CN111818588A - User access method and access network equipment - Google Patents

User access method and access network equipment Download PDF

Info

Publication number
CN111818588A
CN111818588A CN202010753438.2A CN202010753438A CN111818588A CN 111818588 A CN111818588 A CN 111818588A CN 202010753438 A CN202010753438 A CN 202010753438A CN 111818588 A CN111818588 A CN 111818588A
Authority
CN
China
Prior art keywords
operator
network
service
bandwidth
public network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010753438.2A
Other languages
Chinese (zh)
Other versions
CN111818588B (en
Inventor
杨艳
冯毅
张涛
张忠皓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China United Network Communications Group Co Ltd
Original Assignee
China United Network Communications Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China United Network Communications Group Co Ltd filed Critical China United Network Communications Group Co Ltd
Priority to CN202010753438.2A priority Critical patent/CN111818588B/en
Publication of CN111818588A publication Critical patent/CN111818588A/en
Application granted granted Critical
Publication of CN111818588B publication Critical patent/CN111818588B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/20Negotiating bandwidth
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/18Selecting a network or a communication service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Abstract

The invention provides a user access method and access network equipment, relates to the technical field of communication, and solves the problem that how to meet the requirement of access complaints of 2B (which can be understood as private network) users and 2C (which can be understood as public network) users of different operators as far as possible under the condition that resources of a shared base station after co-construction are limited so as to be urgently solved. The method comprises the steps of obtaining network data of a target service of each operator in N operators in current unit time; when determining that the network data of the target service of the nth operator meets the preset conditions, determining the bandwidth demand of the target service in the current unit time according to the network data of the N operators; and when the residual bandwidth of the carrier bearing the target service is determined to be larger than the bandwidth demand, allowing a new user of the target service to access the core network equipment corresponding to the target service in the current unit time.

