CN111808872B - Gene DPY1 for regulating and controlling panicolaceae plant type and application and method thereof - Google Patents

Gene DPY1 for regulating and controlling panicolaceae plant type and application and method thereof Download PDF

Info

Publication number
CN111808872B
CN111808872B CN202010725748.3A CN202010725748A CN111808872B CN 111808872 B CN111808872 B CN 111808872B CN 202010725748 A CN202010725748 A CN 202010725748A CN 111808872 B CN111808872 B CN 111808872B
Authority
CN
China
Prior art keywords
dpy1
gene
leu
plant
gly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010725748.3A
Other languages
Chinese (zh)
Other versions
CN111808872A (en
Inventor
刁现民
赵美丞
汤沙
智慧
何苗苗
刘西岗
吴传银
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Genetics and Developmental Biology of CAS
Original Assignee
Institute of Genetics and Developmental Biology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Genetics and Developmental Biology of CAS filed Critical Institute of Genetics and Developmental Biology of CAS
Priority to CN202010725748.3A priority Critical patent/CN111808872B/en
Publication of CN111808872A publication Critical patent/CN111808872A/en
Application granted granted Critical
Publication of CN111808872B publication Critical patent/CN111808872B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1205Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

The invention discloses a gene DPY1 for regulating and controlling the strain type of Panicoideae plants, and an application and a method thereof, wherein the gene DPY1 has a nucleotide sequence shown as SEQ ID NO1, or a nucleotide sequence which is at least 85% homologous with a coding sequence in SEQ ID No. 1. The gene for regulating the plant type has the length of 4622bp, comprises 11 exons and 10 introns, has an encoding sequence of 1902bp, has the protein size of 69.4kD, can improve the plant type and the single plant yield of millet, can be applied to Panicoideae plants including the millet, and can be implanted into the genome of a receptor cell of the Panicoideae plants to improve the plant type of the Panicoideae plants.

