CN111876485A - 一种特征mRNA表达谱组合及头颈鳞状细胞癌早期预测方法 - Google Patents

一种特征mRNA表达谱组合及头颈鳞状细胞癌早期预测方法 Download PDF

Info

Publication number
CN111876485A
CN111876485A CN202010775029.2A CN202010775029A CN111876485A CN 111876485 A CN111876485 A CN 111876485A CN 202010775029 A CN202010775029 A CN 202010775029A CN 111876485 A CN111876485 A CN 111876485A
Authority
CN
China
Prior art keywords
mrna
prediction
sample
expression
cell carcinoma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202010775029.2A
Other languages
English (en)
Inventor
刘斐
贺轲
李文兴
安三奇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong No 2 Peoples Hospital
Original Assignee
Guangdong No 2 Peoples Hospital
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong No 2 Peoples Hospital filed Critical Guangdong No 2 Peoples Hospital
Priority to CN202010775029.2A priority Critical patent/CN111876485A/zh
Publication of CN111876485A publication Critical patent/CN111876485A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B25/00ICT specially adapted for hybridisation; ICT specially adapted for gene or protein expression
    • G16B25/10Gene or protein expression profiling; Expression-ratio estimation or normalisation
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B35/00ICT specially adapted for in silico combinatorial libraries of nucleic acids, proteins or peptides
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B40/00ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B5/00ICT specially adapted for modelling or simulations in systems biology, e.g. gene-regulatory networks, protein interaction networks or metabolic networks
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/112Disease subtyping, staging or classification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/178Oligonucleotides characterized by their use miRNA, siRNA or ncRNA

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Evolutionary Biology (AREA)
  • Molecular Biology (AREA)
  • Public Health (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Epidemiology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Hospice & Palliative Care (AREA)
  • Artificial Intelligence (AREA)
  • Primary Health Care (AREA)
  • Library & Information Science (AREA)
  • Oncology (AREA)
  • Bioethics (AREA)
  • Software Systems (AREA)
  • Microbiology (AREA)
  • Physiology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)

Abstract

本发明公开了一种特征mRNA表达谱组合及头颈鳞状细胞癌早期预测方法,所述mRNA核苷酸探针序列如SEQ ID NO.1‑20所示。本发明的基于mRNA表达谱组合特征评估头颈鳞状细胞癌早期风险具有很高的精确度和准确率(ROC曲线下面积AUC=1.000)。只需要获取上述20种mRNA的相对表达量,通过支持向量机模型计算给出头颈鳞状细胞癌早期患病概率,可作为头颈鳞状细胞癌早期预测的参考依据。

Description

一种特征mRNA表达谱组合及头颈鳞状细胞癌早期预测方法
技术领域
本发明属于生物技术和医学领域,具体地说,涉及一种特征mRNA表达 谱组合及头颈鳞状细胞癌早期预测方法。
背景技术
头颈鳞状细胞癌(head and neck squamous cell carcinoma)占头颈癌的 90%,是起源于上呼吸道细胞的一类解破学和分布多样的恶性肿瘤,包括唇 和口腔、口咽、下咽、喉、鼻旁窦和唾液腺的恶性肿瘤。头颈鳞状细胞癌通 常起始于衬于粘膜表面的鳞状细胞,最常见的头颈鳞状细胞癌类型是位于口 腔和口咽部的肿瘤。
支持向量机(Support Vector Machine,SVM)是一类按监督学***面。SVM模型是将实例表示为空间中的点,这样映射就使得单独类 别的实例被尽可能宽的明显的间隔分开。然后,将新的实例映射到同一空间, 并基于它们落在间隔的哪一侧来预测所属类别。当训练数据是线性可分时, SVM通过硬间隔最大化学习进行分类。当训练数据线性不可分时,SVM通 过使用核技巧以及软间隔最大化学习进行分类。SVM对于特征含义相似的中 等大小的数据集很强大,也适用于小型数据集。通常情况下,对样本量小于 1万的数据集SVM都有很好的预测效果。SVM在疾病诊断、肿瘤分类、肿 瘤基因识别等有着广泛的应用。
肿瘤早期诊断一直是医学界的难题。现有的早期诊断方法多是观测某一 个或一类标志物的表达水平,难以达到理想的诊断效果。由于这些标志物在 肿瘤患者和正常人群中的表达分布有部分重叠,难以界定标志物的临界值将 肿瘤患者和正常人群较好地分开。因此,利用多个标志物表达特征组合可能 是肿瘤早期诊断的一种有效方法。MessengerRNA(mRNA)是由DNA的一 条链作为模板转录而来的、携带遗传信息的能指导蛋白质合成的一类单链核 糖核酸。肿瘤组织与正常组织相比往往表现出大量mRNA的失调,研究表明 这些失调的mRNA跟肿瘤的发生、病理机制和预后状态有密切关系。然而, 由于单个mRNA分子在肿瘤和正常人群中表达分布有重叠,难以界定早期诊 断的临界值。
因此,有必要建立一种头颈鳞状细胞癌的早期预测的更稳定的多个差异 mRNA表达特征组合的预测模型。
发明内容
有鉴于此,本发明针对上述的问题,提供了一种特征mRNA表达谱组合 及头颈鳞状细胞癌早期预测方法。
为了解决上述技术问题,本发明公开了一种特征mRNA表达谱组合,包 括AC011462.1、ARHGEF10L、BMP1、CCM2、CD276、COLGALT1、DCBLD1、 GPD1L、GPT2、HOMER3、MPC1、MRGBP、P3H1、PLOD3、PRADC1、 SERPINH1、SLC26A6、SMDT1、SNAI2和TPT1,其核苷酸探针序列如SEQ ID NO.1-20所示。
本发明还公开了一种特征mRNA表达谱组合的头颈鳞状细胞癌早期预 测方法,包括以下步骤:
步骤1、获取头颈鳞状细胞癌早期患者稳定差异表达的特征mRNA;
步骤2、选取特征mRNA表达数据,对每个样本进行数据标准化;
步骤3、使用支持向量机对标准化后的数据构建早期预测模型;
步骤4、根据患者特征mRNA的表达水平进行早期预测;
该方法为非疾病的诊断和治疗目的。
可选地,所述步骤1中的获取头颈鳞状细胞癌早期患者稳定差异表达的 特征mRNA,具体为:
步骤1.1、从Genomic Data Commons Data Portal数据库中下载头颈鳞状 细胞癌患者肿瘤组织和癌旁组织转录组数据以及临床数据,获得头颈鳞状细 胞癌患者肿瘤组织基因表达谱read counts数值,即为测序读段数值,进行对 数转换;
步骤1.2、选取具有一定表达丰度的mRNA,即在所有样本中mRNA的 read counts大于等于10;再对所有mRNA的read counts取对数,设样本总 数为n,筛选后mRNA总数为m,v为mRNA的read counts,u为取对数之 后的表达值,则有;
uij=log2 vij,i∈(1,n),j∈(1,m) (1)
其中,i为样本编号,j为mRNA编号,uij为第i个样本、第j个mRNA 编号取对数之后的表达值,vij为第i个样本、第j个mRNA编号的read counts 数值;
步骤1.3、选取疾病分期为I期和II期的头颈鳞状细胞癌患者,将这些 患者记为头颈鳞状细胞癌早期患者,头颈鳞状细胞癌早期患者总数记为n′;
步骤1.4、选取肿瘤和正常样本中稳定表达的mRNA,即在肿瘤和正常 样本中变异系数均小于0.1的mRNA,设μ为所有样本中mRNA的表达均值, σ为标准差,变异系数的计算公式为:
Figure BDA0002617840460000031
其中,j为mRNA编号,cv为变异系数,cvj为第j个样本的变异系数,σj为第j个mRNA编号的标准差,μj为第j个mRNA编号的mRNA的表达均 值,设m1为稳定表达的mRNA总数,则有:
Figure BDA0002617840460000032
步骤1.5、选取肿瘤和正常样本中差异表达的mRNA;使用取对数后的 表达值计算肿瘤和正常样本mRNA取对数后的倍数变化f,公式为:
Figure BDA0002617840460000041
其中,j为mRNA编号,fj为第j个mRNA编号的倍数变化,μ1j为第j 个mRNA编号的肿瘤样本的表达均值,μ2j为第j个mRNA编号的正常样本 的表达均值;
然后使用独立样本t检验比较肿瘤和正常样本中mRNA的表达差异,独 立样本t检验公式为:
Figure BDA0002617840460000042
其中n1为肿瘤样本数,n2为正常样本数,μ1为肿瘤样本mRNA表达均值, μ2为正常样本mRNA表达均值,
Figure BDA0002617840460000043
为肿瘤样本mRNA方差,
Figure BDA0002617840460000044
为正常样本 mRNA方差;
对所有t检验得出的p值进行错误发现率(false discovery rate,FDR)校 正,定义q为FDR校正后的数值,r为p值在m1个mRNA中排序后的位置, 则有:
Figure BDA0002617840460000045
其中,j为mRNA编号,qj代表第j个mRNA编号的FDR校正后的数值, pj代表第j个mRNA编号的t检验得出的p值,rj代表第j个mRNA编号的p 值在m1个mRNA中排序后的位置;
最后选取倍数变化f的绝对值大于1且FDR校正后q值小于等于0.05 的mRNA,记为特征mRNA,设特征mRNA总数为m2,则有:
Figure BDA0002617840460000051
可选地,所述步骤2中的选取特征mRNA表达数据,对每个样本进行数 据标准化,公式为:
Figure BDA0002617840460000052
其中i为样本编号,j为特征mRNA编号,μi为第i个样本所有特征mRNA 表达均值,σi为第i个样本所有特征mRNA标准差,uij为取对数后的特征 mRNA表达值,uij′为标准化后的mRNA数值。
可选地,所述步骤3中的使用支持向量机对标准化后的数据构建早期预 测模型,具体为:
步骤3.1、先对所有样本进行分组。将全部样本中80%划分为训练集+验 证集,余下20%划分为测试集,训练集+验证集用于5折交叉验证,即将训 练集+验证集分为相等的5组,按顺序将其中一组作为验证集,其余4组作 为训练集,给定参数,训练集用于构建模型,验证集用于检验模型精确度;
步骤3.2、最优参数筛选,SVM中参数gamma控制高斯核的宽度,C是 正则化参数,限制每个点的重要性;参数网格设置为:
gamma=[0.001,0.01,0.1,1,10,100] (9)
C=[0.001,0.01,0.1,1,10,100] (10)
在交叉验证中,依次使用每两个参数gamma和C的组合构建模型,然 后用验证集检验模型精确度,对每个参数组合,5折交叉验证的每次验证产 生1个精确度,共进行5次验证即产生5个精确度。选取5次验证的平均精 确度最高的参数组合作为最优参数;
步骤3.3、使用最优参数和训练集+验证集的数据构建模型,最后用测试 集对模型进行评估,评估指标包括精确度(accuracy)、准确率(precision)、 召回率(recall)、特异性(specificity)、F1分数(F1 score)、马修斯相关系数 (Matthews correlationcoefficient,MCC)和受试者工作曲线(receiver operating curve,ROC)下面积(areaunder the curve,AUC)。在测试集中,定 义实际为肿瘤且预测为肿瘤计数为truepositive(TP),实际为正常但预测为肿 瘤计数为false positive(FP),实际为肿瘤但预测为正常为false negative(FN), 实际为正常且预测为正常为true negative(TN)。以上评估指标计算公式为:
Figure BDA0002617840460000061
Figure BDA0002617840460000062
Figure BDA0002617840460000063
Figure BDA0002617840460000064
Figure BDA0002617840460000065
Figure BDA0002617840460000066
Figure BDA0002617840460000067
以上评估指标中精确度、准确率、召回率、特异性、F1分数和AUC返 回介于(0,1)之间的值;精确度越高表示模型总体预测效率越高;准确率越高 说明犯I类错误越小;召回率越高说明犯II类错误越小;特异性高说明在 预测为正例的样本中很少有负例混入;F1分数是一个综合指标,为准确率和 召回率的调和平均;MCC是观察到的和预测的二元分类之间的相关系数, 返回介于(-1,1)之间的值,其中1表示完美预测,0表示不比随机预测好, -1表示预测和观察之间的完全不一致;AUC越高表明分类器预测的正实例 概率越高。因此,以上指标越接近1表明模型整体的预测效果越好;
步骤3.4、若以上评估指标都大于0.9,说明模型具有较好的预测效果; 则使用所有数据,用最优参数组合构建最终预测模型。
可选地,所述步骤4中的根据患者特征mRNA的表达水平进行早期预测, 具体为:
步骤4.1、对预测样本的特征mRNA表达数据进行标准化,设u为预测 样本特征mRNA表达值,μ为预测样本特征mRNA表达均值,σ为预测样本 特征mRNA标准差,公式为:
Figure BDA0002617840460000071
其中j为特征mRNA编号,uj′为标准化后的mRNA数值;
步骤4.2、将预测样本标准化后的mRNA数值代入最终预测进行预测; 预测结果为1表示患有头颈鳞状细胞癌,预测结果为0表示正常。
与现有技术相比,本发明可以获得包括以下技术效果:
1)预测速度快:使用本发明构建的预测模型可以对大规模样本进行快 速预测,100个样本的预测时间只需要几秒钟。
2)准确度高:本发明构建的预测模型预测精确度和准确率较高,都达 到90%以上,ROC曲线下面积AUC可达1.000。
3)平台异质性影响较小:由于不同分析平台测定的mRNA表达值有较 大差异,本发明预测使用标准化后的特征mRNA表达值,因此受平台异质性 的影响较小。
当然,实施本发明的任一产品并不一定需要同时达到以上所述的所有技 术效果。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本发明的一部 分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的 不当限定。在附图中:
图1是本发明数据筛选和模型构建的流程;
图2是本发明支持向量机模型交叉验证参数优化过程;
图3是本发明支持向量机模型测试集评估指标;
图4是本发明支持向量机模型测试集ROC曲线。
具体实施方式
以下将配合实施例来详细说明本发明的实施方式,藉此对本发明如何应 用技术手段来解决技术问题并达成技术功效的实现过程能充分理解并据以 实施。
本发明公开了一种基于特征mRNA表达谱组合的头颈鳞状细胞癌早期 预测方法,能够准确地进行头颈鳞状细胞癌I/II期预测,包括以下步骤:
步骤1、获取头颈鳞状细胞癌早期患者稳定差异表达的mRNA(特征 mRNA),具体为:
步骤1.1、从Genomic Data Commons Data Portal数据库中下载头颈鳞状 细胞癌患者肿瘤组织和癌旁组织转录组数据以及临床数据,获得头颈鳞状细 胞癌患者肿瘤组织基因表达谱read counts数值,即为测序读段数值,进行对 数转换;
步骤1.2、选取具有一定表达丰度的mRNA,即在所有样本中mRNA的 read counts大于等于10。再对所有mRNA的read counts取对数,设样本总 数为n,筛选后mRNA总数为m,v为mRNA的read counts,u为取对数之 后的表达值,则有;
Figure BDA0002617840460000081
其中,i为样本编号,j为mRNA编号,uij为第i个样本、第j个mRNA 编号取对数之后的表达值,vij为第i个样本、第j个mRNA编号的read counts 数值。
步骤1.3、选取疾病分期为I期和II期的头颈鳞状细胞癌患者,将这些 患者记为头颈鳞状细胞癌早期患者,头颈鳞状细胞癌早期患者总数记为n′;
步骤1.4、选取肿瘤和正常样本中稳定表达的mRNA,即在肿瘤和正常 样本中变异系数均小于0.1的mRNA,设μ为所有样本中mRNA的表达均值, σ为标准差,变异系数的计算公式为:
Figure BDA0002617840460000091
其中,j为mRNA编号,cv为变异系数,cvj为第j个样本的变异系数,σj为第j个mRNA编号的标准差,μj为第j个mRNA编号的mRNA的表达均 值,设m1为稳定表达的mRNA总数,则有:
Figure BDA0002617840460000092
步骤1.5、选取肿瘤和正常样本中差异表达的mRNA。使用取对数后的 表达值计算肿瘤和正常样本mRNA取对数后的倍数变化f,公式为:
Figure BDA0002617840460000093
其中j为mRNA编号,fj为第j个mRNA编号的倍数变化,μ1j为第j个 mRNA编号的肿瘤样本的表达均值,μ2j为第j个mRNA编号的正常样本的表 达均值。
然后使用独立样本t检验比较肿瘤和正常样本中mRNA的表达差异,独 立样本t检验公式为:
Figure BDA0002617840460000094
其中,n1为肿瘤样本数,n2为正常样本数,μ1为肿瘤样本mRNA表达均 值,μ2为正常样本mRNA表达均值,
Figure BDA0002617840460000101
为肿瘤样本mRNA方差,
Figure BDA0002617840460000102
为正常 样本mRNA方差。
对所有t检验得出的p值进行错误发现率(false discovery rate,FDR)校 正,定义q为FDR校正后的数值,r为p值在m1个mRNA中排序后的位置, 则有:
Figure BDA0002617840460000103
其中,j为mRNA编号,qj代表第j个mRNA编号的FDR校正后的数值, pj代表第j个mRNA编号的t检验得出的p值,rj代表第j个mRNA编号的p 值在m1个mRNA中排序后的位置。
最后选取倍数变化f的绝对值大于1且FDR校正后q值小于等于0.05 的mRNA,记为特征mRNA,设特征mRNA总数为m2,则有:
Figure BDA0002617840460000104
步骤2、选取特征mRNA表达数据,对每个样本进行数据标准化,公式 为:
Figure BDA0002617840460000105
其中i为样本编号,j为特征mRNA编号。μi为第i个样本所有特征mRNA 表达均值,σi为第i个样本所有特征mRNA标准差,uij为取对数后的特征 mRNA表达值,uij′为标准化后的mRNA数值。
步骤3、使用支持向量机对标准化后的数据构建早期预测模型,具体为:
步骤3.1、先对所有样本进行分组。将全部样本中80%划分为训练集+验 证集,余下20%划分为测试集。训练集+验证集用于5折交叉验证,即将训 练集+验证集分为相等的5组,按顺序将其中一组作为验证集,其余4组作 为训练集。给定参数,训练集用于构建模型,验证集用于检验模型精确度。
步骤3.2、最优参数筛选。SVM中参数gamma控制高斯核的宽度,C是 正则化参数,限制每个点的重要性。参数网格设置为:
gamma=[0.001,0.01,0.1,1,10,100] (9)
C=[0.001,0.01,0.1,1,10,100] (10)
在交叉验证中,依次使用每两个参数gamma和C的组合构建模型,然 后用验证集检验模型精确度。对每个参数组合,5折交叉验证的每次验证产 生1个精确度,共进行5次验证即产生5个精确度。选取5次验证的平均精 确度最高的参数组合作为最优参数。
步骤3.3、使用最优参数和训练集+验证集的数据构建模型,最后用测试 集对模型进行评估。评估指标包括精确度(accuracy)、准确率(precision)、 召回率(recall)、特异性(specificity)、F1分数(F1 score)、马修斯相关系数 (Matthews correlationcoefficient,MCC)和受试者工作曲线(receiver operating curve,ROC)下面积(areaunder the curve,AUC)。在测试集中,定 义实际为肿瘤且预测为肿瘤计数为truepositive(TP),实际为正常但预测为肿 瘤计数为false positive(FP),实际为肿瘤但预测为正常为false negative(FN), 实际为正常且预测为正常为true negative(TN)。以上评估指标计算公式为:
Figure BDA0002617840460000111
Figure BDA0002617840460000112
Figure BDA0002617840460000113
Figure BDA0002617840460000121
Figure BDA0002617840460000122
Figure BDA0002617840460000123
Figure BDA0002617840460000124
以上评估指标中精确度、准确率、召回率、特异性、F1分数和AUC返 回介于(0,1)之间的值。精确度越高表示模型总体预测效率越高;准确率越高 说明犯I类错误越小;召回率越高说明犯II类错误越小;特异性高说明在 预测为正例的样本中很少有负例混入;F1分数是一个综合指标,为准确率和 召回率的调和平均;MCC是观察到的和预测的二元分类之间的相关系数, 返回介于(-1,1)之间的值,其中1表示完美预测,0表示不比随机预测好, -1表示预测和观察之间的完全不一致;AUC越高表明分类器预测的正实例 概率越高。因此,以上指标越接近1表明模型整体的预测效果越好。
步骤3.4、若以上评估指标都大于0.9,说明模型具有较好的预测效果。 则使用所有数据,用最优参数组合构建最终预测模型。
步骤4、根据患者特征mRNA的表达水平进行早期预测,具体为:
步骤4.1、对预测样本的特征mRNA表达数据进行标准化,设u为预测 样本特征mRNA表达值,μ为预测样本特征mRNA表达均值,σ为预测样本 特征mRNA标准差,公式为:
Figure BDA0002617840460000125
其中j为特征mRNA编号,uj′为标准化后的mRNA数值。
步骤4.2、将预测样本标准化后的mRNA数值代入最终预测进行预测。 预测结果为1表示患有头颈鳞状细胞癌,预测结果为0表示正常。
实施例1
一种基于特征mRNA表达谱组合的头颈鳞状细胞癌早期预测方法,包括 以下步骤:
步骤1、获取头颈鳞状细胞癌早期患者稳定差异表达的mRNA(特征 mRNA),详细流程见图1。
步骤1.1、从Genomic Data Commons Data Portal数据库中下载头颈鳞状 细胞癌患者肿瘤组织和癌旁组织转录组数据以及临床数据,获得头颈鳞状细 胞癌患者肿瘤组织基因表达谱read counts数值,进行对数转换。
步骤1.2、选取具有一定表达丰度的mRNA,即在所有样本中mRNA的 read counts大于等于10,详见公式(1)。
步骤1.3、选取疾病分期为I期和II期的头颈鳞状细胞癌患者,详见公 式(2)-(3),将这些患者记为头颈鳞状细胞癌早期患者。
步骤1.4、选取肿瘤和正常样本中稳定表达的mRNA,即在肿瘤和正常 样本中变异系数均小于0.1的mRNA。
步骤1.5、选取肿瘤和正常样本中差异表达的mRNA,详见公式(4)- (7)。记为特征mRNA。本例中选取前20个头颈鳞状细胞癌特征mRNA(按 FDR校正后P值从小到大排序)进行模型构建,见表1。20个头颈鳞状细胞 癌特征mRNA的核苷酸探针序列见表2。
表1.头颈鳞状细胞癌特征mRNA
Figure BDA0002617840460000131
Figure BDA0002617840460000141
表2.头颈鳞状细胞癌特征mRNA的核苷酸探针序列
Figure BDA0002617840460000142
步骤2、对每个样本进行数据标准化,详见公式(8)。
步骤3、使用支持向量机对标准化后的数据构建早期诊断模型。
步骤3.1、先对所有样本进行分组。将全部样本中80%划分为训练集+验 证集,余下20%划分为测试集。训练集+验证集用于5折交叉验证,即将训 练集+验证集分为相等的5组,按顺序将其中一组作为验证集,其余4组作 为训练集。给定参数,训练集用于构建模型,验证集用于检验模型精确度。 详见图1。
步骤3.2、最优参数筛选。SVM参数网格设置见公式(9)-(10)。在 交叉验证中,依次使用每两个参数gamma和C的组合构建模型,然后用验 证集检验模型精确度。对每个参数组合,5折交叉验证的每次验证产生1个 精确度,共进行5次验证即产生5个精确度。选取5次验证的平均精确度最 高的参数组合作为最优参数。图2所示为交叉验证参数优化过程,当参数 gamma=0.001,参数C=10时模型交叉验证精确度最高:0.972。因此该模型 的最优参数为:gamma=0.001,C=10。
步骤3.3、使用最优参数和训练集+验证集的数据构建模型,最后用测试 集对模型进行评估。评估指标包括精确度(accuracy)、准确率(precision)、 召回率(recall)、特异性(specificity)、F1分数(F1 score)、马修斯相关系数 (Matthews correlationcoefficient,MCC)和受试者工作曲线(receiver operating curve,ROC)下面积(areaunder the curve,AUC)。评估指标详见公 式(11)-(17)。
步骤3.4、图3所示为以上评估指标中的精确度、准确率、召回率、特 异性、F1分数和MCC,这6个指标均为1.000;图4所示为ROC曲线和AUC, 测试集中AUC为1.000。说明以上评估指标说明该模型有很好的预测效果。 因此使用所有数据,用最优参数组合构建最终预测模型。
步骤4、根据患者特征mRNA的表达水平进行早期预测:
步骤4.1、对预测样本的特征mRNA表达数据进行标准化,详见公式 (18)。本发明随机选取10例样本进行预测,并在构建最终预测模型时将 这10例样本剔除。所选取的10例样本编号和标准化后特征mRNA数值见表 3。
表3. 10例样本编号和特征mRNA标准化后的数值
Figure BDA0002617840460000151
Figure BDA0002617840460000161
步骤4.2、将预测样本标准化后的mRNA数值代入最终预测进行预测。 预测结果为1表示患有头颈鳞状细胞癌,预测结果为0表示正常。10例样本 编号,对应的TCGA编号,实际状态和预测结果见表4。10例样本预测结果 与实际状态完全符合,说明本发明可以对头颈鳞状细胞癌进行精确的早期预 测。
表4. 10例样本编号,对应的TCGA编号,实际和预测的状态
Figure BDA0002617840460000162
综上所述,本发明的特征mRNA表达谱组合具有很高的预测准确性,能 够有效地进行头颈鳞状细胞癌的早期预测。此外,本发明没有平台依赖性, 能够对多种来源的数据进行预测。
上述说明示出并描述了发明的若干优选实施例,但如前所述,应当理解 发明并非局限于本文所披露的形式,不应看作是对其他实施例的排除,而可 用于各种其他组合、修改和环境,并能够在本文所述发明构想范围内,通过 上述教导或相关领域的技术或知识进行改动。而本领域人员所进行的改动和 变化不脱离发明的精神和范围,则都应在发明所附权利要求的保护范围内。
Figure BDA0002617840460000181
Figure BDA0002617840460000191
Figure BDA0002617840460000201
Figure BDA0002617840460000211
Figure BDA0002617840460000221
SEQUENCE LISTING
<110> 广东省第二人民医院
<120> 一种特征mRNA表达谱组合及头颈鳞状细胞癌早期预测方法
<130> 2020
<160> 20
<170> PatentIn version 3.3
<210> 1
<211> 30
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 1
gggacagtaa atgtatgggg tcgcagggtg 30
<210> 2
<211> 30
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 2
catctggagg aaatggcctt ctttttaaaa 30
<210> 3
<211> 30
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 3
ctccctgcag tttgacttct ttgagacaga 30
<210> 4
<211> 30
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 4
tcagagacct taaaaagaag tttactgcaa 30
<210> 5
<211> 30
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 5
ttgtttgatg tgcacagcgt cctgcgggtg 30
<210> 6
<211> 30
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 6
ggtgtgggaa cttctcactc attggcttct 30
<210> 7
<211> 30
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 7
ggagaaaaag aaaataacag gaattaggac 30
<210> 8
<211> 30
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 8
cagccaatct gtgaatgtaa aaactacact 30
<210> 9
<211> 30
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 9
atttgctttc aaaataaata aggtcagcta 30
<210> 10
<211> 30
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 10
tggcagcttt ggggctgttt ttgagcttct 30
<210> 11
<211> 30
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 11
ttgtccccac tgtttaaaaa tgttacctgt 30
<210> 12
<211> 30
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 12
ggatccaggc tacctagagg ggcatcgggc 30
<210> 13
<211> 30
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 13
ggaccctgct cacagccttc tacatggtgc 30
<210> 14
<211> 30
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 14
gggatgggtc tctctgtctc cccacttcct 30
<210> 15
<211> 30
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 15
caagggtgtc tcatgctaca agaagaggca 30
<210> 16
<211> 30
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 16
gggaaggggg aacatgagcc tttgttgcta 30
<210> 17
<211> 30
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 17
ggctgggcac ttcttcgatg catccatcac 30
<210> 18
<211> 30
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 18
catctatttc ctggcttata actcccaaaa 30
<210> 19
<211> 30
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 19
aaagtatttt tgttttgttt tgtttttgcc 30
<210> 20
<211> 30
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 20
gaacagagac cagaaagagt aaaacctttt 30

Claims (6)

1.一种特征mRNA表达谱组合,其特征在于,包括AC011462.1、ARHGEF10L、BMP1、CCM2、CD276、COLGALT1、DCBLD1、GPD1L、GPT2、HOMER3、MPC1、MRGBP、P3H1、PLOD3、PRADC1、SERPINH1、SLC26A6、SMDT1、SNAI2和TPT1,其核苷酸探针序列如SEQ ID NO.1-20所示。
2.一种基于权利要求1所述的特征mRNA表达谱组合的头颈鳞状细胞癌早期预测方法,其特征在于,包括以下步骤:
步骤1、获取头颈鳞状细胞癌早期患者稳定差异表达的特征mRNA;
步骤2、选取特征mRNA表达数据,对每个样本进行数据标准化;
步骤3、使用支持向量机对标准化后的数据构建早期预测模型;
步骤4、根据患者特征mRNA的表达水平进行早期预测;
该方法为非疾病的诊断和治疗目的。
3.根据权利要求2所述的头颈鳞状细胞癌早期预测方法,其特征在于,所述步骤1中的获取头颈鳞状细胞癌早期患者稳定差异表达的特征mRNA,具体为:
步骤1.1、从Genomic Data Commons Data Portal数据库中下载头颈鳞状细胞癌患者肿瘤组织和癌旁组织转录组数据以及临床数据,获得头颈鳞状细胞癌患者肿瘤组织基因表达谱read counts数值,即为测序读段数值,进行对数转换;
步骤1.2、选取具有一定表达丰度的mRNA,即在所有样本中mRNA的read counts大于等于10;再对所有mRNA的read counts取对数,设样本总数为n,筛选后mRNA总数为m,v为mRNA的read counts,u为取对数之后的表达值,则有;
Figure FDA0002617840450000011
其中,i为样本编号,j为mRNA编号,uij为第i个样本、第j个mRNA编号取对数之后的表达值,vij为第i个样本、第j个mRNA编号的read counts数值;
步骤1.3、选取疾病分期为I期和II期的头颈鳞状细胞癌患者,将这些患者记为头颈鳞状细胞癌早期患者,头颈鳞状细胞癌早期患者总数记为n′;
步骤1.4、选取肿瘤和正常样本中稳定表达的mRNA,即在肿瘤和正常样本中变异系数均小于0.1的mRNA,设μ为所有样本中mRNA的表达均值,σ为标准差,变异系数的计算公式为:
Figure FDA0002617840450000021
其中,j为mRNA编号,cv为变异系数,cvj为第j个样本的变异系数,σj为第j个mRNA编号的标准差,μj为第j个mRNA编号的mRNA的表达均值,设m1为稳定表达的mRNA总数,则有:
Figure FDA0002617840450000022
步骤1.5、选取肿瘤和正常样本中差异表达的mRNA;使用取对数后的表达值计算肿瘤和正常样本mRNA取对数后的倍数变化f,公式为:
Figure FDA0002617840450000023
其中,j为mRNA编号,fj为第j个mRNA编号的倍数变化,μ1j为第j个mRNA编号的肿瘤样本的表达均值,μ2j为第j个mRNA编号的正常样本的表达均值;
然后使用独立样本t检验比较肿瘤和正常样本中mRNA的表达差异,独立样本t检验公式为:
Figure FDA0002617840450000031
其中n1为肿瘤样本数,n2为正常样本数,μ1为肿瘤样本mRNA表达均值,μ2为正常样本mRNA表达均值,
Figure FDA0002617840450000032
为肿瘤样本mRNA方差,
Figure FDA0002617840450000033
为正常样本mRNA方差;
对所有t检验得出的p值进行错误发现率(false discovery rate,FDR)校正,定义q为FDR校正后的数值,r为p值在m1个mRNA中排序后的位置,则有:
Figure FDA0002617840450000034
其中,j为mRNA编号,qj代表第j个mRNA编号的FDR校正后的数值,pj代表第j个mRNA编号的t检验得出的p值,rj代表第j个mRNA编号的p值在m1个mRNA中排序后的位置;
最后选取倍数变化f的绝对值大于1且FDR校正后q值小于等于0.05的mRNA,记为特征mRNA,设特征mRNA总数为m2,则有:
m2=m1{|fj|≥1,qj≤0.05},j∈(1,m1) (7)。
4.根据权利要求2所述的头颈鳞状细胞癌早期预测方法,其特征在于,所述步骤2中的选取特征mRNA表达数据,对每个样本进行数据标准化,公式为:
Figure FDA0002617840450000041
其中i为样本编号,j为特征mRNA编号,μi为第i个样本所有特征mRNA表达均值,σi为第i个样本所有特征mRNA标准差,uij为取对数后的特征mRNA表达值,uij′为标准化后的mRNA数值。
5.根据权利要求2所述的头颈鳞状细胞癌早期预测方法,其特征在于,所述步骤3中的使用支持向量机对标准化后的数据构建早期预测模型,具体为:
步骤3.1、先对所有样本进行分组。将全部样本中80%划分为训练集+验证集,余下20%划分为测试集,训练集+验证集用于5折交叉验证,即将训练集+验证集分为相等的5组,按顺序将其中一组作为验证集,其余4组作为训练集,给定参数,训练集用于构建模型,验证集用于检验模型精确度;
步骤3.2、最优参数筛选,SVM中参数gamma控制高斯核的宽度,C是正则化参数,限制每个点的重要性;参数网格设置为:
gamma=[0.001,0.01,0.1,1,10,100] (9)
C=[0.001,0.01,0.1,1,10,100] (10)
在交叉验证中,依次使用每两个参数gamma和C的组合构建模型,然后用验证集检验模型精确度,对每个参数组合,5折交叉验证的每次验证产生1个精确度,共进行5次验证即产生5个精确度。选取5次验证的平均精确度最高的参数组合作为最优参数;
步骤3.3、使用最优参数和训练集+验证集的数据构建模型,最后用测试集对模型进行评估,评估指标包括精确度(accuracy)、准确率(precision)、召回率(recall)、特异性(specificity)、F1分数(F1 score)、马修斯相关系数(Matthews correlationcoefficient,MCC)和受试者工作曲线(receiver operating curve,ROC)下面积(areaunder the curve,AUC)。在测试集中,定义实际为肿瘤且预测为肿瘤计数为true positive(TP),实际为正常但预测为肿瘤计数为false positive(FP),实际为肿瘤但预测为正常为false negative(FN),实际为正常且预测为正常为true negative(TN)。以上评估指标计算公式为:
Figure FDA0002617840450000051
Figure FDA0002617840450000052
Figure FDA0002617840450000053
Figure FDA0002617840450000054
Figure FDA0002617840450000055
Figure FDA0002617840450000056
Figure FDA0002617840450000057
以上评估指标中精确度、准确率、召回率、特异性、F1分数和AUC返回介于(0,1)之间的值;精确度越高表示模型总体预测效率越高;准确率越高说明犯I类错误越小;召回率越高说明犯II类错误越小;特异性高说明在预测为正例的样本中很少有负例混入;F1分数是一个综合指标,为准确率和召回率的调和平均;MCC是观察到的和预测的二元分类之间的相关系数,返回介于(-1,1)之间的值,其中1表示完美预测,0表示不比随机预测好,-1表示预测和观察之间的完全不一致;AUC越高表明分类器预测的正实例概率越高。因此,以上指标越接近1表明模型整体的预测效果越好;
步骤3.4、若以上评估指标都大于0.9,说明模型具有较好的预测效果;则使用所有数据,用最优参数组合构建最终预测模型。
6.根据权利要求2所述的头颈鳞状细胞癌早期预测方法,其特征在于,所述步骤4中的根据患者特征mRNA的表达水平进行早期预测,具体为:
步骤4.1、对预测样本的特征mRNA表达数据进行标准化,设u为预测样本特征mRNA表达值,μ为预测样本特征mRNA表达均值,σ为预测样本特征mRNA标准差,公式为:
Figure FDA0002617840450000061
其中j为特征mRNA编号,μj′为标准化后的mRNA数值;
步骤4.2、将预测样本标准化后的mRNA数值代入最终预测进行预测;预测结果为1表示患有头颈鳞状细胞癌,预测结果为0表示正常。
CN202010775029.2A 2020-08-04 2020-08-04 一种特征mRNA表达谱组合及头颈鳞状细胞癌早期预测方法 Withdrawn CN111876485A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010775029.2A CN111876485A (zh) 2020-08-04 2020-08-04 一种特征mRNA表达谱组合及头颈鳞状细胞癌早期预测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010775029.2A CN111876485A (zh) 2020-08-04 2020-08-04 一种特征mRNA表达谱组合及头颈鳞状细胞癌早期预测方法

Publications (1)

Publication Number Publication Date
CN111876485A true CN111876485A (zh) 2020-11-03

Family

ID=73211646

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010775029.2A Withdrawn CN111876485A (zh) 2020-08-04 2020-08-04 一种特征mRNA表达谱组合及头颈鳞状细胞癌早期预测方法

Country Status (1)

Country Link
CN (1) CN111876485A (zh)

Similar Documents

Publication Publication Date Title
US10354747B1 (en) Deep learning analysis pipeline for next generation sequencing
CA2877430C (en) Systems and methods for generating biomarker signatures with integrated dual ensemble and generalized simulated annealing techniques
CN112020565A (zh) 用于确保基于测序的测定的有效性的质量控制模板
CN111748632A (zh) 一种特征lincRNA表达谱组合及肝癌早期预测方法
CA2877429A1 (en) Systems and methods for generating biomarker signatures with integrated bias correction and class prediction
CN104508670B (zh) 用于生成生物标志物签名的***和方法
CN111748633A (zh) 一种特征miRNA表达谱组合及头颈鳞状细胞癌早期预测方法
CN111763738A (zh) 一种特征mRNA表达谱组合及肝癌早期预测方法
CN111748634A (zh) 一种特征lincRNA表达谱组合及结肠癌的早期预测方法
CN111944902A (zh) 一种基于lincRNA表达谱组合特征的肾***状细胞癌早期预测方法
CN111944900A (zh) 一种特征lincRNA表达谱组合及子宫内膜癌早期预测方法
CN111733251A (zh) 一种特征miRNA表达谱组合及肾透明细胞癌早期预测方法
CN106415563A (zh) 用于预测个体的吸烟状况的***和方法
CN111876485A (zh) 一种特征mRNA表达谱组合及头颈鳞状细胞癌早期预测方法
CN111808965A (zh) 一种特征lincRNA表达谱组合及肾透明细胞癌早期预测方法
CN111850124A (zh) 一种特征lincRNA表达谱组合及肺鳞癌早期预测方法
CN111733252A (zh) 一种特征miRNA表达谱组合及胃癌早期预测方法
CN111793692A (zh) 一种特征miRNA表达谱组合及肺鳞癌早期预测方法
WO2022139735A1 (en) Disease classification based on rna-sequencing data and an algorithm for the detection of disease-related genes
JP5307996B2 (ja) 判別因子セットを特定する方法、システム及びコンピュータソフトウェアプログラム
KR102376212B1 (ko) 신경망 기반의 유전자 선택 알고리즘을 이용한 유전자 발현 마커 선별 방법
CN111944901A (zh) 一种特征mRNA表达谱组合及肾***状细胞癌早期预测方法
CN111951883A (zh) 一种特征mRNA表达谱组合及结肠癌早期预测方法
CN111944898A (zh) 一种特征mRNA表达谱组合及肾透明细胞癌早期预测方法
CN111718997A (zh) 一种特征mRNA表达谱组合及胃癌早期预测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20201103

WW01 Invention patent application withdrawn after publication