CN111924873A - 一种新型钠离子电池负极材料及其制备方法 - Google Patents

一种新型钠离子电池负极材料及其制备方法 Download PDF

Info

Publication number
CN111924873A
CN111924873A CN202010764800.6A CN202010764800A CN111924873A CN 111924873 A CN111924873 A CN 111924873A CN 202010764800 A CN202010764800 A CN 202010764800A CN 111924873 A CN111924873 A CN 111924873A
Authority
CN
China
Prior art keywords
ion battery
preparation
novel sodium
sodium
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010764800.6A
Other languages
English (en)
Inventor
仰永军
彭飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Kaijin New Energy Technology Co Ltd
Original Assignee
Guangdong Kaijin New Energy Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Kaijin New Energy Technology Co Ltd filed Critical Guangdong Kaijin New Energy Technology Co Ltd
Priority to CN202010764800.6A priority Critical patent/CN111924873A/zh
Priority to PCT/CN2020/124576 priority patent/WO2022021642A1/zh
Publication of CN111924873A publication Critical patent/CN111924873A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G19/00Compounds of tin
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本发明公开了一种新型钠离子电池负极材料及其制备方法,首先将硫源、锡源和碳源溶于水中,得到混合溶液;再用泡沫材料吸附所述混合溶液后冷冻干燥,得到前驱体;然后将所述前驱体转移至微波反应器中,在惰性条件下微波辐照,获得中间产物;最后将所述中间产物与硒粉混合均匀,在惰性气体保护下高温处理,得到新型钠离子电池负极材料。本发明通过掺硒和脱硫增强了电池负极材料的活性,为钠离子在电池负极中的脱嵌提供了一定的预留空间,避免了电极负极材料因钠离子的脱嵌导致的体积膨胀和粉化,提高了钠离子电池负极材料的电化学性能和循环性能。

Description

一种新型钠离子电池负极材料及其制备方法
技术领域
本发明属于纳米材料技术领域,尤其设计一种新型钠离子电池负极材料及其制备方法。
背景技术
钠离子电池因其原料易得、价格低廉,成为锂离子电池的一种非常划算的替代品,其工作原理与锂离子电池类似,在充电时,Na+从正极脱嵌,经过电解质嵌入负极,放电时正好相反,通过借助钠离子的转移来存储和释放电能。现有的钠离子负极材料主要集中在碳质材料、过渡金属及其合金类化合物等领域,例如硬碳、空心碳球、碳纤维等碳质材料以及Sn、SnO2,Bi0.94Sb1.06S3、Sb等金属/金属硫族化合物。然而,这些负极材料在电化学反应过程中体积变化较大,多次充放电后结构极易损坏,循环性能较差。
发明内容
基于现有技术的不足,本发明旨在提供一种新型钠离子电池负极材料及其制备方法,用以解决现有技术中负极材料结构膨胀所致的电化学性能低下的问题。
为了实现上述目的,本发明采用了如下技术方案。
一种新型钠离子电池负极材料的制备方法,包括以下步骤:
步骤一:将硫源、锡源和碳源溶于水中,得到混合溶液;步骤二,用泡沫材料吸附所述混合溶液后冷冻干燥,得到前驱体;步骤三,将所述前驱体转移至微波反应器中,在惰性条件下微波辐照,获得中间产物;步骤四,将所述中间产物与硒粉混合均匀,在惰性气体保护下高温处理,得到新型钠离子电池负极材料。
作为本发明改进的技术方案,步骤一中,所述硫源为水溶性硫酸盐、硫代硫酸钠中的其中一种。硫酸盐主要包括硫酸钠、硫酸钾、硫酸锂、硫酸镁、硫酸镍、硫酸亚铁、硫酸锌、硫酸铝、硫酸铜中的一种或多种。所述锡源主要为水溶性锡盐,例如四氯化锡、甲基磺酸锡中的一种。所述碳源主要为水溶性有机碳源,例如蔗糖、葡萄糖、酚醛树脂、环氧树脂、琼脂、聚苯胺及聚吡咯中的一种或多种。
作为本发明改进的技术方案,硫源、锡源和碳源摩尔比为2~3:1:0.5~1.5,混合溶液中锡源的浓度为0.1~1mol/L。
作为本发明改进的技术方案,所述泡沫材料为三聚氰胺泡沫材料。
作为本发明改进的技术方案,步骤二中,所述冷冻干燥温度为-50~-30℃。
作为本发明改进的技术方案,步骤三中,在微波反应器中通入惰性气体至少30min后,再放入前驱体,所述微波辐照功率为800~1200W,时长为1~30min。
作为本发明改进的技术方案,步骤四中,所述中间产物与硒粉的质量比为10:0.1~1。
作为本发明改进的技术方案,步骤四中,所述中间产物与硒粉在氮气保护下以500~700℃保温4~6h,得到新型钠离子电池负极材料。
本发明还提供一种采用上述方法制成的新型钠离子电池负极材料。
有益效果
本发明提供了一种新的钠离子电池负极材料及其制备方法。硫源、锡源和碳源充分分散吸附在泡沫材料的孔洞里,泡沫材料避免了反应产物发生聚集,从而有利于S单质和SnS2纳米级原位反应生长分散在碳材料中。微波反应器提供了超快的升温速度,极大缩小了反应时长,避免了金属原子的迁移和团聚现象发生,从而有利于形成更小粒径的纳米级S单质和SnS2化合物。在管式炉中,中间产物通过与硒粉反应,在SnS2表面掺杂Se,同时S单质升华脱除,钠离子电池负极材料内部形成多孔结构,为钠离子电池负极材料在充放电过程中提供了离子容纳空间,避免了电极材料因钠离子的脱嵌导致的体积膨胀和粉化,提高了钠离子电池负极材料的循环性能。
具体实施方式
为了使本领域技术人员清楚明了地理解本发明,现结合具体实施方式,对本发明进行详细说明。
实施例1
将硫源、锡源和碳源按照摩尔比为2.5:1:1分散到水中,得到混合溶液,其中锡源的浓度为0.5mol/L。所述硫源为硫酸钠,所述锡源为四氯化锡,所述碳源为葡萄糖。将三聚氰胺泡沫材料浸入上述混合溶液中,反复按压吸收至饱和,然后放入-40℃的冷冻干燥器中冷冻干燥,时间为48h,得到前驱体。在微波反应器中通入惰性气体至少30min后,放入所述前驱体,进行微波辐照,微波辐照功率为1000W,时长为5min,得到中间产物。将所述中间产物与硒粉充分混合均匀。混合方式优选使用球磨机,调节球磨机的参数,球粉比为15:1,转速为200r/min,球磨时间为4h。将混合后的中间产物和硒粉转移至管式炉中,以氮气为保护气体,在600℃下保温5h,得到新型钠离子电池负极材料。
实施例2
本实施例与实施例1不同之处在于:硫源、锡源和碳源的摩尔比为1:1:1,其余同实施例1,此处不再赘述。
实施例3
本实施例与实施例1不同之处在于:硫源、锡源和碳源的摩尔比为2:1:0.5,其余同实施例1,此处不再赘述。
实施例4
本实施例与实施例1不同之处在于:硫源、锡源和碳源的摩尔比为3:1:1.5,其余同实施例1,此处不再赘述。
实施例5
本实施例与实施例1不同之处在于:锡源的浓度为0.1mol/L,其余同实施例1,此处不再赘述。
实施例6
本实施例与实施例1不同之处在于:锡源的浓度为1mol/L,其余同实施例1,此处不再赘述。
实施例7
本实施例与实施例1不同之处在于:所述硫源为硫代硫酸钠、锡源为甲基磺酸锡,碳源为聚吡咯,其余同实施例1,此处不再赘述。
实施例8
本实施例与实施例1不同之处在于冷冻干燥温度为-50℃,其余同实施例1,此处不再赘述。
实施例9
本实施例与实施例1不同之处在于冷冻干燥温度为-30℃,其余同实施例1,此处不再赘述。
实施例10
本实施例与实施例1不同之处在于微波辐照功率为800W,时长为30min,其余同实施例1,此处不再赘述。
实施例11
本实施例与实施例1不同之处在于微波辐照功率为1200W,时长为1min,其余同实施例1,此处不再赘述。
实施例12
本实施例与实施例1不同之处在于中间产物与硒粉的质量比为10:0.1,其余同实施例1,此处不再赘述。
实施例13
本实施例与实施例1不同之处在于中间产物与硒粉的质量比为10:0.3,其余同实施例1,此处不再赘述。
实施例14
本实施例与实施例1不同之处在于中间产物与硒粉的质量比为10:0.7,其余同实施例1,此处不再赘述。
实施例15
本实施例与实施例1不同之处在于中间产物与硒粉的质量比为10:1,其余同实施例1,此处不再赘述。
实施例16
本实施例与实施例1不同之处在于中间产物与硒粉在氮气保护下以500℃保温6h,其余同实施例1,此处不再赘述。
实施例17
本实施例与实施例1不同之处在于中间产物与硒粉在氮气保护下以700℃保温4h,其余同实施例1,此处不再赘述。
实施例18
本实施例与实施例1不同之处在于直接将混合溶液冷冻干燥,制得前驱体,其余同实施例1,此处不再赘述。
实施例19
本实施例与实施例1不同之处在于直接将中间产物转移至管式炉中,以氮气为保护气体,在600℃下保温5h,其余同实施例1,此处不再赘述。
负极极片的制备:将新型锂离子电池负极材料、乙炔黑、PVDF按照质量比为8:1:1在研钵中研磨20min以上,使三者充分混合。滴加适量的N-甲基吡络烷酮(NMP)并于室温下在磁力搅拌器的作用下搅拌8h得到浆糊状材料。将糊状材料均匀的倾倒到集流体(铜箔)上,用手工涂布器涂敷厚度约为150μm的极片。在80℃下干燥12h,再在120℃下干燥12h。通过切片机切成直径约为1.2cm的圆形极片,留待组装扣式电池。
钠离子扣式电池的组装:扣式电池的规格为CR2016型,在手套箱中进行组装。手套箱内保护气为氩气,水氧分压均低于1ppm。按照顺序将CR2016配套的正极壳、垫片、钠片、隔膜、负极极片、垫片依次组装,并滴加适量电解液至钠片、隔膜、负极片之间使得电解液充分浸润隔膜和负极片。最后将组装好的模拟扣式电池在4Mpa左右的压强下进行封口压实。将组装好的电池于室温下静置8-12小时候进行测试。以100mA/g的电流密度下测得各实施例的比容量如下表所示。
Figure BDA0002612838730000071
Figure BDA0002612838730000081
根据上述说明书的揭示和教导,本发明所属领域的技术人员还可以对上述实施方式进行变更和修改。因此,本发明并不局限于上面揭示和描述的具体实施方式,对本发明的一些修改和变更也应当落入本发明的权利要求的保护范围内。此外,尽管本说明书中使用了一些特定的术语,但这些术语只是为了方便说明,并不对本发明构成任何限制。

Claims (9)

1.一种新型钠离子电池负极材料的制备方法,包括以下步骤:
步骤一:将硫源、锡源和碳源溶于水中,得到混合溶液;
步骤二,用泡沫材料吸附所述混合溶液后冷冻干燥,得到前驱体;
步骤三,将所述前驱体转移至微波反应器中,在惰性条件下微波辐照,获得中间产物;
步骤四,将所述中间产物与硒粉混合均匀,在惰性气体保护下高温处理,得到新型钠离子电池负极材料。
2.根据权利要求1所述的新型钠离子电池负极材料的制备方法,其特征在于:步骤一中,所述硫源为水溶性硫酸盐、硫代硫酸钠中的其中一种;所述锡源主要为水溶性锡盐;所述碳源主要为水溶性有机碳源。
3.根据权利要求1所述的新型钠离子电池负极材料的制备方法,其特征在于:所述硫源、锡源和碳源的摩尔比为2~3:1:0.5~1.5,混合溶液中锡源的浓度为0.1~1mol/L。
4.根据权利要求1所述的新型钠离子电池负极材料的制备方法,其特征在于:所述泡沫材料为三聚氰胺泡沫材料。
5.根据权利要求1所述的新型钠离子电池负极材料的制备方法,其特征在于:步骤二中,所述冷冻干燥温度为-50~-30℃。
6.根据权利要求1所述的新型钠离子电池负极材料的制备方法,其特征在于:步骤三中,在微波反应器中通入惰性气体至少30min后,再放入前驱体,所述微波辐照功率为800~1200W,时长为1~30min。
7.根据权利要求1所述的新型钠离子电池负极材料的制备方法,其特征在于:步骤四中,所述中间产物与硒粉的质量比为10:0.1~1。
8.根据权利要求1所述的新型钠离子电池负极材料的制备方法,其特征在于:步骤四中,所述中间产物与硒粉在氮气保护下以500~700℃保温4~6h,得到新型钠离子电池负极材料。
9.一种新型钠离子电池负极材料,采用权利要求1~8任一项所述的新型钠离子电池负极材料的制备方法制得。
CN202010764800.6A 2020-07-31 2020-07-31 一种新型钠离子电池负极材料及其制备方法 Pending CN111924873A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202010764800.6A CN111924873A (zh) 2020-07-31 2020-07-31 一种新型钠离子电池负极材料及其制备方法
PCT/CN2020/124576 WO2022021642A1 (zh) 2020-07-31 2020-10-29 一种钠离子电池负极材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010764800.6A CN111924873A (zh) 2020-07-31 2020-07-31 一种新型钠离子电池负极材料及其制备方法

Publications (1)

Publication Number Publication Date
CN111924873A true CN111924873A (zh) 2020-11-13

Family

ID=73315120

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010764800.6A Pending CN111924873A (zh) 2020-07-31 2020-07-31 一种新型钠离子电池负极材料及其制备方法

Country Status (2)

Country Link
CN (1) CN111924873A (zh)
WO (1) WO2022021642A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022021642A1 (zh) * 2020-07-31 2022-02-03 广东凯金新能源科技股份有限公司 一种钠离子电池负极材料及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115692612A (zh) * 2022-11-03 2023-02-03 福州大学 一种锡碳负极材料及其制备方法
CN115594156B (zh) * 2022-11-10 2023-11-28 安徽工业大学 一种竹节状锑-硫硒化锑@空心碳管材料及其制备方法与应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106848250A (zh) * 2017-03-15 2017-06-13 清华大学深圳研究生院 一种高硫含量的碳硫材料及其制备方法
EP2430112B1 (en) * 2009-04-23 2018-09-12 The University of Chicago Materials and methods for the preparation of nanocomposites
CN109473649A (zh) * 2018-11-07 2019-03-15 哈尔滨理工大学 一种钠离子电池复合负极材料及其制备方法
CN109742361A (zh) * 2019-01-08 2019-05-10 福建师范大学 一种复合物钠离子电池负极材料的制备方法和应用
US20190386314A1 (en) * 2018-04-30 2019-12-19 Lyten, Inc. Lithium ion battery and battery materials
CN111403744A (zh) * 2020-03-25 2020-07-10 广东凯金新能源科技股份有限公司 锂离子二次电池含氮硅氧碳化合物复合负极材料及制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9666899B2 (en) * 2015-03-30 2017-05-30 Nanotek Instruments, Inc. Active cathode layer for metal-sulfur secondary battery
CN106784814A (zh) * 2016-12-07 2017-05-31 陕西科技大学 一种六角片层状SnS2钠离子电池负极材料的制备方法
CN110148723A (zh) * 2019-05-18 2019-08-20 福建师范大学 一种具有高性能的SnS2@氮掺杂碳复合物钾离子电池负极材料的制备方法和应用
CN111924873A (zh) * 2020-07-31 2020-11-13 广东凯金新能源科技股份有限公司 一种新型钠离子电池负极材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2430112B1 (en) * 2009-04-23 2018-09-12 The University of Chicago Materials and methods for the preparation of nanocomposites
CN106848250A (zh) * 2017-03-15 2017-06-13 清华大学深圳研究生院 一种高硫含量的碳硫材料及其制备方法
US20190386314A1 (en) * 2018-04-30 2019-12-19 Lyten, Inc. Lithium ion battery and battery materials
CN109473649A (zh) * 2018-11-07 2019-03-15 哈尔滨理工大学 一种钠离子电池复合负极材料及其制备方法
CN109742361A (zh) * 2019-01-08 2019-05-10 福建师范大学 一种复合物钠离子电池负极材料的制备方法和应用
CN111403744A (zh) * 2020-03-25 2020-07-10 广东凯金新能源科技股份有限公司 锂离子二次电池含氮硅氧碳化合物复合负极材料及制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
RANJITH THANGAVEL ET AL.: ""Rapidly Synthesized, Few-Layered Pseudocapacitive SnS2 Anode for High-Power Sodium Ion Batteries"", 《ACS APPLIED MATERIALS & INTERFACES》 *
黄克靖,武旭,曹晓雨著: "《二维过渡金属二硫属化合物的电化学储能应用》", 30 September 2018, 冶金工业出版社 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022021642A1 (zh) * 2020-07-31 2022-02-03 广东凯金新能源科技股份有限公司 一种钠离子电池负极材料及其制备方法

Also Published As

Publication number Publication date
WO2022021642A1 (zh) 2022-02-03

Similar Documents

Publication Publication Date Title
CN106450195B (zh) 一种锂硫电池用正极材料及其制备方法和含有该正极材料的锂硫电池
CN113410440B (zh) 一种二硒化钴@多孔氮掺杂碳纳米复合材料、钾离子电池及其制备方法
CN105895879B (zh) 一种氟掺杂碳包覆正极复合材料及其制备方法及应用
CN111554862B (zh) 一种碳硼烷类共价有机框架材料的修饰隔膜与锂硫电池
CN111924873A (zh) 一种新型钠离子电池负极材料及其制备方法
CN107342412B (zh) 一种纳米微球磷钨酸盐/硫正极材料的制备方法
CN111952572A (zh) 一种含有单原子活性位点的钴镍双金属氮掺杂碳复合材料及其制备方法和应用
CN105428618B (zh) 一种壳核型碳包覆金属硫化物纳米复合粒子的制备方法及其应用
CN112436145A (zh) 钠离子电池负极用mof-74衍生碳包覆钴镍双金属硫化物的制备方法和应用
CN110534712A (zh) 一种黑磷-二氧化钛-碳复合负极材料及制备方法与应用
CN102306772A (zh) 一种混合离子电池氟磷酸亚铁钠正极材料的制备方法
CN112952047B (zh) 一种碳负载钒酸钾的制备方法及其在钾离子电池中的应用
CN103441277A (zh) 一种复合碳膜包覆磷酸铁锂粉体的制备方法
CN113921790A (zh) 一种双金属硒化物负极材料及其制备方法和应用
CN112615005A (zh) 一种基于废弃物甘蔗渣制备具备良好电化学性能磷酸铁锂正极复合材料的方法
CN102299334A (zh) 一种碳包覆LiFePO4多孔正极及其制备方法
CN114702614A (zh) 一种提高硫化聚丙烯腈电池循环稳定性的正极材料及其制备方法
CN111653734A (zh) 硅铁合金/碳复合锂离子电池负极材料及其制备方法和用途
CN105336934B (zh) 一种硅电极复合材料的制备方法
CN113871605A (zh) 一种预锂化硅基负极材料及其制备方法和用途
CN107492656B (zh) 一种自支撑NaVPO4F/C钠离子复合正极及其制备方法
CN106067548B (zh) 一种SnO2/钨酸铁锂/碳复合纳米材料及其制备方法
CN114843459A (zh) 一种五硫化二锑基材料及其制备方法和应用
CN114203994A (zh) 一种锂硫电池正极材料的制备方法及其应用
CN112242525A (zh) 一种氮掺杂碳包覆磷酸钒锰钠复合材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20201113