CN111893446B - 一种强织构的金属复合基带的制备方法 - Google Patents

一种强织构的金属复合基带的制备方法 Download PDF

Info

Publication number
CN111893446B
CN111893446B CN202010637709.8A CN202010637709A CN111893446B CN 111893446 B CN111893446 B CN 111893446B CN 202010637709 A CN202010637709 A CN 202010637709A CN 111893446 B CN111893446 B CN 111893446B
Authority
CN
China
Prior art keywords
strip
cold
film
metal composite
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010637709.8A
Other languages
English (en)
Other versions
CN111893446A (zh
Inventor
刘志勇
刘宇瑄
刘天啸
宋桂林
杨海刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Very Magnetic Technology Shanghai Co ltd
Original Assignee
Henan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan Normal University filed Critical Henan Normal University
Priority to CN202010637709.8A priority Critical patent/CN111893446B/zh
Publication of CN111893446A publication Critical patent/CN111893446A/zh
Application granted granted Critical
Publication of CN111893446B publication Critical patent/CN111893446B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种强织构的金属复合基带的制备方法,采用熔炼法获得合金铸锭,其成分为:9.5at.%~12at.%W,余量为Ni,采用热轧获得镍钨合金热轧板材,对热轧板材进行大变形量冷轧至80~100μm厚获得冷轧带材,将冷轧带材表面清洗干净,然后在冷轧带材表面沉积铜薄膜获得复合带材,最后对复合带材进行退火处理获得高性能的金属复合基带。本发明有效避免了对高强度镍钨合金进行织构优化,而是在高强度、无铁磁性的镍钨合金带材表面沉积一层铜薄膜,通过沉积工艺调整可以在薄膜中形成强的织构,该方法保留了镍钨合金的高力学性能和无铁磁性,从而最终获得高性能金属复合基带。

Description

一种强织构的金属复合基带的制备方法
技术领域
本发明涉及一种强织构的金属复合基带的制备方法,属于第二代涂层超导带材用织构金属基底的制备技术领域。
背景技术
高温超导带材具有特殊的物理性能,使其在交通、军事等诸多领域均有广泛的应用价值,自第二代高温涂层超导带材被发明以来,人们掀起了涂层超导研究的热潮,在韧性的强立方织构金属基底上外延生长缓冲层及超导层是制备第二代涂层超导带材的主要方法之一,金属基底的作用是外延生长外层薄膜,薄膜的织构对超导带材的电学性能有重要的影响,具有强立方织构的超导层且具有高的临界电流密度,而强立方织构的金属基底是制备强织构薄膜的关键,因此,金属基带的强织构问题是金属基带领域研究的重点。除了对金属基带具有强立方织构的要求外,金属基带还应具有高的屈服强度,并且在液氮温区无铁磁性。目前,商业化的Ni-5at.%W合金基带容易获得强立方织构,但是其在室温下的屈服强度不高,并且在液氮温区具有铁磁性。研究表明,增加钨原子的含量可以有效提高镍钨合金的屈服强度,并且可以降低磁性能,但是通过传统的方法难以形成强立方织构,故高性能的金属基带的制备仍然存在很大的困难,如何开发新的合金体系来制备高性能的金属基带,具有重要的研究价值和工业意义。
发明内容
本发明的目的是提供了一种强织构的金属复合基带的制备方法,该方法最终能够获得高性能的金属复合基带。
本发明为实现上述目的采用如下技术方案,一种强织构的金属复合基带的制备方法,其特征在于具体步骤为:
步骤S1:初始坯锭的制备
采用真空感应熔炼获得合金铸锭,其成分为:9.5at.%~12at.% W,余量为Ni,再采用热轧获得镍钨合金热轧板材,厚度为7~9mm,热轧温度控制在1000~1200℃;
步骤S2:对热轧板材进行冷轧
将步骤S1得到的热轧板材进行大变形量冷轧至80~100μm厚,冷轧中间无退火处理,冷轧最后一道次变形量为10%~18%,表面粗糙度Ra控制在0.2~0.8μm,最终获得冷轧带材;
步骤S3:冷轧带材表面沉积薄膜
将步骤S2得到的冷轧带材表面清洗干净,再在冷轧带材表面沉积铜薄膜获得复合带材,薄膜厚度为0.5~10μm,薄膜纯度为99.99%以上,沉积方法为磁控溅射法,其中溅射功率为200~250W,溅射温度为120~200℃;
步骤S4:复合带材的退火
将步骤S3得到的复合带材进行高温退火,高温退火工艺为:随炉升温的方式加热至800℃保温1~2小时,再随炉冷却至室温,最终获得强织构的金属复合基带。
本发明与现有技术相比具有以下有益效果:本发明有效避免了对高强度镍钨合金进行织构优化,而是在高强度、无铁磁性的镍钨合金带材表面沉积一层铜薄膜,通过沉积工艺调整可以在薄膜中形成强的织构,该方法保留了镍钨合金的高力学性能和无铁磁性,从而最终获得高性能的金属复合基带。
附图说明
图1是实施例1制得金属复合带材的Φ扫描图;
图2是实施例2制得金属复合基带的Φ扫描图。
具体实施方式
下面结合附图对本发明做进一步的详细说明。本发明采用美国QUATEK INC铁电工作仪测定了所制备的聚合物基柔性复合薄膜材料的储能性能,以上性能参数皆在室温下测得。
实施例1
采用真空感应熔炼获得合金铸锭,其成分为:10at.%W,余量为Ni。然后采用热轧获得镍钨合金热轧板材,厚度为7mm,热轧温度控制在1200℃。对该热轧板材进行大变形量冷轧至80μm厚,冷轧中间无退火处理,冷轧最后一道次变形量为10%,表面粗糙度Ra控制在0.2μm。将该冷轧带材表面清洗干净,然后在冷轧带材表面沉积铜薄膜获得复合带材,薄膜厚度为10μm,薄膜纯度为99.99%,沉积方法为磁控溅射法,其中溅射功率为200W,溅射温度为120℃。将该复合带材进行高温退火,高温退火工艺为:随炉升温的方式加热至800℃保温1小时,然后随炉冷却至室温,最终获得强织构的金属复合基带。该金属复合基带表面的Φ扫描如图1所示,该金属复合基带在室温下的屈服强度为730MPa,明显高于Ni-5at.%W合金基带的屈服强度。
实施例2
采用真空感应熔炼获得合金铸锭,其成分为:12at.%W,余量为Ni。然后采用热轧获得镍钨合金热轧板材,厚度为9mm,热轧温度控制在1000℃。对该热轧板材进行大变形量冷轧至100μm厚,冷轧中间无退火处理,冷轧最后一道次变形量为18%,表面粗糙度Ra控制在0.8μm。将该冷轧带材表面清洗干净,然后在冷轧带材表面沉积铜薄膜获得复合带材,薄膜厚度为0.5μm,薄膜纯度为99.99%,沉积方法为磁控溅射法,其中溅射功率为250W,溅射温度为200℃。将该复合带材进行高温退火,高温退火工艺为:随炉升温的方式加热至800℃保温2小时,然后随炉冷却至室温,最终获得强织构的金属复合基带。该金属复合基带表面的Φ扫描如图2所示,该金属复合基带在室温下的屈服强度为750MPa,明显高于Ni-5at.%W合金基带的屈服强度。
以上显示和描述了本发明的基本原理,主要特征和优点,在不脱离本发明精神和范围的前提下,本发明还有各种变化和改进,这些变化和改进都落入要求保护的本发明的范围。

Claims (1)

1.一种强织构的金属复合基带的制备方法,其特征在于具体步骤为:
步骤S1:初始坯锭的制备
采用真空感应熔炼获得合金铸锭,其成分为:9.5at.%~12at.% W,余量为Ni,再采用热轧获得镍钨合金热轧板材,厚度为7~9mm,热轧温度控制在1000~1200℃;
步骤S2:对热轧板材进行冷轧
将步骤S1得到的热轧板材进行大变形量冷轧至80~100μm厚,冷轧中间无退火处理,冷轧最后一道次变形量为10%~18%,表面粗糙度Ra控制在0.2~0.8μm,最终获得冷轧带材;
步骤S3:冷轧带材表面沉积薄膜
将步骤S2得到的冷轧带材表面清洗干净,再在冷轧带材表面沉积铜薄膜获得复合带材,薄膜厚度为0.5~10μm,薄膜纯度为99.99%以上,沉积方法为磁控溅射法,其中溅射功率为200~250W,溅射温度为120~200℃;
步骤S4:复合带材的退火
将步骤S3得到的复合带材进行高温退火,高温退火工艺为:随炉升温的方式加热至800℃保温1~2小时,再随炉冷却至室温,最终获得强织构的金属复合基带。
CN202010637709.8A 2020-07-05 2020-07-05 一种强织构的金属复合基带的制备方法 Active CN111893446B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010637709.8A CN111893446B (zh) 2020-07-05 2020-07-05 一种强织构的金属复合基带的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010637709.8A CN111893446B (zh) 2020-07-05 2020-07-05 一种强织构的金属复合基带的制备方法

Publications (2)

Publication Number Publication Date
CN111893446A CN111893446A (zh) 2020-11-06
CN111893446B true CN111893446B (zh) 2022-07-15

Family

ID=73191553

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010637709.8A Active CN111893446B (zh) 2020-07-05 2020-07-05 一种强织构的金属复合基带的制备方法

Country Status (1)

Country Link
CN (1) CN111893446B (zh)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004060900A1 (de) * 2004-12-14 2006-06-29 Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E.V. Halbzeug auf Nickelbasis mit Würfeltextur und Verfahren zu seiner Herstellung
CN109576644A (zh) * 2018-12-14 2019-04-05 北京工业大学 一种制备涂层导体用高钨合金基带的方法
CN109536907B (zh) * 2018-12-27 2020-09-22 河南城建学院 一种高强度强立方织构层状复合基带及其制备方法
CN109811310B (zh) * 2019-01-21 2020-09-01 河南工学院 无铁磁性、高强度、强立方织构镍钨复合基带及制备方法
CN111101007B (zh) * 2020-01-13 2022-02-25 周口师范学院 一种高性能镍基合金复合带材的制备方法
CN111180134A (zh) * 2020-01-16 2020-05-19 河南城建学院 一种强立方织构金属复合带材的制备方法

Also Published As

Publication number Publication date
CN111893446A (zh) 2020-11-06

Similar Documents

Publication Publication Date Title
US10385442B2 (en) Method for preparing rare-earth permanent magnetic material with grain boundary diffusion using composite target by vapor deposition
CN103952592B (zh) 无磁性高温超导涂层导体用立方织构镍基合金基带的制备方法
JP2022516380A (ja) 希土類拡散磁石の製造方法と希土類拡散磁石
CN102430572B (zh) 一种无磁性强立方织构的Cu基合金基带的制备方法
CN107267901B (zh) 一种高强度无铁磁性织构Ni-W合金基带的制备方法
CN103194704B (zh) 一种低成本高立方织构含量镍基带的制备方法
CN109811310B (zh) 无铁磁性、高强度、强立方织构镍钨复合基带及制备方法
CN111893446B (zh) 一种强织构的金属复合基带的制备方法
CN109536907B (zh) 一种高强度强立方织构层状复合基带及其制备方法
CN110951995B (zh) 一种高强度镍基合金基带的制备方法
CN109338161B (zh) 一种立方织构镍合金基带及其制备方法
CN109604546B (zh) 一种高强度、强立方织构镍钨基带的制备方法
CN109930099B (zh) 一种高强度强立方织构Cu-Fe-Zr-P合金基带的制备方法
CN108149198B (zh) 一种wc硬质合金薄膜及其梯度层技术室温制备方法
CN111118347B (zh) 一种高强度Ni基复合基带的制备方法
CN109371284B (zh) 一种高性能立方织构金属基带及其制备方法
CN106868344B (zh) 一种高性能立方织构Ni-12at.%W合金基带的制备方法
CN110983109B (zh) 一种立方织构的镍铬钒合金基带的制备方法
CN111180134A (zh) 一种强立方织构金属复合带材的制备方法
CN109576749B (zh) 一种新型的强立方织构金属基带及其制备方法
CN111112331B (zh) 一种高强度的织构复合基带的制备方法
CN111172483B (zh) 一种高W含量的Ni-W合金基带的制备方法
CN111979502B (zh) 一种高强度织构金属基带的制备方法
CN108385135B (zh) 一种电化学沉积制备涂层导体用高钨合金基带坯锭的方法
CN111118317B (zh) 一种立方织构金属复合基带的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20231102

Address after: 201100 Rooms 203 and 204, Floor 2, Building 1, No. 58 Yuanmei Road, Minhang District, Shanghai

Patentee after: Very Magnetic Technology (Shanghai) Co.,Ltd.

Address before: 453007 No. 46 East Road, Makino District, Henan, Xinxiang

Patentee before: HENAN NORMAL University