Description

Gene DPY1 for regulating and controlling panicolaceae plant type and application and method thereof
Technical Field
The invention relates to a gene for regulating millet plant type, in particular to a gene DPY1 for regulating panicolaceae plant type and application and a method thereof.
Background
Millet is an important regional food crop in northern China, and has the characteristics of drought resistance, water saving, barrenness resistance, C4 photosynthesis and the like (Diao et al, Frontiers of Agricultural Science and Engineering,2014,1(1), 16-20). The conventional breeding technology in the last 15 years enables the yield per unit of the millet to be continuously improved (Shanghai et al, China agricultural science, 2017,50(23),4469-4474), but compared with the corn, the plant type of the millet is not compact enough, particularly, after heading, the leaves are remarkably draped, and the close planting and the group yield of the millet are severely limited.
The reasonable close planting of cereal crops, including main grain crops such as wheat, rice, corn and minor grain crops such as sorghum and millet, can ensure the maximum yield. The close planting adaptability of plants is determined by the plant type to a great extent, and the shape construction of leaves of cereal crops is one of the important factors determining the plant type, which can include the length and width of the leaves, the included angle of stems and leaves and the drapability of the leaves. The compact and upright leaf type can obviously improve the plant type and the group yield of cereal crops, and is one of important agricultural traits of modern breeding.
At present, some leaf/plant type regulation key genes have been cloned in corn and rice, and leaf/plant type improvement and crop yield improvement in a close planting state are realized. For example, Up right Plant Architecture 2(UPA2) derived from teosinte was able to decrease the content of endogenous Brassinosteroids (BR) in maize and decrease the stem-leaf angle, thereby increasing the yield of maize under close planting (Tian et al, Science,2019,365(6454) 658-664); the regulation of rice BR synthetic gene DWARF11 and CATA transcription factor OsGATA7 can enhance the compactness of Plant type, thus showing the potential of increasing yield in a close planting state (Zhang et al, Plant Biotechnology Journal,2018,16, 1261-. Besides the included angle of the stem leaves, the drapability of the leaves is another important factor influencing the compactness of the plant. YABBY family transcription factors, such as corn dropping leaf1/2(drl1/2) (Strable et al, The Plant Cell,2017,29, 1622-.
Compared with corn and rice, the problem that the leaf draping degree is larger in the current main cultivars of millet is particularly obvious after heading. Therefore, the close planting and the later photosynthesis are not facilitated, and the further improvement of the millet yield is influenced. However, the key genes for controlling the leaf draping of the millet have not been cloned so far, which greatly influences the plant type improvement and yield breeding of the millet.
Disclosure of Invention
The invention aims to provide a gene DPY1 for regulating and controlling the plant type of Panicoideae plants and an application and a method thereof, which solve the problem that the leaf drapability of the existing millet plant type is high, can improve the plant type of millet, and obtain the plant type with relatively straight and upright leaves and thick stems and large ears in the mature period, thereby enhancing the close planting adaptability of crops.
In order to achieve the aim, the invention provides a gene DPY1 which regulates the Panicoideae plant type DPY1, wherein the gene DPY1 has a nucleotide sequence shown in SEQ ID NO1 or a nucleotide sequence which is at least 85 percent homologous with a coding sequence in SEQ ID No. 1.
Preferably, the gene DPY1 comprises 10 introns and 11 exons, wherein 11 exons have the nucleotide sequences shown in SEQ ID NO 2-12 respectively, and 10 introns have the nucleotide sequences shown in SEQ ID NO 13-22 respectively.
Another purpose of the invention is to provide a protein coded by the gene DPY1.
Preferably, the protein has an amino acid sequence as shown in seq.id NO 23.
The invention also aims to provide application of the gene DPY1 in improving the strain type of Panicoideae plants.
Preferably, the gene DPY1 is implanted into the zeaideae recipient cell genome.
Preferably, the Panicoideae plant comprises: any one of millet, corn and sorghum.
It is another object of the present invention to provide a method for improving the plant type of Panicoideae, which comprises: integrating the gene DPY1 into the genome of a recipient cell of a Panicoideae plant in an overexpression mode, and obtaining a single-copy homozygous progeny; wherein the overexpression mode is to use a promoter to drive the expression of the coding region of the gene DPY1.
Preferably, the promoter comprises: the Ubiquitin promoter or the CaMV 35S promoter.
The panicolaceae plant type regulating gene DPY1 and the application and the method thereof solve the problem of larger drapability of the conventional millet plant type leaves and have the following advantages:
the invention provides a novel gene for regulating plant type, which is 4622bp in length, comprises 11 exons and 10 introns, has an encoding sequence of 1902bp, has a protein size of 69.4kD, can improve the plant type (compact leaf type and thick stem) and the single plant yield of millet, and obtains the plant type with relatively upright leaves and large thick ears of the stem in the mature period, thereby having the potential of enhancing the close planting adaptability of crops.
Drawings
FIG. 1 shows the phenotypic results of dpy1 mutants according to Experimental example 1 of the present invention.
FIG. 2 is a schematic representation of the protein structure of DPY1 of the present invention.
FIG. 3 shows the result of the site cloning and functional verification of DPY1 in Experimental example 2.
FIG. 4 shows the effect of the overexpression of DPY1 gene on the plant type of millet in Experimental example 2 of the present invention.
FIG. 5 shows the effect of the overexpression of the DPY1 gene on the thickness of the millet stalks in the experimental example 2 of the present invention.
FIG. 6 is a graph showing the effect of the overexpression of DPY1 gene on the yield of individual millet plants in Experimental example 2 of the present invention.
FIG. 7 is a homology tree spectrum of DPY1 of the present invention.
Detailed Description
The technical solutions in the embodiments of the present invention will be clearly and completely described below, and it is obvious that the described embodiments are only a part of the embodiments of the present invention, and not all embodiments. All other embodiments, which can be derived by a person skilled in the art from the embodiments given herein without making any creative effort, shall fall within the protection scope of the present invention.
A gene DPY1 for regulating the plant type of Panicoideae plant, wherein the gene DPY1 has a nucleotide sequence shown in SEQ ID NO1, or a nucleotide sequence which is at least 85% homologous with the coding sequence in SEQ ID No.1 (the similarity of the nucleotide sequence of DPY1 and the nucleotide sequence of an orthologous gene of corn and sorghum is more than 85%, Sobic.003G051100 is the DPY1 gene of sorghum, and the nucleotide sequence is shown in figure 7). DPY1 contains 10 introns and 11 exons, wherein 11 exons have the nucleotide sequences shown in SEQ ID NO 2-12 respectively, 10 introns have the nucleotide sequences shown in SEQ ID NO 13-22 respectively, the coding sequence (CDS) is 1902bp, the size of the coded protein is 69.4kD, and the amino acid sequence shown in SEQ ID NO23 is contained.
The gene sequence is implanted into the receptor cell genomes of millet and other Panicoideae plants, commercial and farmer varieties of millet (Setaria italica), corn (Zea mays) and Sorghum (Sorghum bicolor) can improve the plant type.
The following experimental examples are provided to describe the Panicoideae plant type DPY1 of the present invention in detail.
Experimental example 1 EMS mutagenesis to obtain mutants with severe leaf draping
In order to genetically improve the natural drapability of the leaves of the millet, the commercial millet variety Yugu No.1 is mutagenized by 1% EMS (ethyl methane sulfonate) for 8 hours, and the millet variety Yugu No.1 is sown in the field after being thoroughly cleaned by distilled water. At near 2000M2Generations (mutagenesis second generation, i.e. mutagenesis current generation M)1The mutant obtained by sowing the variant individuals obtained in (1) and growing) a mutant dropy leaf 1(dpy1) which shows a curled leaf-drape at the seedling stage and a severe leaf-drape at the mature stage was found in the family (see FIG. 1, A-B).
The midveins in the leaves of dpy1 and wild type Yugu No.1 (WT) were observed: the median pulse width is significantly narrowed at dpy1 (WT: 0.5. + -. 0.12 cm; dpy1: 0.28. + -. 0.18cm) (see FIG. 1, C).
The leaves of dpy1 and wild type Yugu No.1 (WT) were cross-sectioned and stained with phloroglucinol (capable of specifically staining lignin) to find: the number of vascellum abaxial pachydic cells in the midvein was significantly reduced in DPY1 (see fig. 1, D-E), and the amount of lignin deposition was reduced (see fig. 1, E), indicating that the DPY1 gene affected the drapability of the leaf by affecting the division of vascellum pachydic cells and lignin deposition.
Experimental example 2 cloning and functional verification of DPY1 Gene
1. Cloning of the DPY1 Gene
For cloning DPY1, the mutant DPY1 is used as a female parent, the millet variety SSR41 is used as a male parent for hybridization, and the progeny leaf type is normally heterozygote F1Generation, F1F for selfing to form dpy1 × SSR412Generation genetic linkage population. At F2The segregation ratio of wild type phenotype and mutant phenotype in segregating population was 3:1(2452:789, χ)2=0.71,P>0.05), indicating that the mutant has a drape leaf pattern controlled by a recessive gene.
Next, a candidate gene Seita.5G121100 for DPY1 was obtained by map-based cloning with Mutmap sequencing analysis using 116 recessive individuals (see FIG. 3, A-B). The analysis of Seita.5G121100 encoded protein by using protein domain online analysis software SMART shows that it contains extracellular signal peptide, 5 LRRs (Leucine-Rich Repeat), transmembrane domain and kinase domain (the protein structure of DPY1 is shown in FIG. 2).
The DPY1 genome sequence is 4622bp (SEQ. ID NO 1), comprises 11 exons (SEQ. ID NO 2-12) and 10 introns (SEQ. ID NO 13-22), the coding sequence (CDS) is 1902bp, and the protein size is 69.4kD (SEQ. ID NO 23).
2. Functional verification of DPY1 gene
(1) Mutation of DPY1 Gene
Further sequencing finds that A-T mutation of the +882 deoxynucleotide of dpy1 causes disturbance of transcript shearing to cause early termination mutation, and further protein with an amino acid sequence of SEQ ID NO23 cannot be synthesized.
(2) CRISPR/CAS9 knock-out vector construction of DPY1 and plant genetic transformation
To further validate the function of seita.5g121100(DPY1), a knock-out target (CCCAGTTGTCAAGCACGTTA) was first designed at the second exon of DPY1 and ligated downstream of the OsU6 promoter, thus constructing the CRISPR/CAS9 knock-out vector for DPY1. Transformation of the vector into Yugu 1 at T1Both individual editors showed a phenotype similar to DPY1 (see FIG. 3, C), and CR-1/-4 was a knock-out strain of the DPY1 gene with deletions of 1 and 26 nucleotides, respectively, in the second exon, thus creating a frameshift mutation.
(3) Construction of anaplerotic vector and anaplerotic verification of DPY1 gene
Carrying out PCR amplification by taking the genome DNA of Yugu 1 as a template, wherein the adopted synthetic primers are as follows:
DPY1-g-F (upstream primer, SEQ. ID NO 24):
TTACTTCTGCACTAGGTACCATGCAGCGGCGGCGG;
DPY1-g-R (downstream primer, SEQ. ID NO 25):
CGGACTTAAGACTAGTAACATCATATACAGGCATGCGC。
the PCR amplification product was a 7.0kb genomic fragment containing the entire genome of Seita.5G121100 and the upstream 2.5kb promoter region (see SEQ. ID NO. 26).
The 7.0kb genomic fragment was ligated to pCAMBIA1305-EGFP vector (DPY1:: DPY1-GFP) by double-restriction enzyme ligation (KpnI/SpeI), and the mutant phenotype of DPY1 could be fully restored by Agrobacterium transformation of DPY1 (see FIG. 3, C), and Re-1/-2 was a complementing transgenic plant which turned the 7kb genomic fragment of DPY 1(DPY 1:: DPY1-GFP) into the DPY1 mutant, indicating that Seita.5G121100 is the DPY1 gene.
(4) Homologous gene of DPY1 in maize genome
Alignment of the nucleotide sequence of DPY1 in the genome of maize revealed the presence of two copies of DPY1 of GRMZM2G010693(ZmDPY1.1) and GRMZM2G067675(ZmDPY1.2) in the maize genome, as shown in FIG. 7.
Performing PCR amplification by using cDNA of a corn variety B73 as a template, wherein the adopted synthetic primers are as follows:
ZmDPY1.1-OE-F (upstream primer, SEQ. ID NO 27):
CGACTCTAGAGGATCCAATTGAATCTGCGGGGGTTGC;
ZmDPY1.1-OE-R (upstream primer, SEQ. ID NO 28):
GCTTGGCGCGACTAGTCCTCGGGCCGGAGAGCTCCAT。
PCR amplification using the cDNA of maize variety B73 as a template yielded ZmDPY1.1 of approximately 2.0kb, which was subsequently ligated downstream of the Ubiquitin promoter of the overexpression vector PTCK303 by the enzyme ligation method (BamHI/SpeI double digestion) (Ubi:: ZmDPY1-3FLAG), and the transformed millet (DPY1) by the Agrobacterium-mediated method was used to transform ZmDPY1-3FLAG, which was found to completely restore the mutant phenotype of DPY1 (see FIG. 3, C), and OX-2/-3 was a transgenic plant overexpressing ZmDPY1.1 in DPY 1(Ubi:: ZmDPY1-FLAG), indicating that DPY1 has a conserved plant-type regulatory function in Panicoideae crops.
Performing PCR amplification by using cDNA of millet (Yugu 1) as a template, wherein the adopted synthetic primers are as follows:
DPY1-OE-F (upstream primer, SEQ. ID NO 29):
CGACTCTAGAGGATCCTTGCCGAATAGAATCTGCGG;
DPY1-OE-R (upstream primer, SEQ. ID NO. 30):
GCTTGGCGCGACTAGTCTGTCtCCTCGGTCCCGAGA。
the cDNA of millet is taken as a template for PCR amplification to obtain DPY1 with about 2.0kb, the same enzyme digestion connection method is utilized to connect DPY1 to the downstream of a Ubiquitin promoter (Ubi:: DPY1-3FLAG) of an overexpression vector PTCK303, the Ubi:: DPY1-3FLAG is transformed into millet variety Yugu 1, OX-1/-2 is two transgenic plants overexpressing millet DPY1 under WT background (Yugu 1), and the overexpression DPY1 is found to improve the draping plant type of the millet, so that the leaves are relatively stiff and upright (see figure 4), and meanwhile, the stem thickness and the single plant yield can be increased (see figure 5-6).
While the present invention has been described in detail with reference to the preferred embodiments, it should be understood that the above description should not be taken as limiting the invention. Various modifications and alterations to this invention will become apparent to those skilled in the art upon reading the foregoing description. Accordingly, the scope of the invention should be determined from the following claims.
Sequence listing
<110> research center of agricultural resources of institute of genetics and developmental biology of Chinese academy of sciences
<120> Gene DPY1 regulating Panicoideae plant type, and application and method thereof
<160> 30
<170> SIPOSequenceListing 1.0
<210> 1
<211> 4622
<212> DNA
<213> DPY1
<400> 1
atgtgggtgc cggtggcgcc gatgtggatg cggtggtggg tggtggttgc tggcctgctc 60
gccgtgatcc tgccgccatc caccgccacg ctctccccgg ccggcatcaa ctacgaaggt 120
acctaacatt ctctcctccc atgtcttctc gaaaatctta acaaaaggcc atggccgacc 180
ttttcctatt ttggaaaaat aaaaggacga aaggccaact ttttccattc agccaacaga 240
ggattttcag gaatttgttg aaaacattcc cctcctgcaa tcaatcgctg gtttgaagtt 300
ggggtaaaag atctcatttt ggtgaaggac actaaaggaa atgcagctgc tgtacctata 360
cttcctcatc agtcctctac tcatcttgct tgtcgagttc tagctgtttc ttggcattac 420
gaatttggcg aagttgaacc tgcctgcctg tggctgtact gcagtggtgg ctctgatggc 480
catcaagacg gagctggagg acccccataa cgtgcttgac aactgggata tcaactccgt 540
cgacccctgc agctggagga tggtcacctg ctcctccgac ggctacgtct ccgccttgta 600
cgttatgcta ccttgttcat gcccattccc cggagcacca acgggctctg ctttgggctg 660
atcttcttac atgttcttct tcacttgcag aggattgccc agccagagct tgtccgggaa 720
attgtcaccc ggcatcggca acctcaccag gctgcaatct gtgtaagttt actgatcccc 780
tgttgtttac ctctggcact tcaaaattca aatttgaggt ttcttgagtg gaccaatctg 840
gttgaagaaa tgactgaaag tactcggctt tgcggatcaa caggctgtta cagaacaatg 900
cgatttctgg ctccattccc ggcaccatag gaaggttggg gatgctaaag actcttgaca 960
tgtcagataa ccagctcacg gggagcatcc caagttcact tgggaatctc aggaacctga 1020
actatctgta agatttttcc ttccccattc ttgattttca acagcgttgt cattgtacac 1080
ggtgatttca tttttgctca ttgtctagtt ctcttgttgc cgccaggaaa ttgaataata 1140
atagcttgtc tggagttcta cctgattcac ttgccaccat tgatggcctc gctctcgtgt 1200
atgctctgca atcccttttt gttgttcgtt tttctcttcc cctacttttg tactaattcc 1260
cgaagtgttt tgttttatag agacctttca tttaataacc ttagtggtcc attgcccaag 1320
atctctgcaa gaactttcat gtaagtaatt tcaacttatt ccttttcatg ggtattttta 1380
tttcggcccg aacactacca ctactgtaac tacatgttat gccatggact aatgttcact 1440
taatcaagct ttcattttta ctgtttgttc atacagcatt gctggaaatc caatgatttg 1500
cggtgctaag tcaggagata actgctcttc tgtgtcactt gacccactct cttacccacc 1560
agatgatctg aagagtgagt tgtttttctc atcattcatt ttcgggaaat atgcatttat 1620
tacagaggaa ttggcttgcc ttttcttctg cgtgacactc acatatgtct ccttttcctc 1680
agctcagcca caacaaggca ttgtaaaagg ccaccgtatt gctacaatat gtggagcaac 1740
tgtagggtca gtagcttttg ccactattgt agttggtatg cttctatggt ggcgtcatag 1800
gagaaatcag cagatcttct ttgatgtaaa cggtaatatt ctattcaaac ccgttcttat 1860
gtgatcatga tattaaccac ctagatatga attgtattag atcaatgtag taattgtagc 1920
aatggctatg gctagcagtt tataatttat gatcttggag ctttttcctt ctgatcttcc 1980
acagtaaatt tacatggatg taaagatatg catactgtct aagtgttcta tgtcagtttg 2040
agctactgag gtttcaataa gcaggctaat taggctttga catgtttcct caatagcaat 2100
taagcattgc tctaatattc tgccatatga tctccgttag gagttttgaa accactgatg 2160
aatttgaaga tacaatagac gcatctctca acattagttc tatgtggtta ccatcaataa 2220
tgcgagtata caacaaaaaa actttttgtt tcttttaagt ttttttacta gtatgatctt 2280
ccaattactt ttggtatgtg ggttatttca caatcatgat gtccccgtta ctttctgtgc 2340
ttttcttagc ctttcaacaa tcatgagcta ttctttttac ccttctagga ctttcttcga 2400
tatctttagc atgctttttt actttctttc tcttgcgtgc tatggtaatt gaacctgata 2460
cattcttcaa tgtgcagacc aatatgaccc agaagtttgt ttaggtcatc tgaagcggta 2520
tgccttcaag gagctccgtg cagctactaa caactttaac tcaaagaaca tcttaggtga 2580
aggtggatat gggatagtat acaaaggtta tttgcgtgat ggctctgttg ttgctgttaa 2640
aaggctgaag gattataatg ctgttggtgg ggaagttcaa ttccaaactg aagttgaagt 2700
cataagcttg gctgttcatc ggaatctcct ccgtcttatt ggattctgca caacagaatg 2760
cgagagatta cttgtttacc cttatatgcc aaatggaagc gttgcttctc aattgcgggg 2820
tttgtctctc tcttcttgct cgtgacttcc atgtgcatat tttgctgcca gttgacccaa 2880
tttctttgaa gcacacaagt cccgcttctt ttttttttta aaaaaagaag cactttgtta 2940
caagagggaa aaaatgacta tcaacgttga tcaaaatttt gtatgcgtaa aatattaaca 3000
ccttggcatt tttgctcaat ccaatatgaa atatttaccc tatttttcga tgtatcatag 3060
ttgatgtgaa atgtctgtgt tccaacattt gattagtgtt gctgcacaga gttactgaat 3120
gtagttttat gttgtctgac ataccttagg tttagtgcaa acgggcaagc tagcatgttt 3180
tcttgtattg tagctgatct tgttgcactg cacagacagt caccacacgc tcaatttact 3240
gttgaaatca taataagtac atgtggttct gtgcgtggtc taatgtgaaa aatcagatga 3300
gtgatctgga tattgcagtc taaaaatcta ttagccttat ttagttattt atacactgat 3360
ttgaataccc ggctgctttc agtcatatta tgccaggcaa acagcttggc ttctccattc 3420
tggtgtcctt ttattgaaaa cataatggtg gtgttaactg ttgagttatg ttggtcaaat 3480
taaatcctac tcccattctt gttgtggaat tctgcagtaa tatggccatg ctatatattg 3540
cattcaagcc tagttttgga atataaactg aagaaattca aacatcacat atccagctat 3600
ctttaactca taacatgggg gtatcaataa cagcaaacac catatgagca tcgtccaagt 3660
atattatcca ctatgcatgc aaattaactt tctttcgctt ttcttcagaa catgtaaatg 3720
gcaagccagc tctagattgg tcgaggagaa agagaatagc actaggcaca gcacgaggtc 3780
tgctgtacct gcatgagcag tgcgatccaa aaataatcca tcgtgacgta aaagcctcca 3840
atgtgcttct tgatgaatat ttcgaagcaa ttgtgggaga ttttggattg gcaaaacttt 3900
tggatcacca ggaatctcat gttaccactg cagtgcgtgg gactgttgga catatagcac 3960
cggagtatct gtcaactggc cagtcatcag agaagactga tgtgtttgga tttggagttc 4020
tcttagttga gttgatcact ggtcagaagg cattggattt tggaagagta gcaaatcaga 4080
agggtggcgt gctggattgg gtaagtgtgc gtcttatggt ttactattct gatttgcata 4140
tttgattcaa agctttaaac aaaaagaagt ctacctttgc ttttatacct tctttggctc 4200
tgcccttcag ttcagtcttg cagagttttt tttcgttatt acaggctcat ttgtttgtat 4260
ttccatgaac atatttcctc tttacttttg tctggttaca ggttaagaaa cttcatcaag 4320
aaaagcagct aagcatgatg gtggacaaag acctgggtag caactacgac agggttgagt 4380
tggaggaaat ggtccaggtg gctttgttat gcacacaata ctacccatct caccgccctc 4440
gaatgtctga ggtaatcagg atgctggaag gtgacgggct tgcagagaaa tgggaagcat 4500
cacagaatgt ggacacgcca aagtccgtct catcggagct cctgcctcca aagtacatgg 4560
atttcgccgc ggacgagtcc tcgctcggcc tagaagccat ggagctctcg ggaccgaggt 4620
ga 4622
<210> 2
<211> 118
<212> DNA
<213> DPY1-exon1
<400> 2
atgtgggtgc cggtggcgcc gatgtggatg cggtggtggg tggtggttgc tggcctgctc 60
gccgtgatcc tgccgccatc caccgccacg ctctccccgg ccggcatcaa ctacgaag 118
<210> 3
<211> 133
<212> DNA
<213> DPY1-exon2
<400> 3
tggtggctct gatggccatc aagacggagc tggaggaccc ccataacgtg cttgacaact 60
gggatatcaa ctccgtcgac ccctgcagct ggaggatggt cacctgctcc tccgacggct 120
acgtctccgc ctt 133
<210> 4
<211> 72
<212> DNA
<213> DPY1-exon3
<400> 4
aggattgccc agccagagct tgtccgggaa attgtcaccc ggcatcggca acctcaccag 60
gctgcaatct gt 72
<210> 5
<211> 144
<212> DNA
<213> DPY1-exon4
<400> 5
gctgttacag aacaatgcga tttctggctc cattcccggc accataggaa ggttggggat 60
gctaaagact cttgacatgt cagataacca gctcacgggg agcatcccaa gttcacttgg 120
gaatctcagg aacctgaact atct 144
<210> 6
<211> 72
<212> DNA
<213> DPY1-exon5
<400> 6
gaaattgaat aataatagct tgtctggagt tctacctgat tcacttgcca ccattgatgg 60
cctcgctctc gt 72
<210> 7
<211> 60
<212> DNA
<213> DPY1-exon6
<400> 7
agacctttca tttaataacc ttagtggtcc attgcccaag atctctgcaa gaactttcat 60
<210> 8
<211> 98
<212> DNA
<213> DPY1-exon7
<400> 8
cattgctgga aatccaatga tttgcggtgc taagtcagga gataactgct cttctgtgtc 60
acttgaccca ctctcttacc caccagatga tctgaaga 98
<210> 9
<211> 150
<212> DNA
<213> DPY1-exon8
<400> 9
ctcagccaca acaaggcatt gtaaaaggcc accgtattgc tacaatatgt ggagcaactg 60
tagggtcagt agcttttgcc actattgtag ttggtatgct tctatggtgg cgtcatagga 120
gaaatcagca gatcttcttt gatgtaaacg 150
<210> 10
<211> 342
<212> DNA
<213> DPY1-exon9
<400> 10
accaatatga cccagaagtt tgtttaggtc atctgaagcg gtatgccttc aaggagctcc 60
gtgcagctac taacaacttt aactcaaaga acatcttagg tgaaggtgga tatgggatag 120
tatacaaagg ttatttgcgt gatggctctg ttgttgctgt taaaaggctg aaggattata 180
atgctgttgg tggggaagtt caattccaaa ctgaagttga agtcataagc ttggctgttc 240
atcggaatct cctccgtctt attggattct gcacaacaga atgcgagaga ttacttgttt 300
acccttatat gccaaatgga agcgttgctt ctcaattgcg gg 342
<210> 11
<211> 392
<212> DNA
<213> DPY1-exon10
<400> 11
aacatgtaaa tggcaagcca gctctagatt ggtcgaggag aaagagaata gcactaggca 60
cagcacgagg tctgctgtac ctgcatgagc agtgcgatcc aaaaataatc catcgtgacg 120
taaaagcctc caatgtgctt cttgatgaat atttcgaagc aattgtggga gattttggat 180
tggcaaaact tttggatcac caggaatctc atgttaccac tgcagtgcgt gggactgttg 240
gacatatagc accggagtat ctgtcaactg gccagtcatc agagaagact gatgtgtttg 300
gatttggagt tctcttagtt gagttgatca ctggtcagaa ggcattggat tttggaagag 360
tagcaaatca gaagggtggc gtgctggatt gg 392
<210> 12
<211> 321
<212> DNA
<213> DPY1-exon11
<400> 12
gttaagaaac ttcatcaaga aaagcagcta agcatgatgg tggacaaaga cctgggtagc 60
aactacgaca gggttgagtt ggaggaaatg gtccaggtgg ctttgttatg cacacaatac 120
tacccatctc accgccctcg aatgtctgag gtaatcagga tgctggaagg tgacgggctt 180
gcagagaaat gggaagcatc acagaatgtg gacacgccaa agtccgtctc atcggagctc 240
ctgcctccaa agtacatgga tttcgccgcg gacgagtcct cgctcggcct agaagccatg 300
gagctctcgg gaccgaggtg a 321
<210> 13
<211> 346
<212> DNA
<213> DPY1-Introns1
<400> 13
gtacctaaca ttctctcctc ccatgtcttc tcgaaaatct taacaaaagg ccatggccga 60
ccttttccta ttttggaaaa ataaaaggac gaaaggccaa ctttttccat tcagccaaca 120
gaggattttc aggaatttgt tgaaaacatt cccctcctgc aatcaatcgc tggtttgaag 180
ttggggtaaa agatctcatt ttggtgaagg acactaaagg aaatgcagct gctgtaccta 240
tacttcctca tcagtcctct actcatcttg cttgtcgagt tctagctgtt tcttggcatt 300
acgaatttgg cgaagttgaa cctgcctgcc tgtggctgta ctgcag 346
<210> 14
<211> 93
<212> DNA
<213> DPY1-Introns2
<400> 14
gtacgttatg ctaccttgtt catgcccatt ccccggagca ccaacgggct ctgctttggg 60
ctgatcttct tacatgttct tcttcacttg cag 93
<210> 15
<211> 121
<212> DNA
<213> DPY1-Introns3
<400> 15
gtaagtttac tgatcccctg ttgtttacct ctggcacttc aaaattcaaa tttgaggttt 60
cttgagtgga ccaatctggt tgaagaaatg actgaaagta ctcggctttg cggatcaaca 120
g 121
<210> 16
<211> 99
<212> DNA
<213> DPY1-Introns4
<400> 16
gtaagatttt tccttcccca ttcttgattt tcaacagcgt tgtcattgta cacggtgatt 60
tcatttttgc tcattgtcta gttctcttgt tgccgccag 99
<210> 17
<211> 82
<212> DNA
<213> DPY1-Introns5
<400> 17
gtatgctctg caatcccttt ttgttgttcg tttttctctt cccctacttt tgtactaatt 60
cccgaagtgt tttgttttat ag 82
<210> 18
<211> 136
<212> DNA
<213> DPY1-Introns6
<400> 18
gtaagtaatt tcaacttatt ccttttcatg ggtattttta tttcggcccg aacactacca 60
ctactgtaac tacatgttat gccatggact aatgttcact taatcaagct ttcattttta 120
ctgtttgttc atacag 136
<210> 19
<211> 108
<212> DNA
<213> DPY1-Introns7
<400> 19
gtgagttgtt tttctcatca ttcattttcg ggaaatatgc atttattaca gaggaattgg 60
cttgcctttt cttctgcgtg acactcacat atgtctcctt ttcctcag 108
<210> 20
<211> 645
<212> DNA
<213> DPY1-Introns8
<400> 20
gtaatattct attcaaaccc gttcttatgt gatcatgata ttaaccacct agatatgaat 60
tgtattagat caatgtagta attgtagcaa tggctatggc tagcagttta taatttatga 120
tcttggagct ttttccttct gatcttccac agtaaattta catggatgta aagatatgca 180
tactgtctaa gtgttctatg tcagtttgag ctactgaggt ttcaataagc aggctaatta 240
ggctttgaca tgtttcctca atagcaatta agcattgctc taatattctg ccatatgatc 300
tccgttagga gttttgaaac cactgatgaa tttgaagata caatagacgc atctctcaac 360
attagttcta tgtggttacc atcaataatg cgagtataca acaaaaaaac tttttgtttc 420
ttttaagttt ttttactagt atgatcttcc aattactttt ggtatgtggg ttatttcaca 480
atcatgatgt ccccgttact ttctgtgctt ttcttagcct ttcaacaatc atgagctatt 540
ctttttaccc ttctaggact ttcttcgata tctttagcat gcttttttac tttctttctc 600
ttgcgtgcta tggtaattga acctgataca ttcttcaatg tgcag 645
<210> 21
<211> 889
<212> DNA
<213> DPY1-Introns9
<400> 21
gtttgtctct ctcttcttgc tcgtgacttc catgtgcata ttttgctgcc agttgaccca 60
atttctttga agcacacaag tcccgcttct tttttttttt aaaaaaagaa gcactttgtt 120
acaagaggga aaaaatgact atcaacgttg atcaaaattt tgtatgcgta aaatattaac 180
accttggcat ttttgctcaa tccaatatga aatatttacc ctatttttcg atgtatcata 240
gttgatgtga aatgtctgtg ttccaacatt tgattagtgt tgctgcacag agttactgaa 300
tgtagtttta tgttgtctga cataccttag gtttagtgca aacgggcaag ctagcatgtt 360
ttcttgtatt gtagctgatc ttgttgcact gcacagacag tcaccacacg ctcaatttac 420
tgttgaaatc ataataagta catgtggttc tgtgcgtggt ctaatgtgaa aaatcagatg 480
agtgatctgg atattgcagt ctaaaaatct attagcctta tttagttatt tatacactga 540
tttgaatacc cggctgcttt cagtcatatt atgccaggca aacagcttgg cttctccatt 600
ctggtgtcct tttattgaaa acataatggt ggtgttaact gttgagttat gttggtcaaa 660
ttaaatccta ctcccattct tgttgtggaa ttctgcagta atatggccat gctatatatt 720
gcattcaagc ctagttttgg aatataaact gaagaaattc aaacatcaca tatccagcta 780
tctttaactc ataacatggg ggtatcaata acagcaaaca ccatatgagc atcgtccaag 840
tatattatcc actatgcatg caaattaact ttctttcgct tttcttcag 889
<210> 22
<211> 201
<212> DNA
<213> DPY1-Introns10
<400> 22
gtaagtgtgc gtcttatggt ttactattct gatttgcata tttgattcaa agctttaaac 60
aaaaagaagt ctacctttgc ttttatacct tctttggctc tgcccttcag ttcagtcttg 120
cagagttttt tttcgttatt acaggctcat ttgtttgtat ttccatgaac atatttcctc 180
tttacttttg tctggttaca g 201
<210> 23
<211> 633
<212> PRT
<213> DPY1-protein
<400> 23
Met Trp Val Pro Val Ala Pro Met Trp Met Arg Trp Trp Val Val Val
1 5 10 15
Ala Gly Leu Leu Ala Val Ile Leu Pro Pro Ser Thr Ala Thr Leu Ser
20 25 30
Pro Ala Gly Ile Asn Tyr Glu Val Val Ala Leu Met Ala Ile Lys Thr
35 40 45
Glu Leu Glu Asp Pro His Asn Val Leu Asp Asn Trp Asp Ile Asn Ser
50 55 60
Val Asp Pro Cys Ser Trp Arg Met Val Thr Cys Ser Ser Asp Gly Tyr
65 70 75 80
Val Ser Ala Leu Gly Leu Pro Ser Gln Ser Leu Ser Gly Lys Leu Ser
85 90 95
Pro Gly Ile Gly Asn Leu Thr Arg Leu Gln Ser Val Leu Leu Gln Asn
100 105 110
Asn Ala Ile Ser Gly Ser Ile Pro Gly Thr Ile Gly Arg Leu Gly Met
115 120 125
Leu Lys Thr Leu Asp Met Ser Asp Asn Gln Leu Thr Gly Ser Ile Pro
130 135 140
Ser Ser Leu Gly Asn Leu Arg Asn Leu Asn Tyr Leu Lys Leu Asn Asn
145 150 155 160
Asn Ser Leu Ser Gly Val Leu Pro Asp Ser Leu Ala Thr Ile Asp Gly
165 170 175
Leu Ala Leu Val Asp Leu Ser Phe Asn Asn Leu Ser Gly Pro Leu Pro
180 185 190
Lys Ile Ser Ala Arg Thr Phe Ile Ile Ala Gly Asn Pro Met Ile Cys
195 200 205
Gly Ala Lys Ser Gly Asp Asn Cys Ser Ser Val Ser Leu Asp Pro Leu
210 215 220
Ser Tyr Pro Pro Asp Asp Leu Lys Thr Gln Pro Gln Gln Gly Ile Val
225 230 235 240
Lys Gly His Arg Ile Ala Thr Ile Cys Gly Ala Thr Val Gly Ser Val
245 250 255
Ala Phe Ala Thr Ile Val Val Gly Met Leu Leu Trp Trp Arg His Arg
260 265 270
Arg Asn Gln Gln Ile Phe Phe Asp Val Asn Asp Gln Tyr Asp Pro Glu
275 280 285
Val Cys Leu Gly His Leu Lys Arg Tyr Ala Phe Lys Glu Leu Arg Ala
290 295 300
Ala Thr Asn Asn Phe Asn Ser Lys Asn Ile Leu Gly Glu Gly Gly Tyr
305 310 315 320
Gly Ile Val Tyr Lys Gly Tyr Leu Arg Asp Gly Ser Val Val Ala Val
325 330 335
Lys Arg Leu Lys Asp Tyr Asn Ala Val Gly Gly Glu Val Gln Phe Gln
340 345 350
Thr Glu Val Glu Val Ile Ser Leu Ala Val His Arg Asn Leu Leu Arg
355 360 365
Leu Ile Gly Phe Cys Thr Thr Glu Cys Glu Arg Leu Leu Val Tyr Pro
370 375 380
Tyr Met Pro Asn Gly Ser Val Ala Ser Gln Leu Arg Glu His Val Asn
385 390 395 400
Gly Lys Pro Ala Leu Asp Trp Ser Arg Arg Lys Arg Ile Ala Leu Gly
405 410 415
Thr Ala Arg Gly Leu Leu Tyr Leu His Glu Gln Cys Asp Pro Lys Ile
420 425 430
Ile His Arg Asp Val Lys Ala Ser Asn Val Leu Leu Asp Glu Tyr Phe
435 440 445
Glu Ala Ile Val Gly Asp Phe Gly Leu Ala Lys Leu Leu Asp His Gln
450 455 460
Glu Ser His Val Thr Thr Ala Val Arg Gly Thr Val Gly His Ile Ala
465 470 475 480
Pro Glu Tyr Leu Ser Thr Gly Gln Ser Ser Glu Lys Thr Asp Val Phe
485 490 495
Gly Phe Gly Val Leu Leu Val Glu Leu Ile Thr Gly Gln Lys Ala Leu
500 505 510
Asp Phe Gly Arg Val Ala Asn Gln Lys Gly Gly Val Leu Asp Trp Val
515 520 525
Lys Lys Leu His Gln Glu Lys Gln Leu Ser Met Met Val Asp Lys Asp
530 535 540
Leu Gly Ser Asn Tyr Asp Arg Val Glu Leu Glu Glu Met Val Gln Val
545 550 555 560
Ala Leu Leu Cys Thr Gln Tyr Tyr Pro Ser His Arg Pro Arg Met Ser
565 570 575
Glu Val Ile Arg Met Leu Glu Gly Asp Gly Leu Ala Glu Lys Trp Glu
580 585 590
Ala Ser Gln Asn Val Asp Thr Pro Lys Ser Val Ser Ser Glu Leu Leu
595 600 605
Pro Pro Lys Tyr Met Asp Phe Ala Ala Asp Glu Ser Ser Leu Gly Leu
610 615 620
Glu Ala Met Glu Leu Ser Gly Pro Arg
625 630
<210> 24
<211> 35
<212> DNA
<213> Artificial Sequence
<400> 24
ttacttctgc actaggtacc atgcagcggc ggcgg 35
<210> 25
<211> 38
<212> DNA
<213> Artificial Sequence
<400> 25
cggacttaag actagtaaca tcatatacag gcatgcgc 38
<210> 26
<211> 2500
<212> DNA
<213> Artificial Sequence
<400> 26
tagtctacat ttaatacttc taattagtat ctaaacattc gatgtgacgg gtgcttaaat 60
ttaagttagt gaaccaaacc aggcctaagg tcgatctaaa aataaaagtt gagagactaa 120
gttaacaatc taatataaag tgatgaactt gattcgaggg taaagttcag aatcaaaacg 180
ctattttacc gattggtcat gactgaatgc catccttcag agttcagata caagcaatca 240
caaacacatc gataaaaaaa ctcatctatg aacgagctga atcttcgaac gtcatccatt 300
tccacacaga acacacagta gcaagcgagg aacaaccggc tgtccggctc agccgggggg 360
accggatgtc gctggataat ataaatataa taaatataaa aaaataaaca gactagattc 420
taccactacc accgtgacac tgatggacaa gagagagagg gagaggcagg ccgggacggt 480
gaactggtga cggtgacgag cagcgcgaca agaaaggacg ggacaaaatc aaaggcgggc 540
atgtgactcg ccagtgccca gcaaagcctt ttttaccttc atccccccct ctccgctcgc 600
ccttttctat attccccatc attctcttct ttatattacc tagatagccg tgcgcgcagt 660
acgcctcggc ttcgtagact agttcatgac aaacatgcgc cctgtcatta ccgctgtcgt 720
tgcgcagatg atgacaacca gagagaacac cggtgaaaga ttgatgaaat cctatgctaa 780
caggcaggca gatggggggg tttatctttg ctaaacgcgc acagctgccg gtaacatgca 840
ctaactccta gtaccggtat atagtacgag taaattttag catattgcta gcagcagcgg 900
tacattatga ttcccgatga gagtgcatta gcactactgc ttgttcgcct ctcgaattgc 960
aggcgttgga gcatctgccg tcttttcttg aacacaaggc cgtccatgcc cttggaaagc 1020
tgtgaaaaat accaaattca cggagttcaa gtgtccaacc aaacaaaaag atgaaaagag 1080
attaacaaag attctaggga gatggcaaat ccagcaagaa catttttttg gaaacttaag 1140
caagaacatt tccttttttc tgaaaacgta tgcacctttt tcggaaaatc taggggatgg 1200
aaaggaacac accattttgg tcccgcaact ttaacctgag ggttaagttc gtccctcaac 1260
attttagata ggccaatttg atccctcaac ttctgttttt agtcaaactt gtccttatgc 1320
tgacatggtg cactttgttg gtacgagact aatgtgaaaa ttccttttta cccttggctc 1380
atgtaggcta agcatgtatg tgttattatg ctcatattct cttgacatat acacgcaaaa 1440
atatattggt taactaacac ataatacggt ttaaaaaaaa tgtatgtacc aaaactcttt 1500
aaagtcatgc atgtgctcgt acgaattaaa tatgaaaaat ttatgtaccc aaacaaatat 1560
ttattcatac tcttttggta tacaactcaa tatatgtact catactttaa aatctaaaat 1620
caacatgtgc tcacatacgt atatgtattc atactttctc agtaaatatg tataaatatt 1680
tatgtgctcg tacttgattt ggatcatact gttattgtac ttaatgatgg aaattgagga 1740
taaatattta tgtgctcgta cttgatttgg atcatactgt tattgtactt aatgacggaa 1800
attgaggaga ggaagaaaga gctaagggta aaaatgacct tttgtattag ttttgtatta 1860
aaatgggact ctcaccagat gagttttaaa aaataaaaga tgagggatcg accgatttaa 1920
agttgaggga cgaatttgat ccttaaaaga aagttgaggg accaaaatgg acattttgcc 1980
ggaaaggaag gaggaggtca ggagcatgcg cgcccgtggc aggtcaggcc ggtttggggg 2040
aaaagcgctt gtcggtttgc agcggcgtgg agcgggtggg gagcatcagc ggcgtcagcg 2100
gacagcggcc gcggcagcca gccagcacca gcagcatggt ggtggattga taggtgggga 2160
aggggcctgc cgctgctgct gctgccgctg ccgctgctcg ttggcgtttc ccttcccctc 2220
ttgcccccac tacccacccc caccatcttc ctctcgggcg gtcgcgtgaa ctccccctct 2280
cccctcgctt tcgcgctgcg tgcgcggtgg catcattggc tatctggatt ggtccgggtt 2340
gggtagtaga gaggccggcc ttcttctgct tcttccctgc tgctggcggc ggcggagcgg 2400
aattgtggtg tggagctgtg gggggactgg cgtgcagcgt gctcctcctc ttcttgcaga 2460
tcatcgtttg ccgaattgaa tctgcggggc tgtgcgggcg 2500
<210> 27
<211> 37
<212> DNA
<213> Artificial Sequence
<400> 27
cgactctaga ggatccaatt gaatctgcgg gggttgc 37
<210> 28
<211> 37
<212> DNA
<213> Artificial Sequence
<400> 28
gcttggcgcg actagtcctc gggccggaga gctccat 37
<210> 29
<211> 36
<212> DNA
<213> Artificial Sequence
<400> 29
cgactctaga ggatccttgc cgaatagaat ctgcgg 36
<210> 30
<211> 36
<212> DNA
<213> Artificial Sequence
<400> 30
gcttggcgcg actagtctgt ctcctcggtc ccgaga 36

Claims (5)

1. GeneDPY1The application of the gene in improving the plant type of the Panicoideae plant is characterized in that the geneDPY1The nucleotide sequence of (A) is shown in SEQ ID NO. 1.
2. The use of claim 1, wherein said gene is administeredDPY1Implanted into the genome of recipient cells of Panicoideae plants.
3. Use according to claim 1 or 2, characterized in that the Panicoideae plant comprises: any one of millet, corn and sorghum.
4. A method of modifying the plant type of a panicolaceae plant, the method comprising: the gene is transformed into a geneDPY1Using a super watchIntegrating the expression mode into the genome of the recipient cell of the panicolaceae plant and obtaining a single-copy homozygous progeny; wherein the overexpression mode is realized by using promoter to start a geneDPY1Expression of the coding region of (a); wherein the geneDPY1The nucleotide sequence of (A) is shown in SEQ ID NO. 1.
5. The method of claim 4, wherein the promoter comprises: the Ubiquitin promoter or the CaMV 35S promoter.
CN202010725748.3A 2020-07-24 2020-07-24 Gene DPY1 for regulating and controlling panicolaceae plant type and application and method thereof Active CN111808872B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010725748.3A CN111808872B (en) 2020-07-24 2020-07-24 Gene DPY1 for regulating and controlling panicolaceae plant type and application and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010725748.3A CN111808872B (en) 2020-07-24 2020-07-24 Gene DPY1 for regulating and controlling panicolaceae plant type and application and method thereof

Publications (2)

Publication Number Publication Date
CN111808872A CN111808872A (en) 2020-10-23
CN111808872B true CN111808872B (en) 2022-06-24

Family

ID=72862704

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010725748.3A Active CN111808872B (en) 2020-07-24 2020-07-24 Gene DPY1 for regulating and controlling panicolaceae plant type and application and method thereof

Country Status (1)

Country Link
CN (1) CN111808872B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113699269B (en) * 2021-09-02 2022-09-30 河北师范大学 SNP (single nucleotide polymorphism) site related to small spike number per spike and spike grain number characters of wheat and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006131547A1 (en) * 2005-06-08 2006-12-14 Cropdesign N.V. Plants having improved growth characteristics and method for making the same
US20190249198A1 (en) * 2008-04-29 2019-08-15 Monsanto Technology Llc Genes and uses for plant enhancement

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006131547A1 (en) * 2005-06-08 2006-12-14 Cropdesign N.V. Plants having improved growth characteristics and method for making the same
US20190249198A1 (en) * 2008-04-29 2019-08-15 Monsanto Technology Llc Genes and uses for plant enhancement

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DROOPY LEAF1 controls leaf architecture by orchestrating early brassinosteroid signaling;Meicheng Zhao等;《PNAS》;20200817;21766-21774 *
GenBank:CM003532.1;Bennetzen,J.L.等;《NCBI》;20180724;CDS部分和ORIGIN部分 *

Also Published As

Publication number Publication date
CN111808872A (en) 2020-10-23

Similar Documents

Publication Publication Date Title
US11708395B2 (en) Gene LBA5 for regulating lateral shoot angles, growth habits, and plant architecture of Arachis hypogaea L., and use thereof
CN110511945B (en) Rice fertility regulation gene, mutant and application thereof
CN111961673B (en) Rice grain type gene GS10 and application thereof
CN110079534B (en) Gene and promoter for regulating and controlling flowering period of corn and application of gene and promoter
CN112390865B (en) Application of Zm5008 gene in regulating and controlling plant height and internode distance of corn
CN102057045A (en) Transgenic sugar beet plants
EP3936519A1 (en) Method for cultivating plant resistant to gray leaf spot
CN109022450B (en) ZmCL 2-1 gene for regulating and controlling included angle of corn leaves and application thereof
CN109988231B (en) Application of rice gene OsGRF4 in improving cold resistance of plants
CN114410651B (en) Maize gray spot disease resistance related protein, encoding gene and application thereof
WO2023065966A1 (en) Application of bfne gene in tomato plant type improvement and biological yield increase
CN107475266B (en) Rice endosperm flour quality related gene OscyMDH and encoding protein and application thereof
CN111808872B (en) Gene DPY1 for regulating and controlling panicolaceae plant type and application and method thereof
CN110592134A (en) Application of SDG40 gene or coding protein thereof
CN109721649A (en) A kind of plant type of rice regulation related gene, protein and application
CN110092819B (en) Corn bract width regulating protein ARF2, and coding gene and application thereof
CN108409844B (en) Application of protein TaNRT2.5 in regulation and control of plant yield
CN103524608B (en) Rice spike neck node regulation gene SUI1 (shorted uppermost Internode 1) and application thereof
CN113980919B (en) DNA sequence for regulating and controlling corn ear rot resistance, mutant, molecular marker and application thereof
CN112195187B (en) Rice tillering angle regulation gene and protein coded by same and application of gene
CN113388015A (en) Pear protein fragment PyDwarf1-462 and coding sequence and application thereof
CN114644701B (en) Use of proteins derived from corn and related biomaterials
CN114540375B (en) Gene and molecular marker for regulating and controlling flowering period and photoperiod adaptability of corn and application of gene and molecular marker
CN114540366B (en) Rice fertility regulating gene GMS3, mutant and application thereof
CN114516908B (en) Rice grain shape regulatory protein HOS59, encoding gene and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant