与发送器线圈114对准时,与辅助接收器线圈122相比,主接收器线圈120与发送器线圈114具有最大磁耦合(如图9A中所描绘)。因此,电压Vrx大于电压V1、V2、V3或V4。在一个实施例中,电压V1、V2、V3和V4具有可忽略的值。电压Vrx由主转换器124整流,并且在主输出端子504处生成电压Va。此外,对电压V1、V2、V3和V4中的至少一个进行整流,并且在辅助输出端子506处获得电压Vb。由于电压V1、V2、V3和V4具有可忽略的值,因此电压Vb具有较低的值。电压Vb的值小于电压Va的值。电压Va和Vb的组合被提供给负载508。因此,期望的电压被提供给负载508。
在另一实施例中,辅助接收器线圈A3与发送器线圈114对准,而主接收器线圈120不与发送器线圈114对准(如图9B中所示)。在这种情况下,其它辅助线圈A1、A2和A4也不与发送器线圈114对准。辅助接收器线圈A3与发送器线圈114具有最大磁耦合。因此,跨辅助接收器线圈A3感应的电压高于跨其它辅助接收器线圈A1、A2和A4感应的电压。特别地,电压V3大于电压V1、V2或V4
此外,辅助转换器R1、R2、R3和R4经配置以分别整流跨辅助接收器线圈A1、A2、A3和A4感应的电压。如果辅助转换器R1、R2、R3和R4并联耦合,则每个辅助转换器的输出处的电压有助于确定辅助转换器R1、R2、R3和R4的二极管的激活和/或去激活。具体地,每个辅助转换器的输出处的电压使得能够确定辅助转换器R1、R2、R3和R4中的哪个转换器是可操作的。在一个示例中,当电压V3大于电压V1、V2或V4时,辅助转换器R3的输出处的电压大于辅助转换器R1、R2和R4的输出处的电压。如果辅助转换器R3的输出处的电压大于辅助转换器R1、R2和R4的输出处的电压,则辅助转换器R3的输出处的电压反向偏置辅助转换器R1、R2和R4的二极管。因此,辅助转换器R1、R2和R4处于去激活状态,并且不分别有助于电压V1、V2和V4的整流。因此,流经辅助接收器线圈A1、A2和A4的电流为零,从而防止功率损耗。在这种情况下,仅辅助转换器R3是可操作的,并且在辅助输出端子506处获得的电压Vb等于由辅助转换器R3整流的电压。具体地,在该示例中,电压V3由辅助转换器R3整流以获得辅助输出端子506处的电压Vb
根据本说明书的方面,辅助转换器R1、R2、R3和R4的二极管的激活和去激活在不使用控制器的情况下执行。具体地,具有最大输入电压的特定辅助转换器被激活,而其余辅助转换器被去激活,导致较低的功率损耗。
虽然在所示实施例中,每个辅助接收器线圈耦合到相应的辅助转换器,但是在其他实施例中,多个辅助接收器线圈可以耦合到一个辅助转换器。此外,虽然图5的示例描述了无源二极管整流器的使用,但是可以设想使用其他类型的辅助转换器和主转换器。在一个实施例中,辅助转换器和主转换器可以是有源整流器。
图6是根据本说明书的另一实施例的图1的无线电力传输***600的详细电路图。无线电力传输***100包括电源104、发送器单元106、接收器单元108和负载508。发送器单元106包括耦合到发送器线圈114的发送器驱动子单元112。接收器单元108包括主接收器线圈120、主转换器124、多个辅助接收器线圈122和多个辅助转换器602。主接收器线圈120耦合到主转换器124。此外,多个辅助接收器线圈122耦合到多个辅助转换器602。辅助转换器602被表示为R1、R2、R3和R4。辅助接收器线圈122表示为A1、A2、A3和A4。在所说明的实施例中,辅助接收器线圈A1耦合到辅助转换器R1,且以类似方式,辅助接收器线圈A2、A3和A4分别耦合到辅助转换器R2、R3和R4
此外,辅助转换器R1与辅助转换器R3串联耦合。此外,辅助转换器R2与辅助转换器R4串联耦合。此外,辅助转换器R1和R3的组合并联耦合在辅助转换器R2和R4两端以形成辅助输出端子506。主转换器124与多个辅助转换器602串联耦合,使得主转换器124的主输出端子504与辅助输出端子506串联。此外,主转换器124和多个辅助转换器602跨接在负载508两端。另外,主接收器线圈120、主转换器124、辅助接收器线圈122和辅助转换器602布置在单个印刷电路板604上。
在当前预期的配置中,在主接收器线圈120两端感应电压Vrx。电压Vrx由主转换器124整流,并且在主输出端子504处获得电压Va。以类似方式,跨辅助接收器线圈A1、A2、A3和A4两端感应电压V1、V2、V3和V4。辅助转换器R1、R2、R3和R4被配置为分别对电压V1、V2、V3和V4进行整流。
辅助转换器R1和R3的输出处的整流电压表示为Vx,辅助转换器R2和R4的输出处的整流电压表示为Vy。如果电压Vx大于电压Vy,则辅助转换器R2和R4的二极管被反向偏置。在这种情况下,辅助转换器R2和R4不对电压V2和V4进行整流,而仅辅助转换器R1和R3分别对电压V1和V3进行整流。因此,辅助接收器线圈A2和A4中流动的电流为零。
此外,在辅助输出端子506处获得输出电压Vb。在一个示例中,整流电压Vb等于电压Vx。主输出端子504处的电压Va和辅助输出端子506处的电压Vb的组合被提供给负载508。在一个实施例中,可以向负载508提供电压Va和Vb的总和。
图7是根据本说明书的又一实施例的无线电力传输***700的详细电路图。无线电力传输***100包括电源104、发送器单元106、接收器单元108和负载508。发送器单元106包括耦合到发送器线圈114的发送器驱动子单元112。接收器单元108包括主接收器线圈120、主转换器124、多个辅助接收器线圈122和多个辅助转换器702。主接收器线圈120耦合到主转换器124。多个辅助接收器线圈122耦合到多个辅助转换器702。为了易于表示,多个辅助转换器702表示为HR1、HR2、HR3和HR4
在图7的示例中,主转换器124和多个辅助转换器702中的每一个是中心抽头全波二极管整流器。主转换器124包括两个二极管和中心抽头端子704,其是在主接收器线圈120的点处的触点,优选地在主接收器线圈120的中点处。类似地,多个辅助转换器702中的每一个包括两个二极管和作为在对应的辅助接收器线圈122的点处的触点的中心抽头端子706。转换器124和702中的每一个的两个二极管连接到对应线圈120、122的相对端。
根据图5至图7所示的实施例,多个辅助转换器702中的二极管数量是多个辅助转换器502或602中的二极管数量的一半。由于多个辅助转换器702具有减少数量的二极管,所以降低了功率损耗。
如上所述,基于与发送器线圈114的对准,在主接收器线圈120和多个辅助接收器线圈122两端感应电压。跨主接收器线圈120感应的电压表示为Vrx。主转换器124对电压Vrx进行整流,并且在主输出端子504处获得电压Va。以类似的方式,辅助转换器HR1、HR2、HR3和HR4对辅助接收器线圈122处感应的电压进行整流。因此,在辅助输出端子506处产生整流电压Vb。此外,电压Va和Vb的组合被提供给负载508。
图8是根据本说明书的一个实施例的无线电力传输单元800的示意图。无线电力传送单元800包括发送器单元106和接收器单元108。在所示实施例中,发送器单元106具有多个发送器线圈114。接收器单元108布置在移动电话802中。接收器单元108包括具有主接收器线圈120和多个辅助接收器线圈122的接收器线圈116。多个辅助接收器线圈122围绕主接收器线圈120的中心轴808布置。具体地,多个辅助接收器线圈122布置在主接收器线圈120上。主接收器线圈120和多个辅助接收器线圈122经由相应的转换器(未示出)耦合到负载(未示出)。在一个实施例中,负载是移动电话802的电池或电池充电器。
基于主接收器线圈120和多个辅助接收器线圈122相对于发送器线圈114的对准,在主接收器线圈120和多个辅助接收器线圈122两端感应出电压。此外,在接收器线圈116感应的电压被整流并提供给负载。特别地,主接收器线圈120和多个辅助接收器线圈122处的电压分别由主转换器(未示出)和多个辅助转换器(未示出)整流。此外,在主输出端子(未示出)和辅助输出端子(未示出)处获得的整流电压被提供给诸如电池的负载。因此,接收器单元108的电池被充电。
图9A和图9B是根据本说明书的多个方面的无线电力传输单元102的一部分的截面图900A、900B。特别地,图9A和图9B是无线电力传输单元102的发送器单元106和接收器单元108的截面图。更具体地,图9A和9B描绘了发送器线圈114和接收器线圈116。无线电力传输单元102的取向是为了说明的目的,并且不应被解释为对实施例的限制。
具体地,在图9A的实施例中,发送器线圈114设置在相应的铁氧体层902上。附图标记904表示发送器线圈114的中心轴。发送器线圈114的中心轴904穿过发送器线圈114的中心并且垂直于发送器线圈114的x-y平面。接收器线圈116包括主接收器线圈120和辅助接收器线圈122。界面层906设置在接收器线圈116和发送器线圈114之间。界面层906可以由非磁性绝缘材料制成,例如TeflonTM、任何聚合物、塑料、陶瓷、聚酯薄膜等。
此外,主接收器线圈120布置在相应的铁氧体层910上。辅助接收器线圈122围绕中心轴808布置在主接收器线圈120上。在所示实施例中,辅助接收器线圈122布置在主接收器线圈120和界面层906之间。
此外,中心轴904与中心轴808对准。因此,主接收器线圈120与发送器线圈114对准。当主接收器线圈120与发送器线圈114对准时,与辅助接收器线圈122相比,主接收器线圈120与发送器线圈114具有最大磁耦合。因此,在主接收器线圈120两端感应的电压比在辅助接收器线圈122两端感应的电压高。尽管图9A的实施例表示与主接收器线圈120对准的发送器线圈114,但在另一实施例中,主接收器线圈120可相对于发送器线圈114不对准,且辅助接收器线圈122中的至少一者可相对于发送器线圈114对准。
现在参考图9B,发送器线圈114布置在铁氧体层902上。辅助接收器线圈122布置在相应的铁氧体层910上。此外,主接收器线圈120布置在辅助接收器线圈122上,使得辅助接收器线圈122夹在铁氧体层910和主接收器线圈120之间。主接收器线圈120布置在辅助接收器线圈122和界面层906之间。
在所示实施例中,主接收器线圈120的中心轴808相对于发送器线圈114的中心轴904不对准。中心轴808相对于中心轴904的未对准由附图标记908表示。在该实施例中,辅助接收器线圈A3相对于发送器线圈114对准。因此,与主接收器线圈120和具有发送器线圈114的辅助接收器线圈A2相比,辅助接收器线圈A3与发送器线圈114具有最大磁耦合。因此,辅助接收器线圈A3两端感应的电压高于辅助接收器线圈A2两端感应的电压。此外,在该实施例中,与相对于发送器线圈114对准的主接收器线圈120两端感应的电压相比,主接收器线圈120两端感应的电压较低。然而,在辅助接收器线圈A3处感应的电压和在主接收器线圈120处感应的电压的组合被提供给用于整流的相应转换器,并且随后被提供给负载(未示出)。因此,不管主接收器线圈120相对于发送器线圈114的对准或未对准状况如何,都向负载提供期望的电压。可以注意到,在这种情况下,发送器线圈114中的电流没有显著增加。因此,实现了期望电力到负载的传输。
尽管图9B的所说明实施例表示发送器线圈114相对于主接收器线圈120未对准,但在另一实施例中,主接收器线圈120可相对于发送器线圈114对准且辅助接收器线圈122可相对于发送器线圈114未对准。
图10A是根据本说明书的实施例的无线电力传输***的接收器线圈120的示意图。具体地,图10B是接收器线圈116的顶视图。接收器线圈116包括主接收器线圈120和多个辅助接收器线圈122a、122b、122c、122d。
附图标记808表示主接收器线圈120的中心轴。中心轴808是指穿过中心并垂直于主接收器线圈120的x-y平面的轴。
在所示实施例中,主接收器线圈120直接设置在铁氧体层910上。根据本说明书的方面,多个辅助接收器线圈122a、122b、122c、122d围绕中心轴808布置。在所示实施例中,四个辅助接收器线圈122布置在主接收器线圈120周围。辅助接收器线圈的数量可以根据应用而变化。
参照图10B,示出了根据本说明书的实施例的接收器线圈116的示意图。具体地,图10B是接收器线圈116的顶视图。接收器线圈116包括主接收器线圈120和多个辅助接收器线圈122。
主接收器线圈120具有第一表面1002和第二表面1004。第一表面1002与第二表面1004相反。此外,主接收器线圈120具有外周侧1006、内边缘1005和外边缘1007。
在所示实施例中,主接收器线圈120是扁平结构。具体地,主接收器线圈120是方形、或矩形、或椭圆形、或圆形、或四边形等。主接收器线圈120的中心部分是中空的。主接收器线圈120直接布置在铁氧体层910上。具体地,第二表面1004与铁氧体层910直接接触。在另一个实施例中,第一表面1002可以与铁氧体层910直接接触。
根据本说明书的方面,多个辅助接收器线圈122围绕中心轴808布置。在所示实施例中,四个辅助接收器线圈122布置在主接收器线圈120上。具体地,多个辅助接收器线圈122被布置在主接收器线圈120的第一表面1002和第二表面1004中的至少一个上。在另一实施例中,辅助接收器线圈122部分地布置在主接收器线圈120上。在又一实施例中,辅助接收器线圈122靠近主接收器线圈120沿着外边缘1007布置。辅助接收器线圈122的数量可以根据应用而变化。
此外,在一个实施例中,所有辅助接收器线圈122与中心轴808等距。在另一实施例中,多个辅助接收器线圈122中的每个辅助接收器线圈被布置在距中心轴808不同的距离处。在又一实施例中,辅助接收器线圈122围绕中心轴808对称布置。在又一实施例中,辅助接收器线圈122围绕中心轴808非对称地布置。在又一实施例中,多个辅助接收器线圈122可以与主接收器线圈120同心地布置。在又一实施例中,辅助接收器线圈122相对于彼此和主接收器线圈120处于不同的平面中。在又一实施例中,一个辅助接收器线圈122与另一辅助接收器线圈122重叠。
辅助接收器线圈122可以是方形、矩形、椭圆形、圆形、四边形等。辅助接收器线圈122为对称形状或非对称形状。在所示实施例中,每个辅助接收器线圈122的中心部分是中空的。
尽管所示实施例仅示出了布置在主接收器线圈120上的四个辅助接收器线圈122,但是辅助和主接收器线圈的数量可以根据应用而变化。此外,尽管所示实施例示出辅助接收器线圈122稀疏地分布在中心轴808周围,但是在一个实施例中,辅助接收器线圈122可以密集地分布在中心轴808周围。
根据这里讨论的实施例,主接收器线圈和多个辅助接收器线圈的布置有助于增强与发送器线圈的通信,并且即使在主接收器线圈与发送器线圈未对准的情况下,也允许发送器线圈与接收器线圈之间的有效电力传输。此外,辅助转换器的布置有助于在不使用控制器的情况下激活和去激活辅助转换器的二极管。此外,无线电力传输***在不使用传感器或任何其它检测技术(例如,相机)的情况下调整发送器单元与接收器单元之间的未对准。
根据这里讨论的实施例,即使在主接收器线圈相对于发送器线圈未对准的情况下,主接收器线圈、多个辅助接收器线圈和相应转换器的布置也便于发送器线圈和接收器线圈之间的有效电力传输。此外,主转换器、辅助转换器和接收器单元的其他相关电子器件形成在基板上以形成集成电子部件。因此,接收器单元的相应电子器件的占用面积显著减小。
图1至图10B和本文描述的操作是旨在帮助理解示例性实现的示例,并且不应被用于限制潜在的实现或限制权利要求的范围。一些实现可以执行额外的操作、更少的操作、并行或不同顺序的操作,以及不同的一些操作。
除非另外定义,否则本文使用的技术和科学术语具有与本说明书所属领域的普通技术人员通常理解的相同的含义。本文所用的术语“第一”、“第二”等不表示任何顺序、数量或重要性,而是用于将一个要素与另一个要素区分开。此外,术语“一个”和“一种”不表示数量的限制,而是表示存在至少一个所提及的项目。“包括”或“具有”及其变体在本文中的使用旨在涵盖其后列出的项目及其等同物以及另外的项目。术语“连接”和“耦合”不限于物理或机械连接或耦合,并且可以包括电连接或耦合,无论是直接的还是间接的。此外,术语“电路”和“电路***”以及“控制单元”可以包括单个部件或多个部件,其是有源的和/或无源的并且被连接或以其他方式耦合在一起以提供所描述的功能。此外,在此使用的术语可操作地耦合包括有线耦合、无线耦合、电耦合、磁耦合、无线电通信、基于软件的通信或其组合。
如本文所用,提及项目列表的“至少一个”的短语是指那些项目的任何组合,包括单个成员。例如,“a、b或c中的至少一个”旨在涵盖:a、b、c、a-b、a-c、b-c和a-b-c。
结合本文所揭示的实现描述的各种说明性逻辑、逻辑块、模块、电路和算法过程可实施为电子硬件、计算机软件或两者的组合。已经在功能方面一般性地描述了硬件和软件的可互换性,并且在全文中描述的各种说明性部件、块、模块、电路和过程中进行了说明。这样的功能是以硬件实现还是以软件实现取决于施加在整个***上的特定应用和设计约束。
可用通用单芯片或多芯片处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或其它可编程逻辑设备、离散门或晶体管逻辑、离散硬件部件或其任何组合(其被设计成执行本文所述的功能)来实现或执行用于实现结合本文所揭示的各方面描述的各种说明性逻辑、逻辑块、模块和电路的硬件和数据处理装置。通用处理器可以是微处理器,或者任何传统的处理器、控制器、微控制器或状态机。处理器也可以被实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器、与DSP核心结合的一个或多个微处理器,或任何其他这样的配置。在一些实现中,特定的过程和方法可以由特定于给定功能的电路来执行。
在一个或一个以上方面中,所描述的功能可实现于硬件、数字电子电路、计算机软件、固件(包括本说明书中所揭示的结构及其结构等效物)或其任何组合中。本说明书中描述的主题的实现也可以被实现为一个或多个计算机程序,即计算机程序指令的一个或多个模块,其被编码在计算机存储介质上,用于由数据处理装置执行或控制数据处理装置的操作。
如果以软件实现,那么所述功能可作为计算机可读介质上的一个或一个以上指令或代码存储或传输。本文所揭示的方法或算法的过程可在可驻留于计算机可读介质上的处理器可执行软件模块中实现。计算机可读介质包括计算机存储介质和通信介质,通信介质包括能够将计算机程序从一个地方传输到另一个地方的任何介质。存储介质可以是可由计算机访问的任何可用介质。作为示例而非限制,这样的计算机可读介质可包括RAM、ROM、EEPROM、CD-ROM或其它光盘存储、磁盘存储或其它磁存储设备,或可用于以指令或数据结构的形式存储所需程序代码并可由计算机访问的任何其它介质。此外,任何连接都可以适当地称为计算机可读介质。如在此使用的,磁盘和光盘包括压缩盘(CD)、激光盘、光盘、数字通用盘(DVD)、软盘和Blu-rayTM盘,其中磁盘通常磁性地再现数据,而光盘使用激光光学地再现数据。组合也可以包括在计算机可读介质的范围内。另外,方法或算法的操作可以作为机器可读介质和计算机可读介质上的代码和指令的一个或任何组合或集合而驻留,其可以被并入计算机程序产品中。
对于本公开中描述的实现的各种修改对于本领域技术人员而言可以是显而易见的,并且在不脱离本公开的精神或范围的情况下,这里定义的一般原理可以应用于其他实现。因此,不希望权利要求书限于本文中所展示的实现,而是应符合与本文中所揭示的揭示内容、原理和新颖特征一致的最广泛范围。
本说明书中在单独实现的上下文中描述的某些特征也可以在单个实现中组合实现。相反,在单个实现的上下文中描述的各种特征也可以单独地或以任何合适的子组合在多个实现中实现。此外,尽管特征可以被描述为以某些组合起作用并且甚至初始地如此要求保护,但是在一些情况下,来自要求保护的组合的一个或多个特征可以从该组合中去除,并且要求保护的组合可以涉及子组合或者子组合的变化。
类似地,虽然以特定次序在附图中描绘操作,但不应将其理解为需要以所示特定次序或以连续次序执行此类操作,或执行所有所说明的操作以实现所需结果。此外,附图可以以流程图的形式示意性地描绘又一个示例性过程。然而,未描绘的其它操作可并入示意性说明的示例性过程中。例如,可以在任何所示操作之前、之后、同时或之间执行一个或多个附加操作。在某些情况下,多任务和并行处理可能是有利的。此外,所描述的实现中的各种***部件的分离不应被理解为在所有实现中都需要这种分离,并且应理解,所描述的程序组件和***通常可以一起集成在单个软件产品中或者打包到多个软件产品中。这些和其他示例在所附权利要求的范围内。在一些情况下,权利要求书中所述的动作可以不同次序执行且仍实现所需结果。
虽然已经参考示例性实施例描述了本公开,但是本领域技术人员将理解,在不脱离本公开的范围的情况下,可以进行各种改变并且可以用等同物替换其元件。此外,在不脱离本公开的范围的情况下,可以进行许多修改以使特定情况或材料适应本公开的教导。

Claims (35)

1.一种无线电力传输***的接收器单元,所述接收器单元包括:
主接收器线圈;
多个辅助接收器线圈,围绕所述主接收器线圈的中心轴布置;和
接收器驱动子单元,包括:
主转换器,可操作地耦合到所述主接收器线圈,其中,所述主转换器包括主输出端子;和
多个辅助转换器,可操作地耦合到所述多个辅助接收器线圈,其中,所述多个辅助转换器可操作地彼此耦合以形成辅助输出端子,所述辅助输出端子串联耦合到所述主输出端子以形成公共输出端子。
2.根据权利要求1所述的接收器单元,其中,所述多个辅助转换器中的一个辅助转换器可操作地并联耦合到所述多个辅助转换器中的另一辅助转换器。
3.根据权利要求1所述的接收器单元,其中,所述多个辅助转换器中的一个辅助转换器可操作地串联耦合到所述多个辅助转换器中的另一辅助转换器。
4.根据权利要求1所述的接收器单元,其中,所述多个辅助接收器线圈中的每个辅助接收器线圈可操作地耦合到所述多个辅助转换器中的对应辅助转换器上。
5.根据权利要求1所述的接收器单元,其中,所述多个辅助转换器中的至少一个辅助转换器是选自由以下各项组成的组的至少一个成员:无源整流器、混合整流器、以及有源整流器。
6.根据权利要求1所述的接收器单元,其中,所述多个辅助接收器线圈被布置在所述主接收器线圈上。
7.根据权利要求6所述的接收器单元,其中,所述多个辅助接收器线圈被布置在选自由以下各项组成的组的至少一个成员上:所述主接收器线圈的第一表面、第二表面、以及外周侧。
8.根据权利要求1所述的接收器单元,其中,所述多个辅助接收器线圈是选自由以下各项组成的组的至少一个成员:圆形、卵形、方形、三角形、矩形、非对称形、对称形、以及椭圆形。
9.根据权利要求1所述的接收器单元,其中,所述多个辅助接收器线圈围绕所述主接收器线圈的中心轴对称地布置。
10.根据权利要求1所述的接收器单元,其中,所述主接收器线圈和所述多个辅助接收器线圈中的至少一个辅助接收器线圈被布置在铁氧体层上。
11.根据权利要求1所述的接收器单元,其中,所述接收器单元被布置在印刷电路板上。
12.根据权利要求1所述的接收器单元,其中,所述主接收器线圈和所述多个辅助接收器线圈是谐振线圈。
13.根据权利要求1所述的接收器单元,还包括:
集成电子部件,包括:
基板;
所述接收器驱动子单元,形成在所述基板上;
通信子单元,形成在所述基板上并且可操作地耦合到所述接收器驱动子单元;和
控制器,被布置在所述基板上并且可操作地耦合到选自由以下各项组成的组的至少一个成员上:所述公共输出端子、所述主转换器的交流端子、所述多个辅助转换器的交流端子、以及所述通信子单元,其中,所述控制器被配置为:
确定与所述公共输出端子、所述主转换器的交流端子和所述多个辅助转换器的交流端子中的至少一个相对应的一个或多个电路参数;和
基于所述一个或多个电路参数来控制至少所述通信子单元。
14.根据权利要求13所述的接收器单元,其中,所述通信子单元被耦合到选自由以下各项组成的组的至少一个成员:所述主转换器的交流端子、所述多个辅助转换器的交流端子、以及所述公共输出端子。
15.根据权利要求13所述的接收器单元,其中,所述基板包括硅晶片。
16.根据权利要求13所述的接收器单元,其中,所述接收器驱动子单元包括多个第一开关,所述第一开关包括选自由以下各项组成的组的至少一个成员:二极管、绝缘栅双极型晶体管、金属氧化物半导体场效应晶体管、场效应晶体管、注入增强栅晶体管、集成栅换向晶闸管、氮化镓基开关、碳化硅基开关、和砷化镓基开关。
17.根据权利要求16所述的接收器单元,其中,所述通信子单元包括至少一个第二开关和解调器中的至少一个。
18.根据权利要求17所述的接收器单元,还包括形成在所述基板上并且跨接所述辅助输出端子耦合的第三开关。
19.根据权利要求13所述的接收器单元,其中,所述集成电子部件是专用集成电路(ASIC)、超大规模集成(VLSI)芯片、微机电***(MEMS)、或片上***(SoC)。
20.一种无线电力传输***,包括:
发送器单元;和
接收器单元,可操作地耦合到所述发送器单元,其中,所述接收器单元包括:
主接收器线圈;
多个辅助接收器线圈,围绕所述主接收器线圈的中心轴布置;
接收器驱动子单元,包括:
主转换器,可操作地耦合到所述主接收器线圈,其中,所述主转换器包括主输出端子;和
多个辅助转换器,可操作地耦合到所述多个辅助接收器线圈,其中,所述多个辅助转换器可操作地彼此耦合以形成辅助输出端子,所述辅助输出端子串联耦合到所述主输出端子以形成公共输出端子。
21.根据权利要求20所述的无线电力传输***,包括布置在所述发送器单元与所述接收器单元之间的场聚焦线圈。
22.根据权利要求20所述的无线电力传输***,包括多个相位补偿线圈,所述相位补偿线圈被配置为补偿所述主接收器线圈的阻抗和流过所述主接收器线圈的电流的相位角中的至少一者的变化。
23.根据权利要求20所述的无线电力传输***,其中,所述发送器单元包括:
发送器线圈;和
发送器驱动子单元,可操作地耦合到所述发送器线圈。
24.根据权利要求23所述的无线电力传输***,其中,所述多个辅助接收器线圈被配置为补偿所述发送器线圈与所述主接收器线圈之间的未对准。
25.根据权利要求20所述的无线电力传输***,还包括:
所述接收器单元还包括:
集成电子部件,包括:
基板;
所述接收器驱动子单元,形成在所述基板上;
通信子单元,被布置在所述基板上并且可操作地耦合到所述接收器驱动子单元上;和
控制器,被布置在所述基板上并且可操作地耦合到选自由以下各项组成的组的至少一个成员上:所述公共输出端子、所述主转换器的交流端子、所述多个辅助转换器的交流端子、以及所述通信子单元,其中,所述控制器被配置为用于:
确定与所述公共输出端子、所述主转换器的交流端子和所述多个辅助转换器的交流端子中的至少一个相对应的一个或多个电路参数;和
基于所述一个或多个电路参数来控制至少所述通信子单元。
26.根据权利要求25所述的无线电力传输***,其中,所述通信子单元包括多个开关和解调器中的至少一个。
27.根据权利要求26所述的无线电力传输***,还包括多个阻抗部件,其中,所述多个开关中的开关被耦合到所述多个阻抗部件中的对应阻抗部件上。
28.根据权利要求27所述的无线电力传输***,其中,所述多个开关中的所述开关经由所述对应阻抗部件可操作地耦合到所述主转换器中的至少一个主转换器的交流端子或所述多个辅助转换器的交流端子的至少一个分支上。
29.根据权利要求27所述的无线电力传输***,其中,所述多个开关中的所述开关经由所述对应阻抗部件耦合到所述公共输出端子。
30.根据权利要求26所述的无线电力传输***,其中,所述多个开关中的一个开关被耦合到所述多个开关中的另一开关上。
31.一种无线电力传输***的接收器单元的方法,包括:
基于主接收器线圈和多个辅助接收器线圈与发送器线圈的对准,在所述主接收器线圈和所述多个辅助接收器线圈中的至少一个处感应第一电压;
基于所述第一电压生成主转换器的主输出端子处的第二电压和多个辅助转换器的辅助输出端子处的第三电压;以及
将所述第二电压和所述第三电压的组合发送到负载。
32.一种操作无线电力传输***的方法,所述方法包括:
由控制器确定与公共输出端子、主转换器的交流端子和多个辅助转换器的交流端子中的至少一个相对应的一个或多个电路参数,其中,所述公共输出端子通过将辅助输出端子串联连接到所述主转换器的主输出端子而形成,其中,所述辅助输出端子通过将接收器驱动子单元的所述多个辅助转换器可操作地彼此耦合而形成;
基于所述一个或多个电路参数来控制通信子单元的操作,其中,所述通信子单元可操作地耦合到所述接收器驱动子单元;
基于主接收器线圈和多个辅助接收器线圈与发送器线圈的对准,通过发送器单元的所述发送器线圈在所述主接收器线圈和所述多个辅助接收器线圈中的至少一个处感应第一电压,其中,所述多个辅助转换器可操作地耦合到所述多个辅助接收器线圈,并且所述主转换器可操作地耦合到所述主接收器线圈;以及
在所述公共输出端子处生成第二电压。
33.根据权利要求32所述的方法,其中,控制所述通信子单元的操作包括由所述控制器基于所述一个或多个电路参数向所述通信子单元的多个开关提供栅控信号。
34.根据权利要求32所述的方法,还包括通过所述通信子单元的解调器来解调从所述发送器单元接收的信息。
35.一种用于无线电力传输***的接收器单元的集成电子部件,所述集成电子部件包括:
基板;
形成在所述基板上的接收器驱动子单元,其中,所述接收器驱动子单元包括:
主转换器,被配置为可操作地耦合到主接收器线圈,其中,所述主转换器包括主输出端子;和
多个辅助转换器,被配置为可操作地耦合到多个辅助接收器线圈,其中,所述多个辅助转换器可操作地彼此耦合以形成辅助输出端子,所述辅助输出端子串联耦合到所述主输出端子以形成公共输出端子;
通信子单元,形成在所述基板上并且可操作地耦合到所述接收器驱动子单元;以及
控制器,被布置在所述基板上并且可操作地耦合到所述接收器驱动子单元和所述通信子单元中的至少一个上,其中,所述控制器被配置为:
确定与所述接收器驱动子单元对应的一个或多个电路参数;和
基于所述一个或多个电路参数来控制至少所述通信子单元。
CN201980024991.8A 2018-04-19 2019-03-22 无线电力传输***的接收器单元 Pending CN111937272A (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
IN201841014948 2018-04-19
IN201841014948 2018-04-19
IN201843033690 2018-09-07
IN201843033690 2018-09-07
PCT/US2019/023548 WO2019203990A1 (en) 2018-04-19 2019-03-22 Receiver unit of a wireless power transfer system

Publications (1)

Publication Number Publication Date
CN111937272A true CN111937272A (zh) 2020-11-13

Family

ID=68238993

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980024991.8A Pending CN111937272A (zh) 2018-04-19 2019-03-22 无线电力传输***的接收器单元

Country Status (3)

Country Link
US (3) US11316381B2 (zh)
CN (1) CN111937272A (zh)
WO (1) WO2019203990A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114079326A (zh) * 2022-01-07 2022-02-22 合肥有感科技有限责任公司 无线充电设备的工作方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111937272A (zh) 2018-04-19 2020-11-13 通用电气公司 无线电力传输***的接收器单元
GB2590924A (en) * 2020-01-06 2021-07-14 Creo Medical Ltd A receiver for wirelessly receiving power from a transmitter, a capsule for ingestion by a patient, and a wireless power transfer system
WO2022098671A1 (en) * 2020-11-04 2022-05-12 The Alfred E. Mann Foundation For Scientific Research Automatically-aligning magnetic field system
US20240178704A1 (en) * 2021-03-25 2024-05-30 Indian Institute Of Technology Ropar Dual-mode antenna with non-uniform coil array for wireless power transmission and method thereof
US11862984B2 (en) 2021-11-03 2024-01-02 Nucurrent, Inc. Wireless power receiver with repeater for enhanced power harvesting
US12027880B2 (en) 2021-11-03 2024-07-02 Nucurrent, Inc. Wireless power transfer from mouse pad to mouse
US11831173B2 (en) 2021-11-03 2023-11-28 Nucurrent, Inc. Wireless power transmission antenna with series coil molecule configuration
US11824373B2 (en) 2021-11-03 2023-11-21 Nucurrent, Inc. Wireless power transmission antenna with parallel coil molecule configuration
US11824372B2 (en) 2021-11-03 2023-11-21 Nucurrent, Inc. Wireless power transmission antenna with puzzled antenna molecules
US11862991B2 (en) 2021-11-03 2024-01-02 Nucurrent, Inc. Wireless power transmission antenna with internal repeater and in-coil tuning
US11831177B2 (en) 2021-11-03 2023-11-28 Nucurrent, Inc. Wireless power transmitter with internal repeater and enhanced uniformity
US11824371B2 (en) 2021-11-03 2023-11-21 Nucurrent, Inc. Wireless power transmission antenna with internal repeater and repeater filter
US11955819B2 (en) 2021-11-03 2024-04-09 Nucurrent, Inc. Communications modulation in wireless power receiver with multi-coil receiver antenna
US11962337B2 (en) 2021-11-03 2024-04-16 Nucurrent, Inc. Communications demodulation in wireless power transmission system having an internal repeater
US20230134561A1 (en) * 2021-11-03 2023-05-04 Nucurrent, Inc. Multi-Coil Polygonal Wireless Power Receiver Antenna
US20230134897A1 (en) * 2021-11-03 2023-05-04 Nucurrent, Inc. Wireless Power Receiver with Rectifier for Multi-Coil Receiver Antenna
US11848566B2 (en) 2021-11-03 2023-12-19 Nucurrent, Inc. Dual communications demodulation of a wireless power transmission system having an internal repeater
US11831176B2 (en) 2021-11-03 2023-11-28 Nucurrent, Inc. Wireless power transfer systems with substantial uniformity over a large area
US11831175B2 (en) 2021-11-03 2023-11-28 Nucurrent, Inc. Wireless power transmission antenna with antenna molecules

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5890170U (ja) 1981-12-15 1983-06-18 鈴木 信夫 商品吊下げ用フツク
JP5890170B2 (ja) 2011-09-29 2016-03-22 日立マクセル株式会社 非接触電力伝送装置及び非接触電力伝送方法
US9325187B2 (en) * 2012-05-21 2016-04-26 Lg Electronics Inc. Structure of transmission and reception unit in wireless charging system
US9726518B2 (en) * 2012-07-13 2017-08-08 Qualcomm Incorporated Systems, methods, and apparatus for detection of metal objects in a predetermined space
US9472963B2 (en) * 2013-02-06 2016-10-18 Ford Global Technologies, Llc Device for wireless charging having a plurality of wireless charging protocols
US9843196B2 (en) * 2013-06-11 2017-12-12 Lg Electronics Inc. Wireless power transmitter, wireless power receiver and wireless charging system in home appliances
US9490656B2 (en) * 2013-11-25 2016-11-08 A.K. Stamping Company, Inc. Method of making a wireless charging coil
JP6315382B2 (ja) 2013-12-19 2018-04-25 パナソニックIpマネジメント株式会社 無線電力伝送のための送電装置および受電装置ならびに無線電力伝送システム
US10135303B2 (en) * 2014-05-19 2018-11-20 Apple Inc. Operating a wireless power transfer system at multiple frequencies
EP3158622B1 (en) * 2014-06-20 2020-09-09 LG Electronics Inc. Wireless power transfer method, apparatus and system
US9739844B2 (en) 2014-07-25 2017-08-22 Qualcomm Incorporated Guidance and alignment system and methods for electric vehicle wireless charging systems
TW201501445A (zh) 2014-09-04 2015-01-01 Chwen Yu 無線充電接收器
KR101743071B1 (ko) 2014-11-18 2017-06-02 엘지전자 주식회사 무선 전력 전송장치, 무선 전력 수신장치 및 무선 충전 시스템
US9711972B2 (en) * 2015-03-27 2017-07-18 Qualcomm Incorporated Auxiliary receiver coil to adjust receiver voltage and reactance
WO2017100747A1 (en) * 2015-12-11 2017-06-15 Sanjaya Maniktala System for inductive wireless power transfer for portable devices
SG10201700633QA (en) * 2016-02-03 2017-09-28 Gen Electric System and method for protecting a wireless power transfer system
KR101887738B1 (ko) 2016-03-11 2018-08-10 현대자동차주식회사 무선 전력 전송 코일의 얼라인먼트 방법 및 이를 이용하는 장치
CN106451704A (zh) 2016-12-05 2017-02-22 青岛鲁渝能源科技有限公司 应用于移动终端的无线充电***及无线充电方法
US10326316B2 (en) * 2017-02-10 2019-06-18 Apple Inc. Wireless charging system with inductance imaging
US10581282B2 (en) * 2017-08-30 2020-03-03 Nxp Usa, Inc. Methods and systems for foreign objection detection in wireless energy transfer systems
CN111937272A (zh) 2018-04-19 2020-11-13 通用电气公司 无线电力传输***的接收器单元

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114079326A (zh) * 2022-01-07 2022-02-22 合肥有感科技有限责任公司 无线充电设备的工作方法

Also Published As

Publication number Publication date
US11955274B2 (en) 2024-04-09
US20210152027A1 (en) 2021-05-20
US20220337098A1 (en) 2022-10-20
US11316381B2 (en) 2022-04-26
US20230298810A1 (en) 2023-09-21
US11670449B2 (en) 2023-06-06
WO2019203990A1 (en) 2019-10-24

Similar Documents

Publication Publication Date Title
US11670449B2 (en) Receiver unit of a wireless power transfer system
TWI426705B (zh) 用於實施差分驅動放大器及線圈配置之裝置及方法
TWI619325B (zh) 無線功率接收器的控制方法
JP6497614B2 (ja) 送電装置及び無線電力伝送システム
US10284018B2 (en) System, apparatus and method for adaptive tuning for wireless power transfer
JP6147112B2 (ja) ワイヤレス送電装置およびその制御方法
US9369007B2 (en) Power supply apparatus and method for wireless power transmission
JP2022062233A (ja) 受信装置を充電するためのシステムおよび方法
US10938244B2 (en) Bidirectional wireless power transmission system
CN107148719A (zh) 用于功率传输的***和方法
JPWO2017145602A1 (ja) ワイヤレス送電装置、その制御方法、送電制御回路、充電器
WO2019108071A1 (en) A misalignment tolerant hybrid wireless power transfer system
JP6632308B2 (ja) ワイヤレス送電装置、その制御回路および制御方法、充電器
US20180131242A1 (en) Inductive power transmitter, receiver and method of operation
CN110663157A (zh) 电力传输装置及其相关方法
JP2012139033A (ja) 非接触電力伝送システムおよび受電アンテナ
JP6176547B2 (ja) 非接触給電装置及び非接触給電装置の始動方法
US20110140807A1 (en) High efficiency resonator for wireless power transmission
WO2016046933A1 (ja) 受電器、及び、電力伝送システム
TWI812700B (zh) 無線電力傳送系統之接收器單元、方法及整合式電子組件
WO2018116621A1 (ja) ゲート駆動装置
JP2013021887A (ja) 電力伝送システム
CN112106287B (zh) 谐振回路电路和用于配置谐振回路电路的方法
US20220311277A1 (en) Planar Omnidirectional Wireless Power Transfer System
JP2021019449A (ja) ワイヤレス受電装置のコントロールic、電子機器、ワイヤレス受電装置における変調方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination