CN111900120B - Method for prolonging service life of electrostatic chuck - Google Patents

Method for prolonging service life of electrostatic chuck Download PDF

Info

Publication number
CN111900120B
CN111900120B CN202010884946.4A CN202010884946A CN111900120B CN 111900120 B CN111900120 B CN 111900120B CN 202010884946 A CN202010884946 A CN 202010884946A CN 111900120 B CN111900120 B CN 111900120B
Authority
CN
China
Prior art keywords
polymer
electrostatic chuck
process chamber
upper electrode
protective layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010884946.4A
Other languages
Chinese (zh)
Other versions
CN111900120A (en
Inventor
蒋燚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Huali Microelectronics Corp
Original Assignee
Shanghai Huali Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Huali Microelectronics Corp filed Critical Shanghai Huali Microelectronics Corp
Priority to CN202010884946.4A priority Critical patent/CN111900120B/en
Publication of CN111900120A publication Critical patent/CN111900120A/en
Application granted granted Critical
Publication of CN111900120B publication Critical patent/CN111900120B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • H01L21/6833Details of electrostatic chucks

Abstract

The invention provides a method for prolonging the service life of an electrostatic chuck, which comprises the following steps: providing a process chamber, wherein the process chamber comprises an upper electrode positioned at the top of the process chamber and an electrostatic chuck positioned at the bottom of the process chamber, and a first polymer is attached to the surface of the upper electrode; performing a polymer deposition process on the electrostatic chuck to form a protective layer on the surface of the electrostatic chuck; carrying out a regeneration and recovery process of the silicon carbonitride doped in the process cavity so as to enable the silicon carbonitride doped to react with the first polymer to generate a second polymer which is attached to the surface of the protective layer; and cleaning the process chamber to remove the protective layer and the second polymer. The method for prolonging the service life of the electrostatic chuck can effectively remove the residual polymer attached to the electrostatic chuck, thereby avoiding the weakening of the adsorption capacity of the electrostatic chuck caused by the reduction of the resistance and prolonging the service life of the electrostatic chuck.

Description

Method for prolonging service life of electrostatic chuck
Technical Field
The invention relates to the technical field of semiconductors, in particular to a method for prolonging the service life of an electrostatic chuck.
Background
In the semiconductor manufacturing process, the regeneration and recovery process of the carbon-doped silicon Nitride (NDC) and the etching process of the passivation layer can share the same process chamber so as to reduce the equipment cost. Referring to fig. 1, a first polymer 2 ' having a relatively high weight (mainly including an al-based polymer) is generated in a process chamber 1 ' during an etching process of a passivation layer and adheres to a surface of an upper electrode 11 '. When the surface of the upper electrode 11 ' is adhered with too much first polymer 2 ', the upper electrode 11 ' is too heavy to be cleaned, and thus is discarded. Therefore, the process chamber 1 ', especially the first polymer 2 ' adhered to the surface of the upper electrode 11 ', needs to be cleaned periodically to eliminate the memory effect of the process chamber 1 ' and prolong the service life of the upper electrode 11 ' and reduce the production cost.
The regeneration and recovery process of the silicon carbonitride doped realizes the regeneration and recovery of the silicon carbonitride doped by etching the silicon carbonitride doped layer on the surface of the wafer. When the first polymer 2 'is adhered to the surface of the upper electrode 11' of the process chamber 1 ', the silicon carbonitride doped during the regeneration and recovery process of the silicon carbonitride doped will react with the aluminum-based polymer in the first polymer 2' to form a second polymer 3 '(i.e., aluminum nitride polymer) and adhere to the edge of the electrostatic chuck 12'. Since the above process can reduce the amount of the first polymer attached to the surface of the upper electrode 11 ', a regeneration and recovery process of the silicon carbonitride doped silicon nitride is generally arranged before the cleaning of the process chamber 1 ' to reduce the production cost and time cost required for cleaning the first polymer 2 ' and to improve the production efficiency.
However, the second polymer 3 ' adhered to the edge of the electrostatic chuck 12 ' cannot be effectively removed during the cleaning process of the process chamber 1 ', resulting in the second polymer 3 ' remaining in the process chamber 1 ' after cleaning. When the cleaned process chamber 1 'is used for performing an etching process of a passivation layer, the second polymer 3' remaining on the electrostatic chuck 12 'is reduced to metal by hydrogen ions in the etching gas (i.e., the aluminum nitride polymer is reduced to metal aluminum by hydrogen ions), so that the resistance of the electrostatic chuck is reduced, the loop resistance of the process chamber 1' is reduced, the loop current of the electrostatic chuck 12 'is increased, the adsorption capability of the electrostatic chuck 12' is reduced, and the service life is reduced.
In practical production processes, an electrostatic Chuck (ESC) is usually scrapped due to the increase of the loop current of the process chamber when the ESC operates for about 1500-hour-2000 h. Therefore, there is a need to improve the problem of increased loop current of the electrostatic chuck to extend the service life of the electrostatic chuck.
Disclosure of Invention
The invention aims to provide a method for prolonging the service life of an electrostatic chuck, which prevents a polymer generated in a regeneration and recovery process of silicon carbonitride doped by carbon from being attached to the electrostatic chuck by preparing a protective layer on the electrostatic chuck, thereby preventing the resistance of the electrostatic chuck from being reduced due to the reduction of the polymer in a subsequent process, further preventing the adsorption capacity of the electrostatic chuck from being weakened, and prolonging the service life of the electrostatic chuck.
In order to achieve the above object, the present invention provides a method for prolonging the service life of an electrostatic chuck, comprising:
providing a process chamber, wherein the process chamber comprises an upper electrode positioned at the top of the process chamber and an electrostatic chuck positioned at the bottom of the process chamber, and a first polymer is attached to the surface of the upper electrode;
performing a polymer deposition process on the electrostatic chuck to form a protective layer on the surface of the electrostatic chuck;
carrying out a regeneration and recovery process of the silicon carbonitride doped in the process cavity so as to enable the silicon carbonitride doped to react with the first polymer to generate a second polymer which is attached to the surface of the protective layer;
and cleaning the process chamber to remove the protective layer and the second polymer.
Optionally, before the polymer deposition process, the method further comprises: and (3) an upper electrode cleaning process to reduce the first polymer attached to the surface of the upper electrode.
Optionally, the upper electrode cleaning process is plasma dry cleaning.
Optionally, the plasma dry cleaning process includes:
providing a first wafer and arranging the first wafer on the electrostatic chuck, introducing a first process gas into the process chamber, and increasing source radio frequency power and bias radio frequency power of the process chamber to reduce a first polymer on the surface of the upper electrode;
and moving the first wafer out of the reaction chamber.
Optionally, the first process gas comprises a fluorine-containing gas, oxygen, and an inert gas.
Optionally, the fluorine-containing gas comprises tetrafluoromethane and the inert gas comprises argon.