Description

User access method and access network equipment
Technical Field
The present invention relates to the field of communications technologies, and in particular, to a user access method and an access network device.
Background
The fifth generation mobile communication technology (5th-generation, 5G) network provides multiple slicing modes, which can satisfy the demands of both customers (2C) and enterprises (2B).
The transceiver devices (e.g. access network devices) in a 5G network are typically multi-antenna devices, such as: 64 Transceiver and Receiver (TR) devices, resulting in very high networking costs. Therefore, operators are seeking a solution for co-establishing a base station by multiple operators and performing network deployment by using the co-established base station. The co-building of the base station means that one base station can meet the requirements of multiple operators, and the equipment of the multiple operators is not centralized in the same base station.
How to meet the access complaints of 2B (which can be understood as private network) users and 2C (which can be understood as public network) users of different operators as much as possible under the condition that resources of the shared base station after co-construction are limited becomes a problem to be solved urgently.
Disclosure of Invention
The invention provides a user access method and access network equipment, which solve the problem that how to meet the requirement of 2B (which can be understood as private network) users and 2C (which can be understood as public network) user access complaints of different operators as much as possible under the condition that resources of a shared base station after co-construction are limited is urgently solved.
In order to achieve the purpose, the invention adopts the following technical scheme:
in a first aspect, an embodiment of the present invention provides a user access method, which is applied to an access network device, where the access network device configures two carriers for each operator in multiple operators, where the two carriers include a public network carrier and a private network carrier, the public network carrier provides support for a public network service, and the private network carrier provides support for a private network service, and the method includes: acquiring network data of a target service of each operator in N operators in current unit time; the target service comprises one or more of public network service and K private network services, the network data at least comprises RRC connection number and number transmission connection number, N is an integer greater than or equal to 2, and K is an integer greater than or equal to 1; and when the network data of the target service of the nth operator is determined to meet the preset conditions, determining the bandwidth demand of the target service in the current unit time according to the network data of the N operators. The preset condition is used for indicating whether the target service is the superflow service or not; and when the residual bandwidth of the carrier bearing the target service is determined to be larger than the bandwidth demand, allowing a new user of the target service to access the core network equipment corresponding to the target service in the current unit time.
It can be seen that the access network device may determine, according to the network data of the current unit time, whether the network data of the target service of the nth operator meets the preset condition, so as to determine whether the new user of the target service in the current unit time can access the core network device corresponding to the target service. When it is determined that the network data of the target service meets the preset condition, it is indicated that there are more new users requesting access to the target service in the current unit time, and therefore the bandwidth demand of the target service in the current unit time needs to be determined. And when the residual bandwidth of the carrier bearing the target service is determined to be larger than the bandwidth demand, allowing the new user of the target service to access the core network equipment corresponding to the target service in the current unit time. Therefore, the problem of how to meet the access requirements of 2B (which can be understood as private network) users and 2C (which can be understood as public network) users of different operators as far as possible under the condition that resources of the shared base station after co-construction are limited is solved.
In a second aspect, the present invention provides an access network device, where the access network device configures two carriers for each operator in multiple operators, where the two carriers include a public network carrier and a private network carrier, the public network carrier provides support for a public network service, and the private network carrier provides support for a private network service, and the access network device includes: an acquisition unit and a processing unit.
Specifically, the obtaining unit is configured to obtain network data of a target service of each of the N operators in a current unit time. The target service comprises one or more of public network service and K private network services, the network data at least comprises RRC connection number and number transmission connection number, N is an integer greater than or equal to 2, and K is an integer greater than or equal to 1.
The processing unit is configured to determine, when it is determined that the network data of the target service of the nth operator acquired by the acquisition unit satisfies a preset condition, a bandwidth demand of the target service in the current unit time according to the network data of the N operators acquired by the acquisition unit. The preset condition is used for indicating whether the target service is the super-stream service or not. The processing unit is further configured to allow a new user of the target service to access the core network device corresponding to the target service in the current unit time when it is determined that the remaining bandwidth of the carrier carrying the target service is greater than the bandwidth requirement.
In a third aspect, the present invention provides an access network device, including: communication interface, processor, memory, bus; the memory is used for storing computer execution instructions, and the processor is connected with the memory through a bus. When the access network device is operating, the processor executes the computer-executable instructions stored by the memory to cause the access network device to perform the user access method as provided in the first aspect above.
In a fourth aspect, the invention provides a computer-readable storage medium comprising instructions. The instructions, when executed on a computer, cause the computer to perform the user access method as provided above in the first aspect.
In a fifth aspect, the present invention provides a computer program product for causing a computer to perform the user access method according to the first aspect when the computer program product runs on the computer.
It should be noted that all or part of the above computer instructions may be stored on the first computer readable storage medium. The first computer readable storage medium may be packaged with the processor of the access network device or may be packaged separately from the processor of the access network device, which is not limited in the present invention.
For the description of the second, third, fourth and fifth aspects of the present invention, reference may be made to the detailed description of the first aspect; in addition, for the beneficial effects described in the second aspect, the third aspect, the fourth aspect and the fifth aspect, reference may be made to beneficial effect analysis of the first aspect, and details are not repeated here.
In the present invention, the names of the above access network devices do not limit the devices or functional modules themselves, and in practical implementations, the devices or functional modules may appear by other names. Insofar as the functions of the respective devices or functional blocks are similar to those of the present invention, they are within the scope of the claims of the present invention and their equivalents.
These and other aspects of the invention will be more readily apparent from the following description.
Drawings
In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the drawings used in the description of the embodiments or the prior art will be briefly described below, it is obvious that the drawings in the following description are only some embodiments of the present invention, and for those skilled in the art, other drawings can be obtained according to the drawings without creative efforts.
Fig. 1 is a schematic diagram of a system architecture to which a user access method according to an embodiment of the present invention is applied;
fig. 2 is a schematic diagram of a system architecture to which another user access method according to an embodiment of the present invention is applied;
fig. 3 is a schematic structural diagram of an access network device according to an embodiment of the present invention;
fig. 4 is a flowchart illustrating a user access method according to an embodiment of the present invention;
fig. 5 is a second flowchart illustrating a user access method according to an embodiment of the present invention;
fig. 6 is a third schematic flowchart of a user access method according to an embodiment of the present invention;
fig. 7 is a fourth schematic flowchart of a user access method according to an embodiment of the present invention;
fig. 8 is a fifth flowchart illustrating a user access method according to an embodiment of the present invention;
fig. 9 is a sixth schematic flowchart of a user access method according to an embodiment of the present invention;
fig. 10 is a schematic structural diagram of a base station according to an embodiment of the present invention;
fig. 11 is a second schematic structural diagram of a base station according to an embodiment of the present invention;
fig. 12 is a schematic structural diagram of a computer program product of a user access method according to an embodiment of the present invention.
Detailed Description
Embodiments of the present invention will be described below with reference to the accompanying drawings.
The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the drawings in the embodiments of the present invention, and it is obvious that the described embodiments are only a part of the embodiments of the present invention, and not all of the embodiments. All other embodiments, which can be derived by a person skilled in the art from the embodiments given herein without making any creative effort, shall fall within the protection scope of the present invention.
For the convenience of clearly describing the technical solutions of the embodiments of the present invention, in the embodiments of the present invention, the words "first", "second", and the like are used to distinguish the same items or similar items with basically the same functions and actions, and those skilled in the art can understand that the words "first", "second", and the like do not limit the quantity and execution order.
In view of the foregoing problems, embodiments of the present invention provide a user access method, which can satisfy access requirements of user terminals corresponding to different services carried by a shared base station (access network device) co-established by different operators based on Radio Resource Control (RRC) connection number and data transmission connection number (indicating the number of RRC connections with data transmission). The method is applied to the system architecture as shown in fig. 1, and the system may include: the terminal 01, the access network device 02 and at least one core network device 03(03-1, 03-2, 03-3 and 03-4), wherein each core network device 03 corresponds to an operator core network (a private network core network (supporting 2B services) or a public network core network (supporting 2C services)). For example, referring to fig. 1, 03-1 may correspond to a core network of a public network of an operator a, 03-2 may correspond to a core network of a private network of the operator a, 03-3 may correspond to a core network of a public network of an operator B, and 03-4 may correspond to a core network of a private network of the operator B. After the access network device 02 of the terminal 01 is connected with the access network device, the terminal can access the core network of the public network or the core network of the private network of the corresponding operator through different core network devices 03. Of course, only one core network device 03 may actually exist, and the functions of the above-mentioned multiple core network devices may be completed.
It should be noted that, in the present invention, the public network service (2C service) refers to all services in the public network, and the private network service (2B service) refers to all services in the private network.
Illustratively, referring to fig. 2, the functional modules in the core network device 03 may include a service distribution requirement collecting module 031, a service dependency analyzing module 032, a key user number parameter customizing module 033, and a differential carrier bandwidth customizing module 034. The service distribution requirement collecting module 031 may collect network data of a private network service or a public network service of an operator corresponding to the access network device 02 (e.g., a base station) connected thereto. The network data may include: data related to a service corresponding to the network (average RRC connection number/average number of RRC connections having data transfer per unit time (e.g., hour), maximum RRC connection number/maximum number of RRC connections having data transfer per unit time (e.g., hour)), a traffic flow rate or a user number, and the like.
The service dependency analysis module 032 may determine, through a certain calculation, whether the service in the actual scene corresponding to the network data mainly depends on the RRC connection number by using the network data acquired by the corresponding service distribution requirement collection module 031 in cooperation with the service dependency analysis module 032 in the other core network device corresponding to the access network device 02 connected thereto. Of course, if all the core networks correspond to the same core network device, the service dependency analysis module included therein independently completes the above calculation process.
A key user parameter customizing module 033, configured to, through cooperation with the key user parameter customizing module 033 in the other core network device corresponding to the access network device 02 connected thereto, calculate, according to the network data acquired by the service distribution demand collecting module 031 respectively corresponding thereto, an agreed RRC connection number (a first threshold value and a third threshold value) and an agreed number-of-transmission RRC connection number (a second threshold value and a fourth threshold value) per target unit time recommended for the public network service and the private network service of different operators. Of course, if all the core networks correspond to the same core network device, the key capacity customization module included therein independently completes the above calculation process.
For example, taking a unit time of 1 second and a target unit time of 1 hour as an example, the first threshold, the second threshold, the third threshold and the fourth threshold of the private network traffic may be calculated by the following formulas:
Figure BDA0002610762640000061
Figure BDA0002610762640000062
Figure BDA0002610762640000063
Figure BDA0002610762640000064
wherein the content of the first and second substances,
Figure BDA0002610762640000065
representing an agreed number of public network user accesses per second (also referred to as a first threshold),
Figure BDA0002610762640000066
indicating the agreed number of user accesses (also referred to as a second threshold) for the public network per second,
Figure BDA0002610762640000067
representing an agreed number of private network user accesses per second (also referred to as a third threshold),
Figure BDA0002610762640000068
indicating the agreed number of user accesses per second for which the private network has data transfer (also referred to as a fourth threshold),
Figure BDA0002610762640000069
representing the maximum number of RRC connections per hour for the public network,
Figure BDA00026107626400000610
represents the average number of RRC connections per hour for the public network,
Figure BDA00026107626400000611
representing the maximum number of RRC connections per hour for the private network,
Figure BDA00026107626400000612
representing the average number of RRC connections per hour for the private network,
Figure BDA00026107626400000613
represents the maximum number of RRC connections transmitted by the public network per hour,
Figure BDA00026107626400000614
representing the average number of RRC connections transmitted by the public network per hour,
Figure BDA00026107626400000615
indicating the maximum number of RRC connections that the private network can transmit per hour,
Figure BDA00026107626400000616
indicating the average number of RRC connections transmitted by the private network per hour.
A difference carrier bandwidth fixed value module 034, configured to obtain the number of RRC connections and the number of RRC connections with data transmission of different operators in an area where a base station is to be deployed, and determine an initial bandwidth of each carrier.
Wherein the initial bandwidth of the public network carrier satisfies
Figure BDA00026107626400000617
Initial bandwidth satisfaction of private network carrier
Figure BDA0002610762640000071
Wherein i represents a carrier i, k represents a carrier k, j is the jth private network under the carrier k, W is the total bandwidth supported by the base station, and floor represents a calculated value rounded down.
Illustratively, referring to fig. 2, the access network device 02 includes a user number real-time monitoring module 021, a user number distinguishing module 022, and a network load balancing module 023. The user number real-time monitoring module 021 can collect the RRC connection number of the private network service and the public network service of each operator and the RRC connection number with data transmission by time granularity of unit time (1 second). The user number discriminating module 022 may determine whether to deny or allow the subsequent network load balancing module 023 to the access request of the user terminal of each service according to the RRC connection number acquired by the traffic real-time monitoring module 031 and the RRC connection number with data transmission.
Illustratively, taking a 5G communication network as an example, referring to fig. 3, a practical device in the access network device 02 may include a radio frequency unit and a baseband processing unit. The radio frequency unit is connected to the baseband processing unit through a common public radio interface (cpri (ecrpi)), and the public network core network (5GC1) of the operator a, the public network core network (5GC2) of the operator B, the private network core network (5GC3) of the operator a, and the private network core network (5GC4) of the operator B are connected to the baseband processing unit of the access network device 2 through NG interfaces.
The 5G baseband processing unit includes a Control Plane (CP) and a User Plane (UP). The control plane has an identification module (specifically, the identification module can be determined by a PLMN (public land mobile network), an APN (access point name), a DNN (data network name), and the like) for accessing a private network core network and a public network core network of different operators, so that the public network core network and the private network core network of different operators can be distinguished. The user number real-time monitoring module 021, the user number distinguishing module 022 and the network load balancing module 023 can also be all arranged in the CP.
The 5G radio frequency unit comprises an antenna unit, a switch, a first combiner, a second combiner, a first transceiver, a second transceiver, a third transceiver and a fourth transceiver. Each transceiver includes a Digital Up Converter (DUC), a digital-to-analog converter (DAC), a transmit antenna (TX), a receive antenna (RX), an analog-to-digital converter (ADC), and a Digital Down Converter (DDC).
Specifically, in the technical scheme provided by the present invention, the access network device 02 allocates two carriers (respectively, a public network carrier and a private network carrier) to each operator to carry the public network service and the private network service of the operator. Each carrier includes an uplink carrier and a downlink carrier, a communication link corresponding to the uplink carrier is composed of the antenna unit, the switch, the RX, the ADC, the DDC, and the 5G baseband processing unit in fig. 3, and a communication link corresponding to the downlink carrier is composed of the antenna unit, the switch, the TX, the DAC, the DUC, and the 5G baseband processing unit in fig. 3.
For example, as shown in fig. 3, when 2 operators (operator a and operator B, respectively) are accessed in the access network device 02, a user terminal of the operator a may transmit via a first carrier when initiating a private network service; when the user terminal of the operator A initiates the private network service, the private network service can be transmitted through the second carrier; when initiating public network service, the user terminal of the operator B can transmit through the third carrier; when initiating the private network service, the user terminal of the operator B may transmit via the fourth carrier. The first carrier comprises a first transceiver, a first combiner, a switch and an antenna unit; the second carrier comprises a second transceiver, a second combiner, a switch and an antenna unit; the third carrier comprises a third transceiver, a first combiner, a switch and an antenna unit; the fourth carrier includes a fourth transceiver, a second combiner, a switch, and an antenna unit.
In this embodiment of the present invention, the access network device 02 may be an access network device (BTS) in a global system for mobile communications (GSM), a Code Division Multiple Access (CDMA), an access network device (node B, NB) in a Wideband Code Division Multiple Access (WCDMA), an access network device (evolved node B, eNB) in a Long Term Evolution (Long Term Evolution, LTE), an access network device (eNB) in an internet of things (IoT) or a narrowband internet of things (NB-IoT), an access network device in a future 5G mobile communication network or a Public Land Mobile Network (PLMN) in a future Evolution, which is not limited in this respect.
Illustratively, the terminal 01 in the embodiment of the present invention is named differently, for example, a User Equipment (UE), an access terminal, a terminal unit, a terminal station, a mobile station, a remote terminal, a mobile device, a wireless communication device, a vehicular user equipment, a terminal agent, or a terminal device. The terminal may specifically be a mobile phone, a tablet computer, a desktop, a laptop, a handheld computer, a notebook, an ultra-mobile personal computer (UMPC), a netbook, a cellular phone, a Personal Digital Assistant (PDA), an Augmented Reality (AR) Virtual Reality (VR) device, and other devices that can communicate with a base station.
In the following, referring to the communication system shown in fig. 1, taking the access network device 02 as a base station as an example, a user access method provided by the embodiment of the present invention is described.
As shown in fig. 4, the user access method provided in the embodiment of the present invention is applied to a base station, where the base station configures two carriers for each operator in multiple operators, where the two carriers include a public network carrier and a private network carrier, the public network carrier provides support for a public network service, and the private network carrier provides support for a private network service, and the method includes:
s11, the base station acquires the network data of the target service of each operator in the N operators in the current unit time. The target service comprises one or more of public network service and K private network services, the network data at least comprises RRC connection number and number transmission connection number, N is an integer greater than or equal to 2, and K is an integer greater than or equal to 1.
Illustratively, in order to ensure that the access request of the ue is processed in time based on the number of RRC connections and the number of legacy connections (referring to the number of legacy RRC connections), the unit time may be one second. Of course, the unit time may be smaller as the technology actually allows, and is not limited specifically here.
For example, in practice, the step S11 may be executed by the aforementioned real-time flow monitoring module, and the record of the collected data is as follows:
TABLE 1
Figure BDA0002610762640000091
Figure BDA0002610762640000101
Wherein YY represents the year, MM represents the month, DD represents the day of the MM month, HH: SS stands for time minute second.
Optionally, referring to fig. 5, because the technical solution provided in the embodiment of the present invention determines whether the user terminal of each service is accessible based on the RRC connection number and the data-transmitted RRC connection number, and if the number of RRC connections required by each service is not large and the number of data-transmitted RRC connections is not large, the performance of the co-established shared base station is not affected at all, the core network device 03 does not need to execute the technical solution, so that the core network device 03 further needs to execute the following steps before the step S11:
s1, the core network device 03 obtains an average RRC connection number of each target unit time and an average number of RRC connections that are transmitted in a preset time period during busy time of each service carried by the base station before the current unit time.
For example, the target unit time may be 1 hour; in order to save the computing resources and ensure that the collected data can reflect the RRC connection number of each service carried by the base station and the usage of the number of RRC connections that are transmitted, the preset time period may be two consecutive weeks of tuesday (any working day) and sunday (any holiday). The busy hour can be determined by the traffic using condition of the corresponding user of the operator, for example, the busy hour can be 9:00-11:00 and 14:00-17:00 in working days, and the non-working day can be 10:00-17: 00.
Illustratively, the step S1 is mainly performed by the service dependency analysis module 032 in the core network device 03 shown in fig. 2.
S2, the core network device 03 determines the large flow target unit time according to the average RRC connection number of each target unit time when all services belong to busy hours in a preset time period and the average number of RRC connections that have data transmission.
Illustratively, when the ratio of the sum of the average RRC connection numbers of all the services in the target unit time in busy hours in a preset time period to the maximum RRC connection number that the base station can carry in one target unit time is greater than a third preset ratio, the target unit time is determined to be the target unit time with large flow.
And when the ratio of the sum of the average data-transmitted RRC connection number in the target unit time in busy hour of all services in the preset time period to the maximum data-transmitted RRC connection number which can be borne by the base station in one target unit time is greater than a fourth preset ratio, determining the target unit time as the large-flow target unit time.
S3, the core network device 03 determines whether the ratio of the number of the large flow target unit time to the total target unit time corresponding to busy hours in the preset time period is greater than a preset percentage.
When the ratio of the number of the large-flow target unit time to the total target unit time corresponding to all busy hours is greater than the preset percentage, executing S4; when the ratio of the number of the large flow target unit time to the total target unit time corresponding to all busy hours is not more than the preset percentage, S1 is executed.
For example, the preset percentage may be 30%, or may be any other feasible value, and is not limited herein.
S4, the core network device 03 sends a corresponding command to the base station to enable the base station to obtain the RRC connection number and the transmitted RRC connection number of each service carried by the base station in the current unit time.
Because the traffic used by each service in the time of the large-traffic target unit time is more, it can be considered that the traffic is very dependent on the number of RRC connections and the number of RRC connections with transmission, and if the ratio of the large-traffic target unit time to the total target unit time in busy exceeds a certain ratio, it indicates that each service carried by the base station is relatively dependent on the number of RRC connections and the number of RRC connections with transmission, and a corresponding instruction needs to be sent to the base station to enable the base station to execute the technical scheme provided by the embodiment of the present invention.
For example, the steps S2-S4 are performed by the service dependency analysis module 032 in the core network device 03 shown in fig. 2.
It should be noted that, in practice, the core network device may not execute the step S3, and after the step S2, it is determined whether to execute the step S1 or send a corresponding command to the core network device so as to execute the step S12 according to the ratio of the number of the large flow target unit time to the total target unit time number corresponding to the busy hour in the preset time period. In addition, the ratio of the number of the large flow target unit time to the total target unit time number corresponding to all busy hours is equal to the preset percentage, which can be attributed to the fact that the ratio of the number of the large flow target unit time to the total target unit time number corresponding to all busy hours is greater than the preset percentage, or can be attributed to the fact that the ratio of the number of the large flow target unit time to the total target unit time number corresponding to all busy hours is less than the preset percentage, and the example corresponding to fig. 5 is exemplified by the fact that the ratio of the number of the large flow target unit time to the total target unit time number corresponding to all busy hours is less than the preset percentage, but the present invention does not specifically limit this.
S12, when the base station determines that the network data of the target service of the nth operator meets the preset conditions, the base station determines the bandwidth demand of the target service in the current unit time according to the network data of the N operators. The preset condition is used for indicating whether the target service is the super-stream service or not.
S13, when the base station determines that the residual bandwidth of the carrier carrying the target service is larger than the bandwidth demand, the new user of the target service is allowed to access the core network equipment corresponding to the target service in the current unit time.
Therefore, the base station can determine whether the network data of the target service of the nth operator meets the preset condition according to the network data of the current unit time, so as to determine whether the new user of the target service in the current unit time can access the core network device corresponding to the target service. When the base station determines that the network data of the target service meets the preset condition, it indicates that there are more new users requesting access to the target service in the current unit time, and therefore the bandwidth demand of the target service in the current unit time needs to be determined. And when the base station determines that the residual bandwidth of the carrier bearing the target service is greater than the bandwidth demand, allowing a new user of the target service to access the core network equipment corresponding to the target service in the current unit time. Therefore, the problem of how to meet the access requirements of 2B (which can be understood as private network) users and 2C (which can be understood as public network) users of different operators as far as possible under the condition that resources of the shared base station after co-construction are limited is solved.
In an implementation manner, when the target service includes a public network service, in this case, in conjunction with fig. 4, the above step S12 can be implemented by step S120 as shown in fig. 6.
S120, when the base station determines that the RRC connection number of the public network service of the nth operator is larger than a first threshold value and/or the data transmission connection number of the public network service is larger than a second threshold value, the base station determines the bandwidth demand of the target service in the current unit time according to the network data of the N operators.
In an implementable manner, the above-mentioned "determining the bandwidth demand of the target service in the current unit time according to the network data of the N operators" can be implemented in the following manner.
And determining the bandwidth demand of the public network service of the nth operator in the current unit time according to the public network bandwidth demand formula and the network data of the public network service of each operator in the N operators in the current unit time. The public network bandwidth demand formula meets the following requirements:
Figure BDA0002610762640000121
wherein the content of the first and second substances,
Figure BDA0002610762640000122
indicating bandwidth demand, RCCPUAddRepresenting the number of RRC connections of the public network service in the current unit time,
Figure BDA0002610762640000123
represents the RRC connection number, sigma RCC, with data transmission of the public network service in the current unit timePURepresents the sum of RRC connection numbers of all public network services of the base station in the current unit time, sigma RCCPrRepresents the sum of the RRC connection numbers of all private network services of the base station in the current unit time,
Figure BDA0002610762640000131
the sum of the number of RRC connections which are transmitted by the base station and represent all public network services in the current unit time,
Figure BDA0002610762640000132
the sum of the number of the RRC connections which are transmitted by the base station and represent all private network services in the current unit time, and w represents the total bandwidth of the base station.
In a practical manner, when
Figure BDA0002610762640000133
Is greater than
Figure BDA0002610762640000134
When it is, then
Figure BDA0002610762640000135
In another practical way, when
Figure BDA0002610762640000136
Is less than
Figure BDA0002610762640000137
When it is, then
Figure BDA0002610762640000138
In another practical way, when
Figure BDA0002610762640000139
Is equal to
Figure BDA00026107626400001310
Then
Figure BDA00026107626400001311
Or
Figure BDA00026107626400001312
Illustratively, the first threshold may be
Figure BDA00026107626400001313
The second threshold value is
Figure BDA00026107626400001314
In time, the problem that the base station cannot allow a new user to access when the number of RRC connections corresponding to the accessed user is too large can be solved.
In an implementation manner, when the target service includes a public network service, in this case, in conjunction with fig. 4, the above step S13 can be implemented by steps S130, S131 and S132 as shown in fig. 7.
S130, when the base station determines that the residual bandwidth of the public network carrier carrying the public network service is less than or equal to the bandwidth demand, the residual bandwidth of the public network carrier of each operator except the nth operator is obtained.
In an implementable manner, the above S130 may be implemented by the following steps.
Firstly, the base station determines the bandwidth used by the nth operator in the current unit time according to the public network bandwidth formula and the network data of the public network service of each operator in the N operators in the current unit time. Wherein, the bandwidth formula satisfies:
Figure BDA0002610762640000141
wherein, WNTPUIndicating the used bandwidth, i indicates the public network carrier i,
Figure BDA0002610762640000142
represents the number of RRC connections of the public network service of the nth operator in the current unit time,
Figure BDA0002610762640000143
and the number of the RRC connections which are transmitted in the current unit time of the public network service of the nth operator is represented.
Then, the base station determines the residual bandwidth of the public network carrier of the nth operator according to the nominal bandwidth of the public network carrier of the n operators and the used bandwidth of the public network carrier of the nth operator in the current unit time. Where a denotes a remaining bandwidth, b denotes a rated bandwidth, and c denotes a used bandwidth.
Note that the nominal bandwidth refers to the initial bandwidth.
In a practical manner, when
Figure BDA0002610762640000144
Is greater than
Figure BDA0002610762640000145
When it is, then
Figure BDA0002610762640000146
In another practical way, when
Figure BDA0002610762640000147
Is less than
Figure BDA0002610762640000148
When it is, then
Figure BDA0002610762640000149
In another practical way, when
Figure BDA00026107626400001410
Is equal to
Figure BDA00026107626400001411
When it is, then
Figure BDA00026107626400001412
Or
Figure BDA00026107626400001413
S131, the base station determines the operators with the residual bandwidth of the public network carriers except the nth operator being greater than the bandwidth demand, and allocates resources from the public network carrier of any one of the operators with the residual bandwidth of the public network carriers except the nth operator being greater than the bandwidth demand.
It should be noted that allocating resources means that the base station allocates part of bandwidth resources in the remaining bandwidth of the public network carrier in the jth operator (except for the operator whose remaining bandwidth of the public network carrier in the nth operator is greater than the bandwidth requirement) to the public network carrier of the nth operator, so that the bandwidth resources of the public network carrier of the nth operator are increased by allocated bandwidth resources on the original basis, and the bandwidth resources of the corresponding public network carrier of the jth operator are decreased by allocated bandwidth resources on the original basis.
In an implementation manner, when the bandwidth resource of the public network carrier of the jth operator (also referred to as another operator) in the current unit time is insufficient, the base station preferentially reallocates the bandwidth resource allocated to the nth operator from the public network carrier of the jth operator back to the jth operator, and then allocates the resource from the public network carrier of the other operator if the bandwidth resource of the public network carrier of the jth operator is still insufficient. Wherein j is different from N, and j is an integer belonging to [1, N ].
In another practical manner, when the bandwidth resource of the public network carrier of the jth operator in the current unit time is insufficient, the base station preferentially allocates the bandwidth resource allocated to the nth operator from the public network carrier of the jth operator back to the jth operator, and if the bandwidth resource of the public network carrier of the jth operator and the bandwidth resource of the public network carrier of the nth operator are both insufficient, after preferentially allocating the resource from the public network carrier of the other operator to the public network carrier of the nth operator, if the bandwidth resource of the public network carrier of the jth operator is still insufficient, allocating the resource from the public network carrier of the other operator to the public network carrier of the jth operator.
In another practical manner, when the bandwidth resource of the public network carrier of the jth operator in the current unit time is insufficient, the base station preferentially allocates the bandwidth resource allocated to the nth operator from the public network carrier of the jth operator back to the jth operator, and if the bandwidth resource of the public network carrier of the jth operator and the bandwidth resource of the public network carrier of the nth operator are both insufficient, the base station preferentially allocates the resource to the public network carrier of the jth operator from the public network carriers of the other operators and then allocates the resource to the public network carrier of the nth operator from the public network carriers of the other operators.
In another practical manner, the base station sets different priorities for each operator (such as operator a, operator B, and operator C), so that when the remaining bandwidths of the public network carriers of the operators a and B are less than or equal to the bandwidth demand and the remaining bandwidth of the public network carrier of the operator C is greater than the bandwidth demand, if the priority of the operator a is greater than the priority of the operator B, resources are preferentially called for the public network carrier of the operator a (resources are called from the public network carrier of the operator C), and after the public network carrier of the operator a finishes calling the resources, if the public network carrier of the operator C has remaining resources, resources are called for the public network carrier of the operator B (resources are called from the public network carrier of the operator C).
S132, the base station distributes the allocated resources to the public network carrier of the nth operator, and allows a new user of the public network service to access the core network equipment corresponding to the public network service in the current unit time.
In an implementable manner, when the base station determines that the remaining bandwidth of the public network carrier of the nth operator is less than or equal to the bandwidth demand and there is no operator with the remaining bandwidth of the public network carrier greater than the bandwidth demand in the operators except the nth operator, the base station prohibits a new user of the public network service from accessing the core network device corresponding to the public network service in the current unit time.
It should be noted that, in practical applications, when the nth operator allocates resources from the public network carriers of other operators, the preset time (including at least one time) may be continued, and when the bandwidth resources of the public network carriers of other operators are insufficient, the allocated resources are reallocated to the public network carriers of other operators. And when the residual bandwidth of the public network carrier of the nth operator is less than the bandwidth demand after the resources allocated from other operators are subtracted, reallocating the allocated resources to the public network carriers of other operators.
In the user access method provided by the embodiment of the present invention, each operator corresponds to two paths of carriers, and therefore when the bandwidth resource of the public network carrier corresponding to the nth operator is less than or equal to the bandwidth requirement, it is necessary to determine whether there is a remaining bandwidth resource of the public network carriers corresponding to other operators, and when there is a remaining bandwidth resource of the public network carriers corresponding to other operators, the bandwidth resource is called from the public network carriers of other operators, so that the user experience of the public network user of the nth operator is ensured, and the bandwidth resource utilization rate of the base station is further improved.
In a practical manner, when the target service includes K private network services, in this case, in conjunction with fig. 4, the above step S12 as shown in fig. 8 can be implemented by step S121.
S121, when the base station determines that the RRC connection number of the kth private network service of the nth operator is larger than a third threshold value and/or the data transmission connection number of the kth private network service is larger than a fourth threshold value, the base station determines the bandwidth demand of the target service in the current unit time according to the network data of the n operators. Wherein K is an integer belonging to [1, K ].
In an implementable manner, the above-mentioned "determining the bandwidth demand of the target service in the current unit time according to the network data of the N operators" can be implemented in the following manner.
And determining the bandwidth demand of the kth private network service of the nth operator in the current unit time according to a private network bandwidth demand formula and the network data of the K private network services of each operator in the N operators in the current unit time. The special network bandwidth demand formula meets the following requirements:
Figure BDA0002610762640000171
wherein the content of the first and second substances,
Figure BDA0002610762640000172
indicating bandwidth demand, RCCPrAddRepresents the RRC connection number of the kth private network service in the current unit time,
Figure BDA0002610762640000173
represents the RRC connection number, sigma RCC, with data transmission of the kth private network service in the current unit timePURepresents the sum of RRC connection numbers of all public network services of the base station in the current unit time, sigma RCCPrRepresents the sum of the RRC connection numbers of all private network services of the base station in the current unit time,
Figure BDA0002610762640000174
the sum of the number of RRC connections which are transmitted by the base station and represent all public network services in the current unit time,
Figure BDA0002610762640000175
the sum of the number of the RRC connections which are transmitted by the base station and represent all private network services in the current unit time, and w represents the total bandwidth of the base station.
In a practical manner, when
Figure BDA0002610762640000176
Is greater than
Figure BDA0002610762640000177
When it is, then
Figure BDA0002610762640000178
In another practical way, when
Figure BDA0002610762640000179
Is less than
Figure BDA00026107626400001711
When it is, then
Figure BDA00026107626400001712
In another practical way, when
Figure BDA00026107626400001713
Is equal to
Figure BDA00026107626400001714
Then
Figure BDA00026107626400001715
Or
Figure BDA00026107626400001716
Illustratively, the third threshold may be
Figure BDA0002610762640000183
The fourth threshold value is
Figure BDA0002610762640000184
In time, the problem that the base station cannot allow a new user to access when the number of RRC connections corresponding to the accessed user is too large can be solved.
In an implementation manner, when it is determined that the number of RRC connections of the public network service of the nth operator is less than or equal to a first threshold, the number of data transmission connections of the public network service of the nth operator is less than or equal to a second threshold, the number of RRC connections of the kth private network service of the nth operator is less than or equal to a third threshold, and the number of data transmission connections of the kth private network service is less than or equal to a fourth threshold, the base station normally accesses the new user of the nth operator. Here, the normal access refers to a case where a current 5QI (5G QoS Identifier) (used to identify QoS (Quality of Service)) is maintained, and a new ue corresponding to each Service is allowed to access.
It should be noted that, in practical applications, since the priority of the public network service is lower than the priority of the private network service, when the bandwidth resource of the base station is in short supply (for example, the RRC connection number of the kth private service of the nth operator is greater than a third threshold, and/or the data transmission connection number of the kth private service of the nth operator is greater than a fourth threshold), if the remaining resource of the public network carrier of the nth operator is greater than the bandwidth requirement, the resource is preferentially allocated from the public network carrier of the nth operator; when the residual resources of the public network carrier of the nth operator are less than or equal to the bandwidth demand, the resources are called from the public network carriers of other operators except the n operators, so that the user experience of the private network user of the nth operator can be ensured.
In a realizable manner, when the target service includes K private network services, in this case, in conjunction with fig. 4, the above-mentioned step S13 can be realized by steps S133, S134 and S135 as shown in fig. 9.
S133, when the base station determines that the residual bandwidth of the private network carrier of the nth operator is less than or equal to the bandwidth demand, the base station acquires the residual bandwidth of the private network carrier of each operator except the nth operator.
In an implementable manner, the above S133 may be implemented by the following steps.
Firstly, the base station determines the used bandwidth of the private network carrier of the nth operator in the current unit time according to a private network bandwidth formula and the network data of the K private network services of each operator in the N operators in the current unit time. Wherein, the bandwidth formula satisfies:
Figure BDA0002610762640000181
wherein, WNTPUIndicating the used bandwidth, i indicates the public network carrier i,
Figure BDA0002610762640000182
represents the number of RRC connections of K private network services of the nth operator in the current unit time,
Figure BDA0002610762640000191
and the number of the RRC connections with data transmission of the K private network services of the nth operator in the current unit time is represented.
Then, the base station determines the residual bandwidth of the private network carrier of the nth operator according to the rated bandwidth of the private network carrier of the nth operator and the used bandwidth of the private network carrier of the nth operator in the current unit time.
Note that the nominal bandwidth refers to the initial bandwidth.
In a practical manner, when
Figure BDA0002610762640000192
Is greater than
Figure BDA0002610762640000193
When it is, then
Figure BDA0002610762640000194
In another practical way, when
Figure BDA0002610762640000195
Is less than
Figure BDA0002610762640000196
When it is, then
Figure BDA0002610762640000197
In another practical way, when
Figure BDA0002610762640000198
Is equal to
Figure BDA0002610762640000199
When it is, then
Figure BDA00026107626400001910
Or
Figure BDA00026107626400001911
In an implementable manner, when the remaining bandwidth is less than or equal to the preset bandwidth, S13 is performed. The preset bandwidth is equal to a preset ratio multiplied by the bandwidth demand. Illustratively, the preset ratio may be 0.7.
S134, the base station determines the operators with the residual bandwidth except the private network carrier in the nth operator being greater than the bandwidth demand, and allocates resources from the private network carrier of any one of the operators with the residual bandwidth except the private network carrier in the nth operator being greater than the bandwidth demand.
In an implementable manner, when the base station determines that the remaining bandwidth of the private network carrier of the nth operator is less than or equal to the bandwidth demand and no operator with the remaining bandwidth of the private network carrier greater than the bandwidth demand exists in the operators except the nth operator, the base station prohibits a new user of the kth private network service of the nth operator from accessing the core network device corresponding to the kth private network service of the nth operator in the current unit time.
In another practical manner, when the bandwidth resource of the public network carrier of the jth operator in the current unit time is insufficient, the base station preferentially allocates the bandwidth resource allocated from the public network carrier of the jth operator to the nth operator back to the public network carrier of the jth operator, and if the bandwidth resource of the public network carrier of the jth operator and the bandwidth resource of the private network carrier of the nth operator are both insufficient, the base station preferentially allocates the resource from the public network carrier of the other operator to the private network carrier of the nth operator, and if the bandwidth resource of the public network carrier of the jth operator is still insufficient, the base station allocates the resource from the public network carrier of the other operator to the public network carrier of the jth operator. Wherein j is different from N, and j is an integer belonging to [1, N ].
In another practical manner, when the bandwidth resource of the public network carrier of the jth operator in the current unit time is insufficient, the base station preferentially allocates the bandwidth resource allocated from the public network carrier of the jth operator to the nth operator back to the jth operator, and if the bandwidth resource of the public network carrier of the jth operator and the bandwidth resource of the private network carrier of the nth operator are both insufficient, the base station preferentially allocates the resource to the public network carrier of the jth operator from the public network carriers of other operators and then allocates the resource to the private network carrier of the nth operator from the public network carriers of other operators.
And S135, the base station allocates the allocated resources to the private network carrier of the nth operator, and allows a new user of the public network service to access the core network equipment corresponding to the public network service in the current unit time.
It should be noted that, in practical applications, when the nth operator allocates resources from the public network carriers of other operators, the preset time (including at least one time) may be continued, and when the bandwidth resources of the public network carriers of other operators are insufficient, the allocated resources are reallocated to the public network carriers of other operators. And when the residual bandwidth of the private network carrier of the nth operator is less than the bandwidth demand amount after the resources allocated from other operators are subtracted, reallocating the allocated resources to the public network carriers of other operators.
In the user access method provided by the embodiment of the present invention, each operator corresponds to two paths of carriers, and therefore when the bandwidth resource of the public network carrier corresponding to the nth operator is less than or equal to the bandwidth requirement, it is necessary to determine whether there is a remaining bandwidth resource of the public network carriers corresponding to other operators, and when there is a remaining bandwidth resource of the public network carriers corresponding to other operators, the bandwidth resource is called from the public network carriers of other operators, so as to ensure the user experience of the private network user of the nth operator, and further improve the bandwidth resource utilization rate of the base station.
The scheme provided by the embodiment of the invention is mainly introduced from the perspective of a method. To implement the above functions, it includes hardware structures and/or software modules for performing the respective functions. Those of skill in the art will readily appreciate that the present invention can be implemented in hardware or a combination of hardware and computer software, with the exemplary elements and algorithm steps described in connection with the embodiments disclosed herein. Whether a function is performed as hardware or computer software drives hardware depends upon the particular application and design constraints imposed on the solution. Skilled artisans may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the present invention.
In the embodiment of the present invention, the base station may be divided into functional modules according to the above method example, for example, each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module. The integrated module can be realized in a hardware mode, and can also be realized in a software functional module mode. It should be noted that, the division of the modules in the embodiment of the present invention is schematic, and is only a logic function division, and there may be another division manner in actual implementation.
Fig. 10 is a schematic structural diagram of a base station 10 according to an embodiment of the present invention. The base station 10 is configured to acquire network data of a target service of each operator in N operators in a current unit time; when determining that the network data of the target service of the nth operator meets the preset conditions, determining the bandwidth demand of the target service in the current unit time according to the network data of the target service of the nth operator; and when the residual bandwidth of the carrier bearing the target service is determined to be larger than the bandwidth demand, allowing a new user of the target service to access the core network equipment corresponding to the target service in the current unit time. The base station 10 may comprise an acquisition unit 101 and a processing unit 102.
An obtaining unit 101, configured to obtain network data of a target service of each of N operators in a current unit time. For example, in conjunction with fig. 4, the obtaining unit 101 may be configured to execute S11.
The processing unit 102 is configured to determine, when the network data of the target service of the nth operator acquired by the acquiring unit 101 meets a preset condition, a bandwidth requirement of the target service in the current unit time according to the network data of the target service of the nth operator acquired by the acquiring unit 101. The processing unit 102 is further configured to allow a new user of the target service to access the core network device corresponding to the target service in the current unit time when it is determined that the remaining bandwidth of the carrier carrying the target service is greater than the bandwidth requirement. For example, in conjunction with FIG. 4, processing unit 102 may be configured to perform S12 and S13. In conjunction with fig. 6, processing unit 102 may be configured to perform S120. In connection with fig. 7, the processing unit 102 may be configured to perform S130, S131 and S132. In connection with fig. 8, the processing unit 102 may be configured to execute S121. In connection with fig. 9, the processing unit 102 may be configured to perform S133, S134, and S135.
All relevant contents of each step related to the above method embodiment may be referred to the functional description of the corresponding functional module, and the function thereof is not described herein again.
Of course, the base station 10 provided in the embodiment of the present invention includes, but is not limited to, the above modules, for example, the base station 10 may further include the storage unit 103. The storage unit 103 may be configured to store the program code of the writing base station 10, and may also be configured to store data generated by the writing base station 10 during operation, such as data in a writing request.
Fig. 11 is a schematic structural diagram of a base station 10 according to an embodiment of the present invention, and as shown in fig. 11, the base station 10 may include: at least one processor 51, a memory 52, a communication interface 53 and a communication bus 54.
The following describes each component of the base station 10 in detail with reference to fig. 11:
the processor 51 is a control center of the base station 10, and may be a single processor or a collective term for multiple processing elements. For example, the processor 51 is a Central Processing Unit (CPU), an Application Specific Integrated Circuit (ASIC), or one or more Integrated circuits configured to implement embodiments of the present invention, such as: one or more DSPs, or one or more Field Programmable Gate Arrays (FPGAs).
In particular implementations, processor 51 may include one or more CPUs, such as CPU0 and CPU1 shown in FIG. 11, for example. Also, as an example, the base station 10 may include multiple processors, such as the processor 51 and the processor 55 shown in fig. 11. Each of these processors may be a Single-core processor (Single-CPU) or a Multi-core processor (Multi-CPU). A processor herein may refer to one or more devices, circuits, and/or processing cores for processing data (e.g., computer program instructions).
The Memory 52 may be a Read-Only Memory (ROM) or other type of static storage device that can store static information and instructions, a Random Access Memory (RAM) or other type of dynamic storage device that can store information and instructions, an electrically erasable Programmable Read-Only Memory (EEPROM), a Compact Disc Read-Only Memory (CD-ROM) or other optical Disc storage, optical Disc storage (including Compact Disc, laser Disc, optical Disc, digital versatile Disc, blu-ray Disc, etc.), magnetic disk storage media or other magnetic storage devices, or any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer, but is not limited to such. The memory 52 may be self-contained and coupled to the processor 51 via a communication bus 54. The memory 52 may also be integrated with the processor 51.
In a particular implementation, the memory 52 is used for storing data and software programs for implementing the present invention. The processor 51 may perform various functions of the air conditioner by running or executing software programs stored in the memory 52 and calling data stored in the memory 52.
The communication interface 53 is a device such as any transceiver, and is used for communicating with other devices or communication Networks, such as a Radio Access Network (RAN), a Wireless Local Area Network (WLAN), a terminal, and a cloud. The communication interface 53 may include a receiving unit implementing a receiving function and a transmitting unit implementing a transmitting function.
The communication bus 54 may be an Industry Standard Architecture (ISA) bus, a Peripheral Component Interconnect (PCI) bus, an Extended ISA (Extended Industry Standard Architecture) bus, or the like. The bus may be divided into an address bus, a data bus, a control bus, etc. For ease of illustration, only one thick line is shown in FIG. 11, but this is not intended to represent only one bus or type of bus.
As an example, in connection with fig. 10, the acquiring unit 101 in the base station 10 implements the same function as the communication interface 53 in fig. 11, the processing unit 102 implements the same function as the processor 51 in fig. 11, and the storage unit 103 implements the same function as the memory 52 in fig. 11.
Another embodiment of the present invention further provides a computer-readable storage medium, which stores instructions that, when executed on a computer, cause the computer to perform the method shown in the above method embodiment.
In some embodiments, the disclosed methods may be implemented as computer program instructions encoded on a computer-readable storage medium in a machine-readable format or encoded on other non-transitory media or articles of manufacture.
Fig. 12 schematically illustrates a conceptual partial view of a computer program product comprising a computer program for executing a computer process on a computing device provided by an embodiment of the invention.
In one embodiment, the computer program product is provided using a signal bearing medium 410. The signal bearing medium 410 may include one or more program instructions that, when executed by one or more processors, may provide the functions or portions of the functions described above with respect to fig. 4. Thus, for example, referring to the embodiment shown in FIG. 4, one or more features of S11-S13 may be undertaken by one or more instructions associated with the signal bearing medium 410. Further, the program instructions in FIG. 12 also describe example instructions.
In some examples, signal bearing medium 410 may include a computer readable medium 411, such as, but not limited to, a hard disk drive, a Compact Disc (CD), a Digital Video Disc (DVD), a digital tape, a memory, a read-only memory (ROM), a Random Access Memory (RAM), or the like.
In some implementations, the signal bearing medium 410 may comprise a computer recordable medium 412 such as, but not limited to, a memory, a read/write (R/W) CD, a R/W DVD, and the like.
In some implementations, the signal bearing medium 410 may include a communication medium 413, such as, but not limited to, a digital and/or analog communication medium (e.g., a fiber optic cable, a waveguide, a wired communications link, a wireless communication link, etc.).
The signal bearing medium 410 may be conveyed by a wireless form of communication medium 413, such as a wireless communication medium compliant with the IEEE802.41 standard or other transport protocol. The one or more program instructions may be, for example, computer-executable instructions or logic-implementing instructions.
In some examples, a data writing apparatus, such as that described with respect to fig. 4, may be configured to provide various operations, functions, or actions in response to one or more program instructions via the computer-readable medium 411, the computer-recordable medium 412, and/or the communication medium 413.
Through the above description of the embodiments, it is clear to those skilled in the art that, for convenience and simplicity of description, the foregoing division of the functional modules is merely used as an example, and in practical applications, the above function distribution may be completed by different functional modules according to needs, that is, the internal structure of the device may be divided into different functional modules to complete all or part of the above described functions.
In the embodiments provided in the present invention, it should be understood that the disclosed apparatus and method may be implemented in other ways. For example, the above-described device embodiments are merely illustrative, and for example, the division of the modules or units is only one logical functional division, and there may be other divisions when actually implemented, for example, a plurality of units or components may be combined or may be integrated into another device, or some features may be omitted, or not executed. In addition, the shown or discussed mutual coupling or direct coupling or communication connection may be an indirect coupling or communication connection through some interfaces, devices or units, and may be in an electrical, mechanical or other form.
The units described as separate parts may or may not be physically separate, and parts displayed as units may be one physical unit or a plurality of physical units, that is, may be located in one place, or may be distributed in a plurality of different places. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of the embodiment.
In addition, functional units in the embodiments of the present invention may be integrated into one processing unit, or each unit may exist alone physically, or two or more units are integrated into one unit. The integrated unit can be realized in a form of hardware, and can also be realized in a form of a software functional unit.
The integrated unit, if implemented in the form of a software functional unit and sold or used as a stand-alone product, may be stored in a readable storage medium. Based on such understanding, the technical solution of the embodiments of the present invention may be essentially or partially contributed to by the prior art, or all or part of the technical solution may be embodied in the form of a software product, where the software product is stored in a storage medium and includes several instructions to enable a device (which may be a single chip, a chip, or the like) or a processor (processor) to execute all or part of the steps of the method according to the embodiments of the present invention. And the aforementioned storage medium includes: various media capable of storing program codes, such as a U disk, a removable hard disk, a ROM, a RAM, a magnetic disk, or an optical disk.
The above description is only an embodiment of the present invention, but the scope of the present invention is not limited thereto, and any changes or substitutions within the technical scope of the present invention are intended to be covered by the scope of the present invention. Therefore, the protection scope of the present invention shall be subject to the protection scope of the appended claims.

Claims (12)

1. A user access method is applied to access network equipment, the access network equipment respectively configures two paths of carriers for each operator in a plurality of operators, the two paths of carriers comprise a public network carrier and a private network carrier, the public network carrier provides support for public network services, and the private network carrier provides support for private network services, and the method is characterized by comprising the following steps:
acquiring network data of a target service of each operator in N operators in current unit time; the target service comprises one or more of public network service and K private network services, the network data at least comprises RRC connection number and number transmission connection number, N is an integer greater than or equal to 2, and K is an integer greater than or equal to 1;
when determining that the network data of the target service of the nth operator meets a preset condition, determining the bandwidth demand of the target service in the current unit time according to the network data of the N operators; the preset condition is used for indicating whether the target service is a super-stream service or not;
and when the residual bandwidth of the carrier bearing the target service is determined to be larger than the bandwidth demand, allowing a new user of the target service to access the core network equipment corresponding to the target service in the current unit time.
2. The user access method of claim 1, wherein the target service comprises a public network service;
when determining that the network data of the target service of the nth operator meets the preset conditions, determining the bandwidth demand of the target service in the current unit time according to the network data of the N operators, including:
and when the RRC connection number of the public network service of the nth operator is determined to be larger than a first threshold value and/or the data transmission connection number of the public network service is determined to be larger than a second threshold value, determining the bandwidth demand of the target service in the current unit time according to the network data of the N operators.
3. The user access method of claim 1, wherein the target service comprises a public network service;
when determining that the remaining bandwidth of the carrier carrying the target service is greater than the bandwidth demand, allowing a new user of the target service to access the core network device corresponding to the target service in the current unit time, including:
when determining that the residual bandwidth of the public network carrier carrying the public network service is less than or equal to the bandwidth demand, acquiring the residual bandwidth of the public network carrier of each operator except the nth operator;
determining an operator except that the remaining bandwidth of the public network carrier in the nth operator is greater than the bandwidth demand, and allocating resources from the public network carrier of any operator except that the remaining bandwidth of the public network carrier in the nth operator is greater than the bandwidth demand;
and allocating the allocated resources to the public network carrier of the nth operator, and allowing the new user of the public network service to access the core network equipment corresponding to the public network service in the current unit time.
4. The user access method according to claim 1, wherein the target services comprise K private network services;
when determining that the network data of the target service of the nth operator meets the preset conditions, determining the bandwidth demand of the target service in the current unit time according to the network data of the N operators, including:
determining the bandwidth demand of the target service in the current unit time according to the network data of the N operators when the RRC connection number of the kth private network service of the nth operator is larger than a third threshold and/or the data transmission connection number of the kth private network service is larger than a fourth threshold; wherein K is an integer belonging to [1, K ].
5. The user access method according to claim 1, wherein the target services comprise K private network services;
when determining that the remaining bandwidth of the carrier carrying the kth private network service is greater than the bandwidth demand, allowing a new user of the target service to access the core network device corresponding to the target service in the current unit time, including:
when determining that the residual bandwidth of the private network carrier of the nth operator is less than or equal to the bandwidth demand, acquiring the residual bandwidth of the private network carrier of each operator except the nth operator;
determining an operator except the operator with the residual bandwidth of the private network carrier in the nth operator being greater than the bandwidth demand, and allocating resources from the private network carrier of any operator except the operator with the residual bandwidth of the private network carrier in the nth operator being greater than the bandwidth demand;
and allocating the allocated resources to the private network carrier of the nth operator, and allowing the new user of the public network service to access the core network equipment corresponding to the public network service in the current unit time.
6. An access network device, the access network device respectively configures two paths of carriers for each operator in a plurality of operators, the two paths of carriers include a public network carrier and a private network carrier, the public network carrier provides support for public network services, the private network carrier provides support for private network services, the access network device is characterized by comprising:
the system comprises an acquisition unit, a processing unit and a processing unit, wherein the acquisition unit is used for acquiring network data of a target service of each operator in N operators in current unit time; the target service comprises one or more of public network service and K private network services, the network data at least comprises RRC connection number and number transmission connection number, N is an integer greater than or equal to 2, and K is an integer greater than or equal to 1;
the processing unit is used for determining the bandwidth demand of the target service in the current unit time according to the network data of the N operators acquired by the acquisition unit when the network data of the target service of the nth operator acquired by the acquisition unit meets the preset condition; the preset condition is used for indicating whether the target service is a super-stream service or not;
and the processing unit is further configured to allow a new user of the target service to access the core network device corresponding to the target service in the current unit time when it is determined that the remaining bandwidth of the carrier carrying the target service is greater than the bandwidth requirement.
7. The access network device of claim 6, wherein the target traffic comprises public network traffic;
the processing unit is specifically configured to determine that the RRC connection number of the public network service of the nth operator acquired by the acquiring unit is greater than a first threshold, and/or determine the bandwidth demand of the target service in the current unit time according to the network data of the N operators acquired by the acquiring unit when the data transmission connection number of the public network service acquired by the acquiring unit is greater than a second threshold.
8. The access network device of claim 6, wherein the target traffic comprises public network traffic;
the obtaining unit is specifically configured to obtain, when the processing unit determines that the remaining bandwidth of a public network carrier carrying the public network service is less than or equal to the bandwidth requirement, the remaining bandwidth of a public network carrier of each operator except the nth operator;
the processing unit is specifically configured to determine an operator that is obtained by the obtaining unit and that has a remaining bandwidth of a public network carrier other than the nth operator that is greater than the bandwidth requirement, and allocate resources from a public network carrier of any operator that is obtained by the obtaining unit and that has a remaining bandwidth of a public network carrier other than the nth operator that is greater than the bandwidth requirement;
the processing unit is specifically configured to allocate the allocated resources to a public network carrier of the nth operator, and allow a new user of the public network service to access a core network device corresponding to the public network service in the current unit time.
9. The access network device of claim 6, wherein the target traffic comprises K private network traffic;
the processing unit is specifically configured to determine, when it is determined that the RRC connection number of the kth private network service of the nth operator acquired by the acquisition unit is greater than a third threshold and/or the data transfer connection number of the kth private network service acquired by the acquisition unit is greater than a fourth threshold, a bandwidth demand of the target service in the current unit time according to the network data of the N operators acquired by the acquisition unit; wherein K is an integer belonging to [1, K ].
10. The access network device of claim 6, wherein the target traffic comprises K private network traffic;
the obtaining unit is specifically configured to, when the processing unit determines that the remaining bandwidth of the private network carrier of the nth operator is less than or equal to the bandwidth requirement, obtain the remaining bandwidth of the private network carrier of each operator except for the nth operator;
the processing unit is specifically configured to determine an operator that the remaining bandwidth obtained by the obtaining unit except the private network carrier in the nth operator is greater than the bandwidth requirement, and allocate resources from the private network carrier of any operator that the remaining bandwidth obtained by the obtaining unit except the private network carrier in the nth operator is greater than the bandwidth requirement;
the processing unit is specifically configured to allocate the allocated resources to a private network carrier of the nth operator, and allow a new user of the public network service to access core network equipment corresponding to the public network service in the current unit time.
11. A computer-readable storage medium comprising instructions which, when executed on a computer, cause the computer to perform the user access method of any of claims 1-6.
12. An access network device, comprising: communication interface, processor, memory, bus;
the memory is used for storing computer execution instructions, and the processor is connected with the memory through the bus;
the processor executes the computer-executable instructions stored by the memory when the access network device is operating to cause the access network device to perform the user access method of any of claims 1-6 above.
CN202010753438.2A 2020-07-30 2020-07-30 User access method and access network equipment Active CN111818588B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010753438.2A CN111818588B (en) 2020-07-30 2020-07-30 User access method and access network equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010753438.2A CN111818588B (en) 2020-07-30 2020-07-30 User access method and access network equipment

Publications (2)

Publication Number Publication Date
CN111818588A true CN111818588A (en) 2020-10-23
CN111818588B CN111818588B (en) 2022-05-17

Family

ID=72864089

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010753438.2A Active CN111818588B (en) 2020-07-30 2020-07-30 User access method and access network equipment

Country Status (1)

Country Link
CN (1) CN111818588B (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112333826A (en) * 2020-11-05 2021-02-05 中国联合网络通信集团有限公司 Service admission method and device
CN112333830A (en) * 2020-11-27 2021-02-05 中国联合网络通信集团有限公司 Service processing method and device
CN112333835A (en) * 2020-11-27 2021-02-05 中国联合网络通信集团有限公司 Carrier resource scheduling method and device
CN112333829A (en) * 2020-11-27 2021-02-05 中国联合网络通信集团有限公司 Service processing method and device
CN112367710A (en) * 2020-11-27 2021-02-12 中国联合网络通信集团有限公司 Service processing method and device
CN112383936A (en) * 2020-11-27 2021-02-19 中国联合网络通信集团有限公司 Method and device for evaluating number of accessible users
CN113115377A (en) * 2021-03-17 2021-07-13 中国联合网络通信集团有限公司 Co-construction shared resource block configuration method and access network equipment
CN113115374A (en) * 2021-03-17 2021-07-13 中国联合网络通信集团有限公司 Co-construction shared resource block configuration method and access network equipment
CN113115378A (en) * 2021-03-17 2021-07-13 中国联合网络通信集团有限公司 Co-construction shared resource block configuration method and access network equipment
CN115102678A (en) * 2022-08-24 2022-09-23 深圳国人无线通信有限公司 BWP switching method and system for co-building shared base station to meet user service requirement
WO2023024978A1 (en) * 2021-08-25 2023-03-02 华为技术有限公司 Method for allocating resources and communication apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017000107A1 (en) * 2015-06-29 2017-01-05 华为技术有限公司 Paging message flow control method, device and system
WO2018210075A1 (en) * 2017-05-18 2018-11-22 华为技术有限公司 Network control method and apparatus, and network device
CN110493047A (en) * 2018-02-27 2019-11-22 贵州白山云科技股份有限公司 A kind of method and system distributing CDN network interior joint server bandwidth
CN110896365A (en) * 2019-12-20 2020-03-20 网宿科技股份有限公司 Traffic scheduling method in network node, server and storage medium
CN111124593A (en) * 2018-10-31 2020-05-08 ***通信有限公司研究院 Information processing method and device, network element and storage medium

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017000107A1 (en) * 2015-06-29 2017-01-05 华为技术有限公司 Paging message flow control method, device and system
WO2018210075A1 (en) * 2017-05-18 2018-11-22 华为技术有限公司 Network control method and apparatus, and network device
CN108965147A (en) * 2017-05-18 2018-12-07 华为技术有限公司 Network control method, device and the network equipment
CN110493047A (en) * 2018-02-27 2019-11-22 贵州白山云科技股份有限公司 A kind of method and system distributing CDN network interior joint server bandwidth
CN111124593A (en) * 2018-10-31 2020-05-08 ***通信有限公司研究院 Information processing method and device, network element and storage medium
CN110896365A (en) * 2019-12-20 2020-03-20 网宿科技股份有限公司 Traffic scheduling method in network node, server and storage medium

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112333826A (en) * 2020-11-05 2021-02-05 中国联合网络通信集团有限公司 Service admission method and device
CN112333826B (en) * 2020-11-05 2023-08-11 中国联合网络通信集团有限公司 Service admission method and device
CN112333835B (en) * 2020-11-27 2023-05-16 中国联合网络通信集团有限公司 Carrier resource scheduling method and device
CN112333830B (en) * 2020-11-27 2023-05-16 中国联合网络通信集团有限公司 Service processing method and equipment
CN112367710A (en) * 2020-11-27 2021-02-12 中国联合网络通信集团有限公司 Service processing method and device
CN112383936A (en) * 2020-11-27 2021-02-19 中国联合网络通信集团有限公司 Method and device for evaluating number of accessible users
CN112333830A (en) * 2020-11-27 2021-02-05 中国联合网络通信集团有限公司 Service processing method and device
CN112333829A (en) * 2020-11-27 2021-02-05 中国联合网络通信集团有限公司 Service processing method and device
CN112383936B (en) * 2020-11-27 2023-05-26 中国联合网络通信集团有限公司 Method and device for evaluating number of accessible users
CN112367710B (en) * 2020-11-27 2023-05-16 中国联合网络通信集团有限公司 Service processing method and equipment
CN112333829B (en) * 2020-11-27 2023-05-16 中国联合网络通信集团有限公司 Service processing method and equipment
CN112333835A (en) * 2020-11-27 2021-02-05 中国联合网络通信集团有限公司 Carrier resource scheduling method and device
CN113115374A (en) * 2021-03-17 2021-07-13 中国联合网络通信集团有限公司 Co-construction shared resource block configuration method and access network equipment
CN113115377B (en) * 2021-03-17 2022-09-27 中国联合网络通信集团有限公司 Co-construction shared resource block configuration method and access network equipment
CN113115374B (en) * 2021-03-17 2022-08-12 中国联合网络通信集团有限公司 Co-construction shared resource block configuration method and access network equipment
CN113115378A (en) * 2021-03-17 2021-07-13 中国联合网络通信集团有限公司 Co-construction shared resource block configuration method and access network equipment
CN113115377A (en) * 2021-03-17 2021-07-13 中国联合网络通信集团有限公司 Co-construction shared resource block configuration method and access network equipment
WO2023024978A1 (en) * 2021-08-25 2023-03-02 华为技术有限公司 Method for allocating resources and communication apparatus
CN115102678B (en) * 2022-08-24 2023-03-24 深圳国人无线通信有限公司 BWP switching method and system for co-building shared base station to meet user service requirement
CN115102678A (en) * 2022-08-24 2022-09-23 深圳国人无线通信有限公司 BWP switching method and system for co-building shared base station to meet user service requirement

Also Published As

Publication number Publication date
CN111818588B (en) 2022-05-17

Similar Documents

Publication Publication Date Title
CN111818588B (en) User access method and access network equipment
CN111818576B (en) User access method and access network equipment
CN111818581B (en) User access method and access network equipment
CN111818585B (en) User access method and access network equipment
CN112333831B (en) Resource allocation method and access network equipment
CN111818575B (en) User access method and access network equipment
CN111818584B (en) User access method and access network equipment
CN113055948B (en) Downlink resource block reservation method and device
CN111818586B (en) User access method and access network equipment
CN111818583B (en) User access method and access network equipment
CN113056016B (en) Co-construction shared resource block configuration method and access network equipment
CN113115376B (en) Downlink resource block reservation method and device
CN112312568B (en) Resource allocation method and access network equipment
CN111818579B (en) User access method and access network equipment
CN112333833B (en) Resource allocation method and access network equipment
CN113115373B (en) Co-construction shared resource block configuration method and access network equipment
CN113115378B (en) Co-construction shared resource block configuration method and access network equipment
CN111818578B (en) User access method and access network equipment
CN113115374B (en) Co-construction shared resource block configuration method and access network equipment
CN112333832B (en) Resource allocation method, access network equipment and computer readable storage medium
CN111818580B (en) User access method and access network equipment
CN112333842A (en) Service processing method and device
CN111818577B (en) User access method and access network equipment
CN113115377B (en) Co-construction shared resource block configuration method and access network equipment
CN113115371B (en) Co-construction shared resource block configuration method and access network equipment

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant