CN111825442A - Sr, Ni and Cr co-doped LaAlO3Method for preparing ceramic material and product thereof - Google Patents

Sr, Ni and Cr co-doped LaAlO3Method for preparing ceramic material and product thereof Download PDF

Info

Publication number
CN111825442A
CN111825442A CN202010702790.3A CN202010702790A CN111825442A CN 111825442 A CN111825442 A CN 111825442A CN 202010702790 A CN202010702790 A CN 202010702790A CN 111825442 A CN111825442 A CN 111825442A
Authority
CN
China
Prior art keywords
ceramic material
nitrate
temperature
laalo
loose powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010702790.3A
Other languages
Chinese (zh)
Other versions
CN111825442B (en
Inventor
陈能住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuxi Shuangying Refractory Co ltd
Original Assignee
Changsha Luqiao Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changsha Luqiao Technology Co ltd filed Critical Changsha Luqiao Technology Co ltd
Priority to CN202010702790.3A priority Critical patent/CN111825442B/en
Publication of CN111825442A publication Critical patent/CN111825442A/en
Application granted granted Critical
Publication of CN111825442B publication Critical patent/CN111825442B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/768Perovskite structure ABO3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Conductive Materials (AREA)

Abstract

The invention discloses Sr, Ni and Cr co-doped LaAlO3Preparation method of ceramic material and product thereof, according to chemical formula LaaSrbNicAldCreO3Wherein a is 0.7-0.9, b is 0.05-0.15, c is 0.05-0.15, d is 0.7-0.9, e is 0.1-0.3, strontium nitrate, nickel nitrate, chromium nitrate, lanthanum nitrate and aluminum nitrate are weighed, dissolved in water, then a certain amount of urea is added, ultrasonic dispersion, microwave heating, drying, roasting, grinding, press forming and calcining for a certain time are carried out, and the product is obtained, has good compactness and excellent radiation performance, has an infrared emissivity of 0.76-2.5 mu m of 0.95-0.97, and has a low thermal conductivity of 1.986-2.103 W.m at a temperature of 1200 DEG C‑1·K‑1The forbidden band width is 1.31-1.35 eV.

Description

Sr, Ni and Cr co-doped LaAlO3Method for preparing ceramic material and product thereof
Technical Field
The invention belongs to the field of ceramic preparation, and particularly relates to Sr, Ni and Cr co-doped LaAlO3A method for preparing ceramic material and a product thereof.
Background
The high emissivity energy-saving material is a novel material widely applied to the field of high temperature energy saving, and radiation heat transfer is a main heat transfer mode in a high temperature environment, so that the heat efficiency of high energy consumption equipment represented by a thermal furnace is improved, and the radiation heat transfer capacity of thermal equipment is required to be improved. According to the Wien law and the Plank law, radiant heat under the high-temperature condition of more than 800 ℃ is mainly concentrated in the near-infrared band of 0.76-2.50 mu m, so the emissivity of the near-infrared band is particularly concerned in the field of high-temperature energy conservation.
At present, SiC and SiB6Infrared radiation materials such as cordierite and the like have been applied to thermal equipment to improve radiation heat transfer capacity at high temperature, but the materials cause radiation rate attenuation due to poor oxidation resistance at high temperature in a long-term high-temperature service environment. Therefore, aiming at the energy-saving application of high-temperature thermal equipment, the development of a novel oxide material with high emissivity in the near infrared range of 0.76-2.50 mu m is important.
LaAlO3The perovskite type semiconductor has high melting point (2180 ℃) and good high-temperature stability, and has a typical indirect transition type energy band structure. Therefore, great attention is paid to the improvement of the performance of the lanthanum aluminate ceramic material by doping, and the commonly used doping elements such as Fe, Cr and the like greatly improve the infrared radiation performance of the lanthanum aluminate ceramic material. However, the above research does not consider the influence of compactness of the lanthanum aluminate ceramic material on other properties, and the development of a ceramic material with higher radiation performance in a near infrared band and lower thermal conductivity is still a problem to be solved at present.
Disclosure of Invention
The technical problem to be solved by the invention is to provide a Sr, Ni and Cr codoped LaAlO aiming at the defects in the prior art3The ceramic material and the preparation method thereof have the advantages of good compactness, excellent radiation performance, lower thermal conductivity and forbidden band width value.
The invention adopts the following technical scheme:
sr, Ni and Cr co-doped LaAlO3The preparation method of the ceramic material comprises the following steps:
1) according to the chemical formula LaaSrbNicAldCreO3The stoichiometric ratio of (a) is 0.7-0.9, b is 0.05-0.15, c is 0.05-0.15, d is 0.7-0.9, e is 0.1-0.3, strontium nitrate, nickel nitrate, chromium nitrate, lanthanum nitrate and aluminum nitrate are weighed and put into a beaker, and a proper amount of distilled water is added to fully stir and dissolve;
2) adding a certain amount of urea into a beaker under the condition of stirring, performing ultrasonic dispersion, then performing microwave heating, and evaporating to obtain an intermediate product A;
3) putting the product A into a drying oven for drying, then grinding the dried sample, then putting the sample into a muffle furnace for roasting, taking out the sample, cooling to room temperature, and then fully grinding to obtain loose powder;
4) then putting the loose powder into a mold, pressing and molding the loose powder at the pressure of 100-150 MPa, and sintering the loose powder for 1-3 h in the air atmosphere at the temperature of 1400-1700 ℃ to obtain Sr, Ni and Cr codoped LaAlO3A ceramic material.
Preferably, in the step 2), the addition amount of the urea is 1 to 1.5 times of the total molar amount of the metal ions.
Preferably, in the step 2), the ultrasonic dispersion time is 1-3 hours, the microwave heating temperature is 70-90 ℃, and the heating time is 1-3 hours.
Preferably, in the step 3), the drying temperature is 100-140 ℃, the drying time is 10-16 h, the roasting temperature is 1100-1300 ℃, and the roasting time is 1-3 h.
According to another technical scheme, the Sr, Ni and Cr co-doped LaAlO prepared based on the preparation method3A ceramic material.
The ceramic material has good compactness and excellent radiation performance, the infrared emissivity of 0.95-0.97 at 0.76-2.5 mu m and the lower thermal conductivity of 1.986-2.103 W.m at 1200 DEG C-1·K-1The forbidden band width is 1.31-1.35 eV.
Compared with the prior art, the invention has at least the following beneficial effects:
1) the Sr, Ni and Cr co-doped LaAlO provided by the invention3Ceramic material according to the formula LaaSrbNicAldCreO3Wherein a is 0.7-0.9, b is 0.05-0.15, c is 0.05-0.15, d is 0.7-0.9, e is 0.1-0.3, strontium nitrate, nickel nitrate, chromium nitrate, lanthanum nitrate and aluminum nitrate are weighed, dissolved in water, added with a certain amount of urea, ultrasonically dispersed, heated by microwave, dried, roasted, ground, pressed and molded, and calcined for a certain time to obtain the productThe product has good compactness and excellent radiation performance, the infrared emissivity of 0.76-2.5 mu m is 0.95-0.97, and the product has lower thermal conductivity of 1.986-2.103 W.m at the temperature of 1200 DEG C-1·K-1The forbidden band width is 1.31-1.35 eV.
2) Doping Sr, Ni and Cr into LaAlO3In the crystal lattice, the synergistic effect of the three elements promotes LaAlO3The radiation performance of the ceramic material is obviously improved, the doping of the elements enhances phonon scattering, and the phonon mean free path is reduced, so that the heat conductivity of the material is reduced, impurity energy levels are formed in a material forbidden band due to the doping of the elements, and the impurity energy levels corresponding to electronic transition are located in a near infrared spectrum region, so that the forbidden band width value is reduced, and the radiation capability is enhanced.
3) La is synthesized by two steps by using an ultrasonic-microwave auxiliary self-combustion methodaSrbNicAldCreO3The ceramic material has the advantages that the ceramic material has good sintering characteristics, the porosity of the ceramic material is remarkably reduced, the compactness is improved, the radiation performance is further improved, and the heat conductivity and the forbidden bandwidth value are reduced.
In conclusion, the Sr, Ni and Cr co-doped LaAlO prepared by the invention3The ceramic material has good compactness, excellent radiation performance, lower thermal conductivity and forbidden band width value, and is an ideal material.
The technical solution of the present invention is further described in detail by the following examples.
Detailed Description
The Sr, Ni and Cr co-doped LaAlO provided by the invention3The preparation method of the ceramic material comprises the following steps:
1) according to the chemical formula LaaSrbNicAldCreO3Wherein a is 0.7-0.9, b is 0.05-0.15, c is 0.05-0.15, d is 0.7-0.9, e is 0.1-0.3, strontium nitrate, nickel nitrate and nitre are weighedPutting the chromium acid, the lanthanum nitrate and the aluminum nitrate into a beaker, adding a proper amount of distilled water, and fully stirring and dissolving;
2) adding urea which is 1-1.5 times of the total molar amount of metal ions into a beaker under the condition of stirring, ultrasonically dispersing for 1-3 hours, then carrying out microwave heating for 1-3 hours at 70-90 ℃ in a microwave chemical reactor, and evaporating to obtain an intermediate product A;
3) drying the product A in a drying oven at 100-140 ℃ for 10-16 h, grinding the dried sample, roasting in a muffle furnace at 1100-1300 ℃ for 1-3, taking out the sample, cooling to room temperature, and fully grinding to obtain loose powder;
4) then putting the loose powder into a mold, pressing and molding the loose powder at the pressure of 100-150 MPa, and sintering the loose powder for 1-3 h in the air atmosphere at the temperature of 1400-1700 ℃ to obtain Sr, Ni and Cr codoped LaAlO3A ceramic material.
In order to make the objects, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the embodiments of the present invention, and it is obvious that the described embodiments are some embodiments of the present invention, but not all embodiments. The components of the embodiments of the present invention generally shown may be arranged and designed in a wide variety of different configurations. Thus, the following detailed description of the embodiments of the present invention is not intended to limit the scope of the invention as claimed, but is merely representative of selected embodiments of the invention. All other embodiments, which can be derived by a person skilled in the art from the embodiments given herein without making any creative effort, shall fall within the protection scope of the present invention.
Example 1
Sr, Ni and Cr co-doped LaAlO3The preparation method of the ceramic material comprises the following steps:
1) according to the chemical formula LaaSrbNicAldCreO3Wherein a is 0.8, b is 0.1, c is 0.1, d is 0.8, and e is 0.2, strontium nitrate, nickel nitrate, chromium nitrate, lanthanum nitrate and aluminum nitrate are weighed and placed into a beakerAdding a proper amount of distilled water, and fully stirring and dissolving;
2) adding urea which is 1.5 times of the total mole amount of metal ions into a beaker under the condition of stirring, ultrasonically dispersing for 2 hours, then heating for 2 hours in a microwave chemical reactor at 85 ℃ by microwave, and evaporating to obtain an intermediate product A;
3) drying the product A in a drying oven at 120 ℃ for 14h, grinding the dried sample, roasting in a muffle furnace at 1250 ℃ for 2h, taking out the sample, cooling to room temperature, and fully grinding to obtain loose powder;
4) then the loose powder is put into a die and is pressed and molded under the pressure of 120MPa, and then is sintered for 2h in the air atmosphere of 1600 ℃ to obtain Sr, Ni and Cr codoped LaAlO3A ceramic material.
Example 2
Sr, Ni and Cr co-doped LaAlO3The preparation method of the ceramic material comprises the following steps:
1) according to the chemical formula LaaSrbNicAldCreO3The stoichiometric ratio of (1), wherein a is 0.8, b is 0.15, c is 0.05, d is 085, and e is 0.15, strontium nitrate, nickel nitrate, chromium nitrate, lanthanum nitrate and aluminum nitrate are weighed and put into a beaker, and a proper amount of distilled water is added to be fully stirred and dissolved;
2) adding urea which is 1 time of the total mole amount of metal ions into a beaker under the condition of stirring, carrying out ultrasonic dispersion for 3 hours, then carrying out microwave heating for 3 hours at 75 ℃ in a microwave chemical reactor, and evaporating to obtain an intermediate product A;
3) putting the product A into a drying oven to be dried for 16h at 100 ℃, then grinding the dried sample, then putting the sample into a muffle furnace to be roasted for 1h at 1300 ℃, taking out the sample, cooling to room temperature, and then fully grinding to obtain loose powder;
4) then the loose powder is put into a die and is pressed and molded under the pressure of 100MPa, and then is sintered for 3 hours in the air atmosphere of 1500 ℃ to obtain Sr, Ni and Cr codoped LaAlO3A ceramic material.
Comparative example
ControlExamples 1-7 La according to formulaaSrbNicAldCreO3Wherein the total amount of doping elements is the same, except that a, b, c, d, e are different, and the other preparation conditions and parameters are the same as in example 1.
Comparative example 8 the microwave-assisted mode was omitted and the other preparation conditions and parameters were the same as in example 1.
A Lambda 750S type ultraviolet-visible-near infrared spectrophotometer and a barium sulfate integrating sphere attached to the spectrophotometer are adopted to test the spectral absorption rate of a sample at 760-2500 nm and the spectral absorption curve at 200-800 nm. The thermal diffusivity and specific heat were measured using an LFA 1000 type laser thermal conductivity meter. Specific parameters are shown in table 1:
specific values of tables 1 a, b, c, d, e
a b c d e
Example 1 0.8 0.1 0.1 0.8 0.2
Comparative example 1 0.8 0.2 0 0.8 0.2
Comparative example 2 0.8 0 0.2 0.8 0.2
Comparative example 3 0.8 0.1 0.1 1 0
Comparative example 4 0.8 0.2 0 1 0
Comparative example 5 0.8 0 0.2 1 0
Comparative example 6 1 0 0 0.8 0.2
Comparative example 7 1 0 0 1 0
Comparative example 8 0.8 0.1 0.1 0.8 0.2
TABLE 2 LaAlO3Main properties of ceramic material
Figure BDA0002593466030000061
In conclusion, the Sr, Ni and Cr co-doped LaAlO prepared by the invention3The ceramic material is an ideal material because of its compactness, excellent radiation property, low thermal conductivity and forbidden bandwidth value, and the synergistic effect between Sr, Ni and Cr promotes LaAlO by comparing example 1 with comparative examples 1-73The radiation performance of the ceramic material is obviously improved, the heat conductivity of the material is reduced, the forbidden bandwidth value is reduced, and the radiation capability is enhanced; it can be found by comparing example 1 with comparative example 8 that the densification is improved by the microwave-assisted self-combustion method, thereby promoting the improvement of the radiation performance and reducing the thermal conductivity and the forbidden bandwidth value.
The above-mentioned contents are only for illustrating the technical idea of the present invention, and the protection scope of the present invention is not limited thereby, and any modification made on the basis of the technical idea of the present invention falls within the protection scope of the claims of the present invention.

Claims (6)

1. Sr, Ni and Cr co-doped LaAlO3The preparation method of the ceramic material is characterized by comprising the following steps:
1) according to the chemical formula LaaSrbNicAldCreO3The stoichiometric ratio of (a) is 0.7-0.9, b is 0.05-0.15, c is 0.05-0.15, d is 0.7-0.9, e is 0.1-0.3, strontium nitrate, nickel nitrate, chromium nitrate, lanthanum nitrate and aluminum nitrate are weighed and put into a beaker, and a proper amount of distilled water is added to fully stir and dissolve;
2) adding a certain amount of urea into a beaker under the condition of stirring, performing ultrasonic dispersion, then performing microwave heating, and evaporating to obtain an intermediate product A;
3) putting the product A into a drying oven for drying, then grinding the dried sample, then putting the sample into a muffle furnace for roasting, taking out the sample, cooling to room temperature, and then fully grinding to obtain loose powder;
4) then putting the loose powder into a mold, pressing and molding the loose powder at the pressure of 100-150 MPa, and sintering the loose powder for 1-3 h in the air atmosphere at the temperature of 1400-1700 ℃ to obtain Sr, Ni and Cr codoped LaAlO3A ceramic material.
2. The method of claim 1, wherein: in the step 2), the addition amount of the urea is 1-1.5 times of the total mole amount of the metal ions.
3. The production method according to claim 1 or 2, characterized in that: in the step 2), the ultrasonic dispersion time is 1-3 h, the microwave heating temperature is 70-90 ℃, and the heating time is 1-3 h.
4. The production method according to claim 1, characterized in that: in the step 3), the drying temperature is 100-140 ℃, the drying time is 10-16 h, the roasting temperature is 1100-1300 ℃, and the roasting time is 1-3 h.
5. Sr, Ni and Cr codoped LaAlO prepared by the preparation method according to any one of claims 1 to 43A ceramic material.
6. The ceramic material of claim 5, wherein the ceramic material has good compactness and excellent radiation performance, the infrared emissivity of 0.76-2.5 μm is 0.95-0.97, and the thermal conductivity of the ceramic material is 1.986-2.103W-m at 1200 DEG C-1·K-1The forbidden band width is 1.31-1.35 eV.
CN202010702790.3A 2020-07-21 2020-07-21 Sr, ni and Cr co-doped LaAlO 3 Method for preparing ceramic material and product thereof Active CN111825442B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010702790.3A CN111825442B (en) 2020-07-21 2020-07-21 Sr, ni and Cr co-doped LaAlO 3 Method for preparing ceramic material and product thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010702790.3A CN111825442B (en) 2020-07-21 2020-07-21 Sr, ni and Cr co-doped LaAlO 3 Method for preparing ceramic material and product thereof

Publications (2)

Publication Number Publication Date
CN111825442A true CN111825442A (en) 2020-10-27
CN111825442B CN111825442B (en) 2023-04-07

Family

ID=73528424

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010702790.3A Active CN111825442B (en) 2020-07-21 2020-07-21 Sr, ni and Cr co-doped LaAlO 3 Method for preparing ceramic material and product thereof

Country Status (1)

Country Link
CN (1) CN111825442B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112661510A (en) * 2021-01-11 2021-04-16 内蒙古科技大学 Lanthanum aluminate green ceramic and preparation method and application thereof
CN115806430A (en) * 2022-12-29 2023-03-17 湖南省新化县建平精细陶瓷有限公司 Low-dielectric-constant microwave ceramic and preparation method thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5432024A (en) * 1992-10-14 1995-07-11 Ngk Insulators, Ltd. Porous lanthanum manganite sintered bodies and solid oxide fuel cells
WO2012110858A1 (en) * 2011-02-14 2012-08-23 Indian Institute Of Technology Kanpur Doped aluminum oxides
US20140010953A1 (en) * 2011-03-24 2014-01-09 Technical University Of Denmark SINTERING ADDITIVES FOR CERAMIC DEVICES OBTAINABLE IN A LOW pO2 ATMOSPHERE
WO2015125167A1 (en) * 2014-02-21 2015-08-27 Politecnico Di Torino Process for producing zirconia-based multi-phasic ceramic composites
CN104987057A (en) * 2015-03-18 2015-10-21 安徽工业大学 High-emissivity infrared energy-saving material and applications thereof
CN104987763A (en) * 2015-03-18 2015-10-21 安徽工业大学 Infrared energy-saving coating material and applications thereof
CN105060898A (en) * 2015-03-18 2015-11-18 安徽工业大学 High-emissivity infrared energy-saving material preparation method
WO2018207132A1 (en) * 2017-05-12 2018-11-15 3M Innovative Properties Company Articles comprising ceramics and method of making the same
CN110229007A (en) * 2019-07-04 2019-09-13 中钢集团洛阳耐火材料研究院有限公司 A kind of high emissivity heat insulation coating
CN110483046A (en) * 2019-09-26 2019-11-22 中钢集团洛阳耐火材料研究院有限公司 A kind of high emissivity infrared energy-conserving material and preparation method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5432024A (en) * 1992-10-14 1995-07-11 Ngk Insulators, Ltd. Porous lanthanum manganite sintered bodies and solid oxide fuel cells
WO2012110858A1 (en) * 2011-02-14 2012-08-23 Indian Institute Of Technology Kanpur Doped aluminum oxides
US20140010953A1 (en) * 2011-03-24 2014-01-09 Technical University Of Denmark SINTERING ADDITIVES FOR CERAMIC DEVICES OBTAINABLE IN A LOW pO2 ATMOSPHERE
WO2015125167A1 (en) * 2014-02-21 2015-08-27 Politecnico Di Torino Process for producing zirconia-based multi-phasic ceramic composites
CN104987057A (en) * 2015-03-18 2015-10-21 安徽工业大学 High-emissivity infrared energy-saving material and applications thereof
CN104987763A (en) * 2015-03-18 2015-10-21 安徽工业大学 Infrared energy-saving coating material and applications thereof
CN105060898A (en) * 2015-03-18 2015-11-18 安徽工业大学 High-emissivity infrared energy-saving material preparation method
WO2018207132A1 (en) * 2017-05-12 2018-11-15 3M Innovative Properties Company Articles comprising ceramics and method of making the same
CN110229007A (en) * 2019-07-04 2019-09-13 中钢集团洛阳耐火材料研究院有限公司 A kind of high emissivity heat insulation coating
CN110483046A (en) * 2019-09-26 2019-11-22 中钢集团洛阳耐火材料研究院有限公司 A kind of high emissivity infrared energy-conserving material and preparation method

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
YUANCHAO JI ETAL.: "Tilt strain glass in Sr and Nb co-doped LaAlO3 Ceramics", 《ACTA MATERIALIA》 *
卢卫华: "铝酸镧基红外辐射涂层的制备与性能研究", 《中国优秀硕士学位论文全文数据库 (基础科学辑)》 *
常晴等: "sol-gel法制备B位掺杂铝酸镧红外辐射陶瓷材料", 《稀有金属与硬质合金》 *
李远勋等: "《功能材料的制备与性能表征》", 30 September 2018, 西南交通大学出版社 *
苏雅玉: "LaAlO3红外辐射材料的离子掺杂改性及性能研究", 《中国优秀硕士学位论文全文数据库 (工程科技Ⅰ辑)》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112661510A (en) * 2021-01-11 2021-04-16 内蒙古科技大学 Lanthanum aluminate green ceramic and preparation method and application thereof
CN115806430A (en) * 2022-12-29 2023-03-17 湖南省新化县建平精细陶瓷有限公司 Low-dielectric-constant microwave ceramic and preparation method thereof
CN115806430B (en) * 2022-12-29 2023-07-07 湖南省新化县建平精细陶瓷有限公司 Low-dielectric-constant microwave ceramic and preparation method thereof

Also Published As

Publication number Publication date
CN111825442B (en) 2023-04-07

Similar Documents

Publication Publication Date Title
CN114573345B (en) Preparation method and application of perovskite type high-entropy high-emissivity ceramic coating film coating liquid
CN111825442B (en) Sr, ni and Cr co-doped LaAlO 3 Method for preparing ceramic material and product thereof
CN113105237B (en) AB2O6 type tantalate ceramic and preparation method thereof
CN110386595A (en) High entropy RE phosphate powder and preparation method thereof
Su et al. Effect of Ca2+ and Mn2+ ions on the radiation properties of LaAlO3
CN113429213A (en) Preparation method of high-emissivity infrared energy-saving high-entropy material with spinel structure
CN105293499A (en) Preparation method of B,N-codoped silicon carbide nano wave-absorbing material
CN107129304A (en) A kind of method of the combustion-supporting lanthanum molybdate-based electrolyte of method one-step synthesis of microwave
CN112209444B (en) Preparation method of broad-spectrum absorption high-temperature-resistant powder material
CN114956802A (en) Low-thermal-conductivity infrared emission material and preparation method and application thereof
CN104987057A (en) High-emissivity infrared energy-saving material and applications thereof
CN113149088A (en) High-emissivity infrared energy-saving high-entropy material with perovskite structure and preparation method thereof
CN114956818A (en) Low-thermal-conductivity high-entropy cerate ceramic material and preparation method thereof
CN113929446A (en) Rare earth perovskite high-entropy oxide material and preparation method and application thereof
CN113233876B (en) High-emissivity high-entropy ceramic material and preparation method and application thereof
Wu et al. Enhanced near-and mid-infrared radiation property of MgCr2O4 by doping with Cu ions
CN114315370A (en) Method for synthesizing (TiZrHfNbTa) CN high-entropy ultrahigh-temperature carbonitride ceramic powder
WO2021196445A1 (en) Catio3-based oxide thermoelectric material and preparation method therefor
CN115010491B (en) High-entropy rare earth tantalate ceramic material and preparation method thereof
CN104387067B (en) The preparation method of high dielectric loss titanium silicon-carbon powder microwave absorption
Polat Effects of size on the phase stability and conductivity of double-doped δ-Bi 2 O 3
CN103864424B (en) A kind of preparation method of microwave dielectric ceramic materials
CN106747398A (en) A kind of preparation method of the tunable luminescent material of Copper-cladding Aluminum Bar magnesium aluminate
CN107573071B (en) Monodisperse spherical Y2O3And Al2O3Powder preparation (Y)1-xYbx) Method for preparing AG transparent ceramic
CN112194485A (en) Thermal barrier coating ceramic material and preparation method and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20231114

Address after: 214200 Xingye West Road, Niujia village, Guanlin Town, Yixing City, Wuxi City, Jiangsu Province

Patentee after: Wuxi Shuangying refractory Co.,Ltd.

Address before: 410205 room 4125, 4th floor, main building, No. 15, Lutian Road, Changsha high tech Development Zone, Changsha, Hunan

Patentee before: Changsha Luqiao Technology Co.,Ltd.

TR01 Transfer of patent right