Optionally, the regeneration and recovery process of the silicon nitride doped with carbon comprises the following steps: and providing a second wafer with a carbon-doped silicon nitride layer formed on the surface, arranging the second wafer on the protective layer, and etching the carbon-doped silicon nitride layer to realize the regeneration and recovery of the carbon-doped silicon nitride.
Optionally, the polymer deposition process comprises: and introducing a second process gas into the process chamber, and depositing the second process gas on the surface of the electrostatic chuck to form a protective layer.
Optionally, the second process gas is a heavy polymer gas, including methane.
Optionally, the first polymer is formed in the process of performing an etching process of the passivation layer in the process chamber.
Optionally, the first polymer comprises an aluminum-based polymer and the second polymer comprises an aluminum nitride polymer.
In summary, the present invention provides a method for prolonging the service life of an electrostatic chuck, comprising: providing a process chamber, wherein the process chamber comprises an upper electrode positioned at the top of the process chamber and an electrostatic chuck positioned at the bottom of the process chamber, and a first polymer is attached to the surface of the upper electrode; performing a polymer deposition process on the electrostatic chuck to form a protective layer on the surface of the electrostatic chuck; performing a regeneration and recovery process of the silicon carbonitride doped in the process chamber to enable the silicon carbonitride doped with carbon to react with the first polymer to generate a second polymer which is attached to the surface of the protective layer; and cleaning the process chamber to remove the protective layer and the second polymer. The method for prolonging the service life of the electrostatic chuck can effectively remove the polymer attached to the electrostatic chuck generated in the regeneration and recovery process of the silicon nitride doped with carbon, and prevent the reduction of the surface resistance of the electrostatic chuck caused by the reduction of the polymer on the surface of the electrostatic chuck when the process cavity is subsequently used for carrying out the passivation layer etching process, thereby avoiding the reduction of the adsorption capacity of the electrostatic chuck and prolonging the service life of the electrostatic chuck.
Drawings
FIG. 1 is a schematic view of a process chamber in a regeneration and recovery process of silicon nitride doped with carbon;
FIG. 2 is a flowchart illustrating a method for improving the lifetime of an electrostatic chuck according to an embodiment of the present invention;
fig. 3-6 are schematic structural views of a process chamber corresponding to each step in the method for prolonging the service life of an electrostatic chuck according to an embodiment of the present invention;
FIG. 7 is a schematic diagram of a loop of a process chamber with a second polymer residue during an etching process of a passivation layer;
FIG. 8 is a schematic diagram of the relationship between the operating time of an electrostatic chuck and the loop current of a process chamber in the prior art;
FIG. 9 is a schematic diagram illustrating a relationship between a working duration of an electrostatic chuck and a loop current of a process chamber in a method for prolonging a lifetime of the electrostatic chuck according to an embodiment of the invention;
1. 1' -a process chamber; 11. 11' -an upper electrode; 12. 12' -an electrostatic chuck; 121-a protective layer;
2. 2' -a first polymer; 3. 3' -a second polymer;
a wafer with a carbon-doped silicon nitride layer arranged on the surface of the wafer 4' -side;
4-a first wafer; 5-a second wafer; 6-third wafer.
Detailed Description
The following describes in more detail embodiments of the present invention with reference to the schematic drawings. The advantages and features of the present invention will become more apparent from the following description. It is to be noted that the drawings are in a very simplified form and are not to precise scale, which is provided for the purpose of facilitating and clearly illustrating embodiments of the present invention.
Fig. 2 is a flowchart of a method for prolonging a lifetime of an electrostatic chuck according to this embodiment. Referring to fig. 2, the method for improving the service life of the electrostatic chuck includes:
step S01: providing a process chamber, wherein the process chamber comprises an upper electrode positioned at the top of the process chamber and an electrostatic chuck positioned at the bottom of the process chamber, and a first polymer is attached to the surface of the upper electrode;
step S02: performing a polymer deposition process on the electrostatic chuck to form a protective layer on the surface of the electrostatic chuck;
step S03: performing a regeneration and recovery process of the silicon carbonitride doped in the process chamber to enable the silicon carbonitride doped with carbon to react with the first polymer to generate a second polymer which is attached to the surface of the protective layer;
step S04: and cleaning the process chamber to remove the protective layer and the second polymer.
Fig. 3-6 are schematic views of the process chamber corresponding to the steps in fig. 2. The method for improving the service life of the electrostatic chuck provided by the embodiment is described in detail below with reference to fig. 3 to 6.
First, referring to fig. 3, step S01 is performed to provide a process chamber 1 including an upper electrode 11 at the top of the process chamber 1 and an electrostatic chuck 12 at the bottom of the process chamber 1, wherein a first polymer 2 is attached to the surface of the upper electrode 1. Since the process chamber 1 can be used for the regeneration and recovery process of the silicon carbonitride doped silicon nitride and the etching process of the passivation layer, and the regeneration and recovery process of the silicon carbonitride doped silicon nitride is usually arranged before the process chamber 1 is cleaned, the first polymer 2 generated in the etching process of the passivation layer is attached to the upper electrode 11. The first polymer 2 comprises an aluminium-based polymer. It should be noted that, in other embodiments of the present invention, the first polymer 2 may also be generated by other processes performed in the process chamber 1, and the present invention is not limited herein.
Optionally, an upper electrode cleaning process is further included between step S01 and step S02. The upper electrode cleaning process can reduce the first polymer 2 attached to the surface of the upper electrode 11, and prevent the upper electrode 11 from being too heavy to be discarded. At the same time, the reduction of the first polymer 2 also contributes to the reduction of the second polymer 3 generated in step S03. Since the aluminum-based polymer present in the first polymer 2 easily forms an aluminum oxide passivation layer, preventing itself from being further oxidized or corroded, it is difficult for the upper electrode cleaning process to completely remove the first polymer 2 on the upper electrode 11.
The upper electrode cleaning process described in this embodiment is plasma dry cleaning. Specifically, referring to fig. 3, first, a first wafer 4 is disposed on the electrostatic chuck 12 to protect the electrostatic chuck 12 and prevent byproducts generated during the cleaning process from affecting the electrostatic chuck 12. Subsequently, a first process gas is introduced into the process chamber 1 while increasing the source rf power and the bias rf power of the process chamber 1 to clean the upper electrode 11. After the upper electrode cleaning process is completed, the first wafer 4 needs to be removed from the process chamber 1. Optionally, the first process gas comprises a fluorine-containing gas, oxygen, and an inert gas. In this embodiment, the fluorine-containing gas comprises tetrafluoromethane, and the inert gas comprises argon. In other embodiments of the present invention, the first process may be adjusted according to actual needs, and the present invention is not limited thereto. Meanwhile, the first wafer 4 may be replaced with other components capable of protecting the electrostatic chuck 12 during the top electrode cleaning process, which is not limited by the invention.
Next, referring to fig. 4, in step S02, a polymer deposition process is performed on the electrostatic chuck 12 to form a protective layer 121 on the surface of the electrostatic chuck 12. Specifically, the polymer deposition process comprises the following steps: a second process gas is introduced into the process chamber 1 and deposited on the surface of the electrostatic chuck 12 to form a protective layer 121. The polymer deposition process in this embodiment employs a plasma enhanced chemical vapor deposition method, including: introducing a second process gas under the condition that no wafer exists in the process cavity 1, and applying radio frequency power in the process cavity 1 to decompose gas molecules; the excited gas molecules tend to bond with other atoms to form a film (i.e., protective layer 121) that adheres to the surface of the electrostatic chuck 12. The second process gas is a heavy polymer gas (i.e., a carbon-containing gas of higher specific gravity). In this embodiment, the second process gas comprises methane. In other embodiments of the present invention, the second process gas may be selected according to actual needs, which is not limited by the present invention.
Next, referring to fig. 5, step S03 is performed to perform a regeneration and recovery process of the silicon carbonitride doped in the process chamber 1, so that the silicon carbonitride doped reacts with the first polymer 2 to form a second polymer 3 attached to the surface of the protection layer 121. Specifically, the regeneration and recovery process of the carbon-doped silicon nitride comprises the following steps: providing a second wafer 5 with a carbon-doped silicon nitride layer formed on the surface, disposing the second wafer 5 on the protective layer 121 and etching the carbon-doped silicon nitride layer to realize regeneration and recovery of the carbon-doped silicon nitride, wherein the first polymer 2 reacts with the carbon-doped silicon nitride in the etching process to generate a second polymer 3 attached to the surface of the protective layer 121. Optionally, the second polymer 3 comprises an aluminum nitride polymer.
Finally, referring to fig. 6, in step S04, the process chamber 1 is cleaned to remove the protective layer 121 and the second polymer 3. In this embodiment, the process chamber 1 is cleaned by a plasma dry method. Specifically, a cleaning gas is introduced into the process chamber 1, and the cleaning gas is excited into a plasma by using a radio frequency source (not shown in the figure); an electromagnetic field is formed between the upper electrode 11 and the electrostatic chuck 12, and the plasma bombards the electrostatic chuck 12 under the action of the electromagnetic field to remove the second polymer 3 and the protective layer 121 on the surface of the electrostatic chuck 12. Alternatively, the cleaning of the first polymer 2 on the surface of the upper electrode 11 can be achieved by adjusting the source rf power and the bias rf power (fig. 6 is an ideal case of the cleaning effect of the process chamber 1, and the first polymer 2 is difficult to be completely removed in the actual cleaning process). Optionally, the cleaning gas is a first process gas.
Fig. 7 is a schematic diagram of a loop when a passivation layer etching process is performed in a process chamber with a second polymer left, wherein a third wafer 6 (a passivation layer is formed on a surface of the third wafer) is disposed on a surface of the electrostatic chuck 12; rp, Rw and Re are internal resistances of the plasma, the third wafer 6 and the electrostatic chuck 12, respectively; r1 is the internal resistance of the high voltage power supply HV; r2 is leakage current sampling resistor; r3 is a filter resistor; c1 is a filter capacitor; and I is a loop circuit of the process chamber.
Referring to fig. 7, when the second polymer remains in the process chamber after the cleaning, the passivation layer etching process is performed to reduce the remaining second polymer to metal by hydrogen ions in the etching gas (i.e., the aluminum nitride polymer is reduced to aluminum metal by hydrogen ions), so that the internal resistance Re of the electrostatic chuck 12 is reduced, which results in an increase in the loop current I of the electrostatic chuck 12, and thus, the adsorption capability of the electrostatic chuck 12 is reduced, and the service life is reduced. When the first polymer remains in the cleaned process cavity, the etching process of the passivation layer can increase the amount of the first polymer attached to the surface of the upper electrode; in the regeneration and recovery process of silicon carbonitride doped, the first polymer reacts with the etched silicon carbonitride doped to form a second polymer, and the second polymer 3 may be removed according to steps S01 to S04. In summary, the first polymer remaining in the process chamber has no direct effect on the lifetime of the electrostatic chuck, and the second polymer remaining in the process chamber has a greater effect on the lifetime of the electrostatic chuck. The present invention does not require the cleaning effect of the first polymer described in step S04. In other embodiments of the present invention, the cleaning method of the process chamber may be adjusted according to actual needs, which is not limited in the present invention.
In an actual recycling process of doped silicon carbide, it is usually necessary to batch process a wafer (i.e., a second wafer) having a surface formed with doped silicon carbide. At this time, the method for prolonging the service life of the electrostatic chuck provided by the invention can be adjusted according to actual requirements. Specifically, step S01 is performed to provide a process chamber including an upper electrode on a top of the process chamber and an electrostatic chuck on a bottom of the process chamber, wherein a first polymer is attached to a surface of the upper electrode; optionally, step S01 may be followed by an upper electrode cleaning process to reduce the first polymer; then, repeating the steps S02-S04, wherein a wafer-less etching process (i.e., step S02) is required before any second wafer is etched (i.e., step S03 is performed); the process chamber needs to be cleaned after any second wafer is etched (i.e., step S04 is performed).
Fig. 8 and 9 are schematic diagrams illustrating the relationship between the operation time of the electrostatic chuck and the loop current of the process chamber in the prior art method and the present embodiment, respectively. Wherein the horizontal axis represents the usage time period T (in units of h) and the vertical axis represents the loop current I (in units of μ a). Referring to fig. 8, in the prior art, after the working length is greater than T1, the loop current I of the process chamber gradually increases, which results in the decrease of the adsorption capacity and the reduction of the service life of the electrostatic chuck; when the working length reaches T2, the electrostatic chuck is scrapped and needs to be replaced by a new electrostatic chuck. Referring to fig. 9, in the method for prolonging the service life of the electrostatic chuck provided by the present invention, as the operation duration of the electrostatic chuck gradually increases, the loop current I of the process chamber always remains stable without significant increase, and when the operation duration reaches T1 or T2, the electrostatic chuck can still work normally.
In summary, the present invention provides a method for prolonging the service life of an electrostatic chuck, comprising: providing a process chamber, wherein the process chamber comprises an upper electrode positioned at the top of the process chamber and an electrostatic chuck positioned at the bottom of the process chamber, and a first polymer is attached to the surface of the upper electrode; performing a polymer deposition process on the electrostatic chuck to form a protective layer on the surface of the electrostatic chuck; carrying out a regeneration and recovery process of the silicon carbonitride doped in the process cavity so as to enable the silicon carbonitride doped to react with the first polymer to generate a second polymer which is attached to the surface of the protective layer; and cleaning the process chamber to remove the protective layer and the second polymer. The method for prolonging the service life of the electrostatic chuck can effectively remove the polymer attached to the electrostatic chuck generated in the regeneration and recovery process of the silicon nitride doped with carbon, and prevent the reduction of the surface resistance of the electrostatic chuck caused by the reduction of the polymer on the surface of the electrostatic chuck when the process cavity is subsequently used for carrying out the passivation layer etching process, thereby avoiding the reduction of the adsorption capacity of the electrostatic chuck and prolonging the service life of the electrostatic chuck.
The above description is only a preferred embodiment of the present invention and is not intended to limit the present invention in any way. Any person skilled in the art can make any equivalent substitutions or modifications on the technical solutions and technical contents disclosed in the present invention without departing from the scope of the technical solutions of the present invention, and still fall within the protection scope of the present invention without departing from the technical solutions of the present invention.

Claims (10)

1. A method of increasing the lifetime of an electrostatic chuck, comprising:
providing a process chamber, wherein the process chamber comprises an upper electrode positioned at the top of the process chamber and an electrostatic chuck positioned at the bottom of the process chamber, and a first polymer is attached to the surface of the upper electrode;
performing a polymer deposition process on the electrostatic chuck to form a protective layer on the surface of the electrostatic chuck;
performing a regeneration and recovery process of the silicon carbonitride doped in the process chamber to enable the silicon carbonitride doped with carbon to react with the first polymer to generate a second polymer which is attached to the surface of the protective layer;
cleaning the process chamber to remove the protective layer and the second polymer;
the regeneration and recovery process of the carbon-doped silicon nitride comprises the following steps: and providing a second wafer with a carbon-doped silicon nitride layer formed on the surface, arranging the second wafer on the protective layer, and etching the carbon-doped silicon nitride layer to realize regeneration and recovery of the carbon-doped silicon nitride.
2. The method of improving the lifetime of an electrostatic chuck of claim 1, further comprising, prior to the polymer deposition process: and (3) an upper electrode cleaning process to reduce the first polymer attached to the surface of the upper electrode.
3. The method of claim 2, wherein the top electrode cleaning process is a plasma dry clean.
4. The method of claim 3, wherein the plasma dry cleaning process comprises:
providing a first wafer and arranging the first wafer on the electrostatic chuck, introducing a first process gas into the process chamber, and increasing the source radio frequency power and the bias radio frequency power of the process chamber to reduce the first polymer on the surface of the upper electrode;
and moving the first wafer out of the process chamber.
5. The method of claim 4, wherein the first process gas comprises a fluorine-containing gas, oxygen, and an inert gas.
6. The method of increasing a lifetime of an electrostatic chuck of claim 5, wherein the fluorine containing gas comprises tetrafluoromethane and the inert gas comprises argon.
7. The method of improving the lifetime of an electrostatic chuck of claim 1, wherein the polymer deposition process comprises: and introducing a second process gas into the process chamber, and depositing the second process gas on the surface of the electrostatic chuck to form a protective layer.
8. The method of claim 7, wherein the second process gas is a heavy polymer gas comprising methane.
9. The method of claim 1, wherein the first polymer is formed during an etching process of the passivation layer in the process chamber.
10. The method of improving the service life of an electrostatic chuck of claim 9, wherein the first polymer comprises an aluminum-based polymer and the second polymer comprises an aluminum nitride polymer.
CN202010884946.4A 2020-08-28 2020-08-28 Method for prolonging service life of electrostatic chuck Active CN111900120B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010884946.4A CN111900120B (en) 2020-08-28 2020-08-28 Method for prolonging service life of electrostatic chuck

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010884946.4A CN111900120B (en) 2020-08-28 2020-08-28 Method for prolonging service life of electrostatic chuck

Publications (2)

Publication Number Publication Date
CN111900120A CN111900120A (en) 2020-11-06
CN111900120B true CN111900120B (en) 2022-07-15

Family

ID=73224648

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010884946.4A Active CN111900120B (en) 2020-08-28 2020-08-28 Method for prolonging service life of electrostatic chuck

Country Status (1)

Country Link
CN (1) CN111900120B (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105051944A (en) * 2013-03-15 2015-11-11 锡安能量公司 Protected electrode structures and methods

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3423186B2 (en) * 1997-04-09 2003-07-07 東京エレクトロン株式会社 Processing method
JP2001343755A (en) * 2000-06-01 2001-12-14 Nikon Corp Method for protecting electrostatic chuck, and method for manufacturing device
KR20050019219A (en) * 2003-08-18 2005-03-03 삼성전자주식회사 Chamber apparatus having improved upper electrode part
US7226869B2 (en) * 2004-10-29 2007-06-05 Lam Research Corporation Methods for protecting silicon or silicon carbide electrode surfaces from morphological modification during plasma etch processing
JP5638682B2 (en) * 2006-03-22 2014-12-10 東京エレクトロン株式会社 Plasma processing apparatus, plasma processing method, and storage medium
US20080029032A1 (en) * 2006-08-01 2008-02-07 Sun Jennifer Y Substrate support with protective layer for plasma resistance
CN107316797A (en) * 2017-05-25 2017-11-03 鲁汶仪器有限公司(比利时) A kind of method of dry method cleaning processing chamber
CN109962031B (en) * 2017-12-22 2021-03-12 中微半导体设备(上海)股份有限公司 Protected electrostatic chuck and application thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105051944A (en) * 2013-03-15 2015-11-11 锡安能量公司 Protected electrode structures and methods

Also Published As

Publication number Publication date
CN111900120A (en) 2020-11-06

Similar Documents

Publication Publication Date Title
EP2576872B1 (en) Reduction of copper or trace metal contaminants in plasma electrolytic oxidation coatings
US5507874A (en) Method of cleaning of an electrostatic chuck in plasma reactors
US7517803B2 (en) Silicon parts having reduced metallic impurity concentration for plasma reaction chambers
US8454758B2 (en) Electrostatic chuck cleaning method
US9184043B2 (en) Edge electrodes with dielectric covers
CN107533970B (en) Cleaning method and plasma processing method
US20110076401A1 (en) Method of Making Showerhead for Semiconductor Processing Apparatus
US20110186227A1 (en) Plasma chamber for wafer bevel edge processing
JP2008511175A (en) Yttria insulator ring for use inside a plasma chamber
WO2003075333A1 (en) Electrode for dry etching a wafer
JP2010157754A (en) Silicon part for plasma reaction chamber
JP4469364B2 (en) Insulating film etching equipment
JP4286025B2 (en) Method of reclaiming quartz jig, method of reusing and using semiconductor device
IL176591A (en) Method for passivating an exposed conductive material
CN111900120B (en) Method for prolonging service life of electrostatic chuck
KR101820976B1 (en) Methodology for cleaning of surface metal contamination from an upper electrode used in a plasma chamber
US20110076221A1 (en) Method of recycling silicon component for plasma etching apparatus and silicon component for plasma etching apparatus
JP2021534587A (en) Coating material for processing chamber
JP2007243159A (en) Method for removing surface layer of silicon wafer
KR20060046877A (en) Method of processing a processed object and method of processing a processed object using plasma
US20060128144A1 (en) Interconnects having a recessed capping layer and methods of fabricating the same
JP2004211128A (en) Method of regenerating aluminum parts for semiconductor-manufacturing apparatus
JP2010093293A (en) Insulating film etching apparatus
CN1738926A (en) Film-forming apparatus component and method for cleaning same
JP2006111504A (en) Method for regenerating mold for forming optical glass

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant