CN111791887A - 一种基于分层式车速规划的车辆节能驾驶方法 - Google Patents

一种基于分层式车速规划的车辆节能驾驶方法 Download PDF

Info

Publication number
CN111791887A
CN111791887A CN202010634771.1A CN202010634771A CN111791887A CN 111791887 A CN111791887 A CN 111791887A CN 202010634771 A CN202010634771 A CN 202010634771A CN 111791887 A CN111791887 A CN 111791887A
Authority
CN
China
Prior art keywords
vehicle
vehicle speed
driving
term
planning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010634771.1A
Other languages
English (en)
Other versions
CN111791887B (zh
Inventor
孙超
张春涛
李军求
孙逢春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Technology BIT
Original Assignee
Beijing Institute of Technology BIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Technology BIT filed Critical Beijing Institute of Technology BIT
Priority to CN202010634771.1A priority Critical patent/CN111791887B/zh
Publication of CN111791887A publication Critical patent/CN111791887A/zh
Application granted granted Critical
Publication of CN111791887B publication Critical patent/CN111791887B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/143Speed control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Traffic Control Systems (AREA)

Abstract

本发明公开了一种基于分层式车速规划的车辆节能驾驶方法,获取预期行驶路段的道路信息和交通信息,进行长期车速规划,得到兼顾行驶能耗和行驶效率的长期车速轨迹;以长期车速轨迹为引导层,结合实时获取的车辆周围路况信息,在有限滚动时域内进行综合跟驰安全、交通信号灯规则、引导层车速和行驶距离、驾驶舒适性、行驶能耗的多目标优化任务,计算短期最优行驶车道和最优车速轨迹。若因实际路况限制或行驶任务变更导致长期车速规划结果不再具备引导作用,重规划功能将会重新进行长期车速规划,更新短期车速规划的引导层。将长期车速规划与短期车速规划相结合,能够适应多种交通路况,在实际交通环境中实现节能驾驶,同时保证行车安全。

Description

一种基于分层式车速规划的车辆节能驾驶方法
技术领域
本发明涉及车辆车速规划技术领域,特别涉及一种基于分层式车速规划的车 辆节能驾驶方法。
背景技术
车辆实际的能量需求由驾驶员的驾驶意图与路况信息共同决定,优化驾驶行 为和行车车速是深层优化车辆能效的关键,一般称为节能驾驶。目前,节能驾驶 方法的设计主要分为两种类型,一类是在车辆传统纵向辅助驾驶的基础上,通过 智能预测前方车辆的未来速度轨迹,优化自车的驱动力和制动力,避免过度的加 减速行为,实现智能跟车,此方法能保证自车获得较平滑的加减速轨迹,主要目 标是实现安全稳定的跟车运行,对于车辆的节能驾驶仅能实现局部最优控制;另 一类方法是利用V2I技术获取红绿灯信号相位和定时信息,结合自车与交通信号 灯的距离等信息,运用优化算法求出自车的最优速度轨迹,使得按照速度轨迹行 驶可以最小化行驶时间或最小化车辆能量消耗。然而现有的方法多局限在通畅道 路情况下,即车辆可以按照规划的速度进行行驶,未充分考虑实时路况信息对自 车的影响。
本发明所定义的技术名称如下:
长期车速规划:指利用静态和慢速变化的路况信息,从出发点到目的地全程 的车速规划,涉及数公里到数十公里的行驶里程。当行程达到数百公里或以上时, 长期车速规划也指将行程进行分段后,针对每一段的车速规划(如每10公里在线 规划一次)。
短期车速规划:指利用实时的路况信息,从当前时刻/位置开始之后的数秒/ 数十米内的车速规划,短期车速规划的计算是实时进行的(根据硬件计算能力,如 每100ms或者10ms计算一次)。
重规划:指长期车速规划在时间或空间上对短期车速规划不具有引导作用时, 重新进行长期车速规划的操作。
发明内容
本发明针对现有技术的缺陷,提供了一种基于分层式车速规划的车辆节能驾 驶方法,解决了现有技术中存在的缺陷。
为了实现以上发明目的,本发明采取的技术方案如下:
一种基于分层式车速规划的车辆节能驾驶方法,包括:长期车速规划、短期 车速规划和重规划;
长期车速规划:首先获取车辆预期行驶路段全程的道路信息,包括各路段道 路限速、道路坡度、路面状况、信号灯位置等道路信息;获取交通信息,包括各 信号灯相位和定时信息,历史交通数据库信息,或各路段实时车流的平均车速信 息;基于获取的道路信息、交通信息和车辆运动学信息,构建兼顾车辆能耗和行 驶时间的价值函数,利用优化算法求得长期车速规划下的最优行驶策略。
短期车速规划:短期车速规划以长期车速规划计算出的最优行驶策略为引导, 结合实时路况信息、信号灯相位和定时信息,在有限滚动时域内,利用优化算法 计算短期规划下的未来最优速度轨迹及最优车道选择。
重规划:若判断在当前路况和车辆状态下,长期车速规划结果对短期车速规 划不具有引导作用,则进行重规划操作,并更新短期车速规划的引导层信息。
将长期车速规划与短期车速规划相结合,长期车速规划的结果作为短期车速 规划的引导,在短期车速规划阶段引入实时路况信息和交通信号灯相位和定时信 息,确保行驶安全,同时给出车道选择和长期车速规划的重规划需求,使得本方 法在实际应用中能适应多种交通路况,为智能网联车辆节能驾驶提供长期最优和 实时最优速度轨迹。
具体步骤如下:
一、获取车辆拟行驶路径全程各路段的道路信息和交通信息,构建车辆行驶 道路模型;
二、结合车辆动力学特性,构建由能量消耗和驾驶时间组成的价值函数,应 用优化算法计算长期最优行驶策略;
优化算法为:动态规划算法、分布估计算法和遗传算法的其中一种。
最优行驶策略包括:行驶距离-时间轨迹和行驶距离-车速轨迹,基于计算结 果可以转化为时间-车速轨迹、时间-行驶距离轨迹,输入短期车速规划引导层。
三、获取当前路段路况信息,构建车辆实时道路环境模型;
四、以长期最优行驶策略为引导层,计算车辆在实时交通环境中的短期最优 车速和最优行驶车道。
五、判断长、短期车速规划的协调程度,输出重规划指令,更新短期车速规 划的引导层。
进一步地,所述步骤一具体为:
S11:获取智能网联车辆规划行驶路径上各路段的道路信息和交通信息;
道路信息包括:道路限速信息、道路坡度信息、道路路面信息和信号灯位置 信息;
交通信息包括:各红绿灯相位和定时信息、各路段历史同期平均车速信息和 当前道路车流车速信息。
S12:利用各路段历史同期平均车速信息或实时车流车速信息预测各路段未来 平均车速。
S13:将基于数据预测的各路段平均车速与道路限速、道路路面情况限速相结 合,求取各路段合理行驶车速和加速度范围。
进一步地,所述步骤二具体为:
S21:基于车辆信息,获得发动机转矩、发动机转速、制动力和变速器挡位范 围约束,结合步骤一中计算得到的行驶车速和行驶加速度范围约束,构建长期车 速规划优化约束条件。
S22:长期车速规划构建由燃油消耗率和行驶时间组成的价值函数,通过调节 权重因子比例可以使长期车速规划实现能耗最优或驾驶时间最短。
S23:应用长期车速规划优化方法,求解每一步长下使得价值函数最小化的长 期车速规划控制变量,并得到此时的长期车速规划状态变量,迭代求解,可以获 得长期车速规划最优行驶策略。
长期车速规划控制变量指的是发动机转矩、制动力和变速器挡位。
长期车速规划状态变量指的是行驶时间、车辆速度。
进一步地,所述步骤三具体为:
S31:获取自车车辆状态,包括车辆位置、车辆速度、车辆当前行驶车道;获 取车辆与当前一个信号灯的距离及信号灯的相位和定时信息;
S32:获取周围车辆的加速度、速度、位置信息;
S33:判断周围车道是否可安全换道,剔除换道可能与后车产生危险的车道, 构建可安全换道车道集。
进一步地,所述步骤四具体为,
S41:基于步骤三构建的可安全换道车道集,选择短期车速规划状态变量和短 期车速规划控制变量,构建各车道的车辆跟驰价值函数;
S42:采用有限时域滚动优化的方法,计算各车道的车辆跟驰价值函数;
S43:比较各车道的车辆跟驰价值函数值,选择最优行驶车道,并给出相应的 短期最优车速、驱动力矩、制动力。
短期车速规划状态变量包括:距当前一个信号灯的距离、与前车距离、自车 行驶距离和自车速度;
短期车速规划控制变量包括:发动机转矩、制动力、变速器挡位和行驶车道。
进一步地,S42中有限时域滚动优化时,采用包括:序列二次规划算法、内 点法、牛顿法、遗传算法等算法的其中一种对车辆跟驰价值函数进行求解;
进一步地,S41中车辆跟驰价值函数构建时,包括跟驰行驶安全、引导层的 跟随程度、驾驶舒适性、交通信号灯规则、行驶能耗等指标;
进一步地,所述步骤五具体为,
S51:车辆执行短期车速规划的结果,在全局时间下,采集此时的车辆实际行 驶距离和引导层参考行驶距离,计算出行驶距离偏差值;
S52:根据车辆的动力性能和此时车辆运行状态计算行驶距离偏差阈值,将实 际行驶距离偏差值和行驶距离偏差阈值做比较;
S53:若实际行驶距离偏差值超过阈值,则进行重规划;此外,若行驶任务发 生变更时,长期车速规划同样进行重规划,每次重规划完成后,均根据长期车速 的重规划结果更新短期车速规划的引导层;否则,不做更改。
与现有技术相比,本发明的优点在于:
将长期速度规划与短期速度规划相结合,扩宽了传统节能驾驶方法的适用范 围,使得长期速度规划求解的最优行驶车速可以适应更一般的驾驶情景,可以兼 顾节能驾驶与行驶安全;同时,基于长期速度规划的求解结果进行短期速度规划, 使得短期速度规划的求解结果具有更好的全局优化性。
附图说明
图1是本发明车辆节能驾驶方法流程图。
图2是短期车速规划及车道选择方法示意图。
具体实施方式
为使本发明的目的、技术方案及优点更加清楚明白,以下根据附图并列举实 施例,对本发明做进一步详细说明。
如图1所示,一种基于分层式车速规划的车辆节能驾驶方法,包括以下步骤:
1.构建拟行驶路径道路模型:
首先,获取各路段的当前道路限速信息、道路坡度信息、路面状况信息和红 绿灯位置信息,构建静态道路模型;
其次,获取预期行驶路径上各信号灯的相位和定时信息,并通过访问道路历 史信息数据库,获取划分的各个路段的同时段历史平均车流、车速信息,构建各 路段数据模型;
最终,将静态道路模型与各路段数据模型相结合,构建用于全局车速规划的 道路模型。
具体地,用于全局车速规划的道路模型包括以下信息:
(a)各路段合理车速范围[vmin,vmax]。将各路段历史同时段平均车速,或者是 根据当前路况预测出的各路段未来平均车速作为各路段预测车速vpredict, 将预测车速vpredict上下浮动百分之三十作为行驶车速范围的上下界,同 时考虑路段道路限速,得出合理车速范围。
(b)各路段坡度信息θ(s)。
(c)各信号灯位置信息。
(d)各信号灯相位和定时信息。
2.长期车速规划
以空间变量s为自变量,选择发动机转矩、制动力矩、变速器挡位为控制变 量,即u=[Teng(s),Tbrk(s),Ngb(s)]T;选择车辆行驶速度与行驶时间为状态变量,即 x=[v(s),t(s)]T
构建车辆动力学模型
Figure BDA0002567747210000071
Figure BDA0002567747210000072
Cr=Cr1+Cr2v (3)
式中,m表示车辆质量,a表示车辆加速度,rgb表示综合传动比,Teng表示发 动机转矩,Tbrk表示制动力矩,TR表示路面阻力和空气阻力之和,Rwhl表示车轮滚 动半径,g表示重力加速度,θ表示路面坡度,s表示车辆行驶距离,Cr表示滚动 阻力系数,ρ表示空气密度,A表示迎风面积,Cd表示空气阻力系数,v表示车辆 行驶速度,t表示车辆行驶时间,Cr1和Cr2表示滚动阻力常数。
发动机转速ωeng与车辆的行驶速度v有转换关系:
Figure BDA0002567747210000073
综合传动比rgb是挡位Ngb的函数
rgb=f(Ngb)·rfd (5)
式中,rfd表示主减速器传动比。
构建由燃油消耗量、行驶时间组成的长期车速规划价值函数Jlong
Figure BDA0002567747210000081
式中,
Figure BDA0002567747210000082
表示燃油消耗率,w1、w2表示燃油消耗与行驶时间的权重系数。
具体地,价值函数的第一项代表燃油消耗,燃油消耗率是与发动机转速ωeng、 转矩Teng相关的函数,可以通过查表法或近似拟合法得到;第二项代表驾驶时间, 不同的权重系数分配可以使得长期车速规划倾向于减小燃油消耗或节约驾驶时 间。
状态变量动态方程根据整车动力学公式计算得到:
Figure BDA0002567747210000083
式中,k∈{0,…,N-1},Δs是优化算法中的位置步长。
根据车辆状态和路况,构建全局车速规划优化约束条件:
Figure BDA0002567747210000084
amin≤a(s)≤amax,vmin≤v(s)≤vmax (9)
式中,
Figure BDA0002567747210000085
分别表示发动机转矩上限值、下限值,
Figure BDA0002567747210000086
分别表示制 动力矩上限值、下限值,amin、amax分别表示车辆加速度上限值、下限值,vmin、vmax分别表示车辆行驶速度上限值、下限值。
特别地,信号灯规则通行约束设置如下:
假设长期车速规划的总行驶里程为sf,则预期行驶路径上I个信号灯的位置si满足
si∈[0,sf],i={1,2...I} (10)
各个信号灯的周期长度和起始时间彼此独立。定义第i个信号灯周期长度为
Figure BDA0002567747210000091
每个信号灯周期以红灯开始,以绿灯结束,红灯时段
Figure BDA0002567747210000092
满足
Figure BDA0002567747210000093
以车辆出发时刻为时间起始点,此时第i个信号灯的自循环周期时间记为c0 i, 那么车辆行驶时间t和第i个信号灯的自循环周期时间的转换关系为
Figure BDA0002567747210000094
式中,mod表示取余运算。
车辆仅能在绿灯时段通过信号灯路口,因此有约束:
Figure BDA0002567747210000095
终端条件约束:
v(0)=v(sf)=0 (14)
式中,sf表示车辆到达行程终点时的行驶距离。
设置行程最大行驶时间tf,则行驶时间满足约束:
t(sf)≤tf (15)
初次长期车速规划时,起始车速与终端车速均规定为零,设置行驶时间上限 以避免过度追求经济性牺牲通行效率。
运用动态规划等优化算法逆序计算状态空间内最优价值函数和对应的最优 解。根据最优解,顺序计算给定初始状态下的各状态变量,最终得到长期车速规 划结果。
3短期车速规划如图2所示
3.1车辆实时环境模型
获取自车位置xh、前车位置xp、自车车速vh,前车车速vp、前车加速度ap
获取当前路段道路信息、当前一个信号灯相位和定时信息;
获取自车当前行驶车道及周围车道信息,剔除存在后车且距离较近的车道, 构建可安全换道车道集。
3.2车辆动力学模型及约束
以时间变量t为自变量,选择发动机转矩、制动力、变速器挡位、行驶车道 为控制变量,即u=[Teng,Tbrk,Ngb,lane]T,lane∈{c,r,l},c、r、l分别表示当前行驶车道、 右侧车道、左侧车道,在计算时可量化为{0,-1,1};
考虑车辆每次变道只选择相邻车道进行变道,且在短期车速规划中假设变道 操作为瞬间行为,不考虑车辆横向动力学。
选择状态变量包括:距当前一个红绿灯的距离dTL、与前车距离df、自车行驶 距离s、自车速度v,即x=[dTL,df,s,v]T,构建离散的短期车速规划的纵向动力学模 型:
Figure BDA0002567747210000101
式中,ts表示采样时间,vp表示前车速度。
车辆行驶速度应遵守道路限速范围约束:
vmin≤v(t)≤vmax (17)
同时,控制变量作用范围应在车辆动力***允许范围内:
umin≤u(t)≤umax (18)
式中,umin、umax分别表示控制变量上限值、下限值。
3.3安全约束
最小跟驰间距可以根据驾驶场景进行设置,例如:预先选择车头时距h、停 车时两车最小间距d0,可设置最小安全车距dmin为:
dmin=d0+h·v (19)
车辆跟驰行驶过程中应该与前车保持安全车距,即:
df≥dmin (20)
车辆行驶过程中,应当遵守交通规则,即当前信号灯红灯时:
dTL(t)≥0 (21)
3.4构建车辆各车道跟驰行驶价值函数
以全局车速规划计算结果为引导层:将全局车速规划基于距离域的计算结果 v(s)和t(s),转换为基于时间域的计算结果vref(t)和sref(t),作为短期车速规划的引 导层。
构建以跟驰行驶安全、道路规则、车辆动力学特性为约束,综合跟随长期车 速规划结果、驾驶舒适性、行驶能耗等指标的价值函数:
Figure BDA0002567747210000111
其中,l∈{t,…,t+Np-1},Np表示预测时域长度;Jlane表示不同车道的短期车 速规划价值函数,下标lane的取值与车道相对应;vref(t)和sref(t)分别表示引导层中 的参考行驶速度和参考行驶距离;Wv、Wx、Wu、W△u分别表示车速跟随项、行驶 距离跟随项、行驶能耗项和驾驶舒适性项的权重系数。权重系数的设置一方面可 以统一各个价值项的量纲,另一方面,根据具体驾驶场景可以选择不同的权重系 数分配,满足多样化的驾驶需求。
短期车速规划采用有限滚动时域的方法,在每一个预测时域Np内,可使用序 列二次规划算法、内点法、牛顿法、遗传算法等进行优化求解,得到预测时域Np内的最优控制变量及对应的价值函数值Jc、Jr、Jl
比较各车道的跟驰价值函数值,取跟驰价值函数值最小的车道为目标车道, 对应的最优控制变量为车辆的需求力矩。
特别地,对于左舵车辆而言,若Jc=Jr=Jl,则保持在当前车道行驶;若Jr=Jl>Jc,则选择左侧车道变道行驶。
4车辆重规划
在全局时间t时刻,车辆执行短期车速规划计算结果。采集此时的车辆状态, 包括车辆行驶距离s(t)、车辆速度v(t);同时,查询引导层此时的参考行驶距离 sref(t),计算此时的行驶距离偏移量s(t)和行驶距离偏移量阈值s阈值
Δs(t)=|s(t)-sref(t)| (23)
Figure BDA0002567747210000122
其中,s阈值是v(t)的函数,当v(t)较大时,允许相对较大的行驶距离跟踪误差; k是重规划阈值系数,可以调节重规划的灵敏度。
当Δs>s阈值时,判定长期车速规划的结果对于短期车速规划不再具有引导作 用,以此时的车辆状态为初始和终端条件,重新进行长期车速规划,用重规划结 果更新引导层。
特别地,若行驶途中,车辆行驶任务发生变更,如目的地发生改变时,应用 本方法所述的重规划功能同样可以处理这一问题。
本领域的普通技术人员将会意识到,这里所述的实施例是为了帮助读者理解 本发明的实施方法,应被理解为本发明的保护范围并不局限于这样的特别陈述和 实施例。本领域的普通技术人员可以根据本发明公开的这些技术启示做出各种不 脱离本发明实质的其它各种具体变形和组合,这些变形和组合仍然在本发明的保 护范围内。

Claims (8)

1.一种车辆节能车速规划方法,其特征在于,包括如下步骤:
一、获取车辆拟行驶路径全程各路段的道路信息和交通信息,构建车辆行驶道路模型;
二、结合车辆动力学特性,构建由能量消耗和驾驶时间组成的价值函数,应用优化算法计算长期最优行驶策略;
优化算法为:动态规划算法、分布估计算法和遗传算法的其中一种;
最优行驶策略包括:行驶距离-时间轨迹和行驶距离-车速轨迹,基于计算结果可以转化为时间-车速轨迹、时间-行驶距离轨迹,输入短期车速规划引导层;
三、获取当前路段路况信息,构建车辆实时道路环境模型;
四、以长期最优行驶策略为引导层,计算车辆在实时交通环境中的短期最优车速和最优行驶车道;
五、判断长、短期车速规划的协调程度,输出重规划指令,更新短期车速规划的引导层。
2.根据权利要求1所述的一种车辆节能车速规划方法,其特征在于:所述步骤一具体为:
S11:获取智能网联车辆规划行驶路径上各路段的道路信息和交通信息;
道路信息包括:道路限速信息、道路坡度信息、道路路面信息和信号灯位置信息;
交通信息包括:各红绿灯相位和定时信息、各路段历史同期平均车速信息和当前道路车流车速信息;
S12:利用各路段历史同期平均车速信息或实时车流车速信息预测各路段未来平均车速;
S13:将基于数据预测的各路段平均车速与道路限速、道路路面情况限速相结合,求取各路段合理行驶车速和加速度范围。
3.根据权利要求1所述的一种车辆节能车速规划方法,其特征在于:所述步骤二具体为:
S21:基于车辆信息,获得发动机转矩、发动机转速、制动力和变速器挡位范围约束,结合步骤一中计算得到的行驶车速和行驶加速度范围约束,构建长期车速规划优化约束条件;
S22:长期车速规划构建由燃油消耗率和行驶时间组成的价值函数,通过调节权重因子比例可以使长期车速规划实现能耗最优或驾驶时间最短;
S23:应用长期车速规划优化方法,求解每一步长下使得价值函数最小化的长期车速规划控制变量,并得到此时的长期车速规划状态变量,迭代求解,可以获得长期车速规划最优行驶策略;
长期车速规划控制变量指的是发动机转矩、制动力和变速器挡位;
长期车速规划状态变量指的是行驶时间、车辆速度。
4.根据权利要求1所述的一种车辆节能车速规划方法,其特征在于:所述步骤三具体为:
S31:获取自车车辆状态,包括车辆位置、车辆速度、车辆当前行驶车道;获取车辆与当前一个信号灯的距离及信号灯的相位和定时信息;
S32:获取周围车辆的加速度、速度、位置信息;
S33:判断周围车道是否可安全换道,剔除换道可能与后车产生危险的车道,构建可安全换道车道集。
5.根据权利要求1所述的一种车辆节能车速规划方法,其特征在于:所述步骤四具体为,
S41:基于步骤三构建的可安全换道车道集,选择短期车速规划状态变量和短期车速规划控制变量,构建各车道的车辆跟驰价值函数;
S42:采用有限时域滚动优化的方法,计算各车道的车辆跟驰价值函数;
S43:比较各车道的车辆跟驰价值函数值,选择最优行驶车道,并给出相应的短期最优车速、驱动力矩、制动力;
短期车速规划状态变量包括:距当前一个信号灯的距离、与前车距离、自车行驶距离和自车速度;
短期车速规划控制变量包括:发动机转矩、制动力、变速器挡位和行驶车道。
6.根据权利要求5所述的一种车辆节能车速规划方法,其特征在于:S42中有限时域滚动优化时,采用包括:序列二次规划算法、内点法、牛顿法、遗传算法等算法的其中一种对车辆跟驰价值函数进行求解。
7.根据权利要求5所述的一种车辆节能车速规划方法,其特征在于:S41中车辆跟驰价值函数构建时,包括跟驰行驶安全、引导层的跟随程度、驾驶舒适性、交通信号灯规则、行驶能耗等指标。
8.根据权利要求1所述的一种车辆节能车速规划方法,其特征在于:所述步骤五具体为,
S51:车辆执行短期车速规划的结果,在全局时间下,采集此时的车辆实际行驶距离和引导层参考行驶距离,计算出行驶距离偏差值;
S52:根据车辆的动力性能和此时车辆运行状态计算行驶距离偏差阈值,将实际行驶距离偏差值和行驶距离偏差阈值做比较;
S53:若实际行驶距离偏差值超过阈值,则进行重规划;此外,若行驶任务发生变更时,长期车速规划同样进行重规划,每次重规划完成后,均根据长期车速的重规划结果更新短期车速规划的引导层;否则,不做更改。
CN202010634771.1A 2020-07-03 2020-07-03 一种基于分层式车速规划的车辆节能驾驶方法 Active CN111791887B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010634771.1A CN111791887B (zh) 2020-07-03 2020-07-03 一种基于分层式车速规划的车辆节能驾驶方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010634771.1A CN111791887B (zh) 2020-07-03 2020-07-03 一种基于分层式车速规划的车辆节能驾驶方法

Publications (2)

Publication Number Publication Date
CN111791887A true CN111791887A (zh) 2020-10-20
CN111791887B CN111791887B (zh) 2021-06-04

Family

ID=72810225

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010634771.1A Active CN111791887B (zh) 2020-07-03 2020-07-03 一种基于分层式车速规划的车辆节能驾驶方法

Country Status (1)

Country Link
CN (1) CN111791887B (zh)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112580251A (zh) * 2020-11-16 2021-03-30 北京理工大学 基于交通信息和模型预测控制的混动汽车能量管理方法
CN112767715A (zh) * 2020-12-29 2021-05-07 合肥工业大学 一种交叉路***通信号灯与智能网联汽车的协同控制方法
CN113085666A (zh) * 2021-05-18 2021-07-09 北京理工大学 一种分层式燃料电池汽车节能驾驶方法
CN113296513A (zh) * 2021-05-24 2021-08-24 东南大学 网联环境下基于滚动时域的应急车辆动态路径规划方法
CN113377112A (zh) * 2021-06-30 2021-09-10 东风商用车有限公司 一种自动驾驶速度规划及状态协调方法和装置
CN113393688A (zh) * 2021-05-13 2021-09-14 杭州电子科技大学 一种基于队列长度预测的交叉口生态驾驶优化方法
CN113561993A (zh) * 2021-08-13 2021-10-29 苏州智加科技有限公司 车速规划方法、装置及电子设备
CN113635900A (zh) * 2021-08-10 2021-11-12 吉林大学 一种预测巡航过程中基于能量管理的换道决策控制方法
CN113650622A (zh) * 2021-07-16 2021-11-16 东风柳州汽车有限公司 车速轨迹规划方法、装置、设备及存储介质
CN113734175A (zh) * 2021-07-30 2021-12-03 中汽研(天津)汽车工程研究院有限公司 一种变时条件下两交叉口间节能驾驶策略实时寻优方法
CN113741199A (zh) * 2021-09-16 2021-12-03 吉林大学 一种基于智能网联信息的整车经济性速度规划方法
CN114115298A (zh) * 2022-01-25 2022-03-01 北京理工大学 一种无人车路径平滑方法及***
CN114553972A (zh) * 2020-11-10 2022-05-27 魔门塔(苏州)科技有限公司 应用于自动驾驶的数据传输装置、方法、车载终端和介质
CN115273498A (zh) * 2021-04-30 2022-11-01 华为技术有限公司 一种车速引导方法及车载设备
CN116612648A (zh) * 2023-05-15 2023-08-18 深圳市显科科技有限公司 基于情报板的道路阶段性动态交通疏堵提示方法及装置
CN116797123A (zh) * 2023-08-28 2023-09-22 深圳市明心数智科技有限公司 一种物流管理与预警方法、***及介质
CN117755292A (zh) * 2023-12-23 2024-03-26 理工雷科智途(北京)科技有限公司 车辆控制方法和装置
CN117901881A (zh) * 2024-01-29 2024-04-19 重庆赛力斯凤凰智创科技有限公司 一种车辆速度规划方法、装置、计算机设备和存储介质

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103760904A (zh) * 2014-02-13 2014-04-30 北京工业大学 一种语音播报式智能车辆路径规划装置与实施方法
US20160075333A1 (en) * 2014-09-11 2016-03-17 Cummins Inc. Systems and methods for route planning
CN107139917A (zh) * 2017-04-27 2017-09-08 江苏大学 一种基于混杂理论的无人驾驶汽车横向控制***和方法
CN107200020A (zh) * 2017-05-11 2017-09-26 江苏大学 一种基于混杂理论的无人驾驶汽车自主转向控制***和方法
CN108583576A (zh) * 2018-03-02 2018-09-28 南京航空航天大学 一种车辆经济学车速前瞻优化方法
CN108931981A (zh) * 2018-08-14 2018-12-04 汽-大众汽车有限公司 一种自动驾驶车辆的路径规划方法
CN109737983A (zh) * 2019-01-25 2019-05-10 北京百度网讯科技有限公司 用于生成行驶路径的方法和装置
CN109782766A (zh) * 2019-01-25 2019-05-21 北京百度网讯科技有限公司 用于控制车辆行驶的方法和装置
CN109843680A (zh) * 2016-10-18 2019-06-04 本田技研工业株式会社 车辆控制装置
CN109945882A (zh) * 2019-03-27 2019-06-28 上海交通大学 一种无人驾驶车辆路径规划与控制***及方法
CN110147105A (zh) * 2019-05-27 2019-08-20 安徽江淮汽车集团股份有限公司 无人驾驶车辆的路径控制方法、设备、存储介质及装置
CN110962843A (zh) * 2018-09-30 2020-04-07 上海汽车集团股份有限公司 一种自动泊车控制决策方法及***
CN110979321A (zh) * 2019-12-30 2020-04-10 北京深测科技有限公司 一种用于无人驾驶车辆的障碍物躲避方法
CN111009134A (zh) * 2019-11-25 2020-04-14 北京理工大学 一种基于前车与自车互动的短期车速工况实时预测方法

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103760904A (zh) * 2014-02-13 2014-04-30 北京工业大学 一种语音播报式智能车辆路径规划装置与实施方法
US20160075333A1 (en) * 2014-09-11 2016-03-17 Cummins Inc. Systems and methods for route planning
CN109843680A (zh) * 2016-10-18 2019-06-04 本田技研工业株式会社 车辆控制装置
CN107139917A (zh) * 2017-04-27 2017-09-08 江苏大学 一种基于混杂理论的无人驾驶汽车横向控制***和方法
CN107200020A (zh) * 2017-05-11 2017-09-26 江苏大学 一种基于混杂理论的无人驾驶汽车自主转向控制***和方法
CN108583576A (zh) * 2018-03-02 2018-09-28 南京航空航天大学 一种车辆经济学车速前瞻优化方法
CN108583576B (zh) * 2018-03-02 2020-07-07 南京航空航天大学 一种车辆经济型车速前瞻优化方法
CN108931981A (zh) * 2018-08-14 2018-12-04 汽-大众汽车有限公司 一种自动驾驶车辆的路径规划方法
CN110962843A (zh) * 2018-09-30 2020-04-07 上海汽车集团股份有限公司 一种自动泊车控制决策方法及***
CN109737983A (zh) * 2019-01-25 2019-05-10 北京百度网讯科技有限公司 用于生成行驶路径的方法和装置
CN109782766A (zh) * 2019-01-25 2019-05-21 北京百度网讯科技有限公司 用于控制车辆行驶的方法和装置
CN109945882A (zh) * 2019-03-27 2019-06-28 上海交通大学 一种无人驾驶车辆路径规划与控制***及方法
CN110147105A (zh) * 2019-05-27 2019-08-20 安徽江淮汽车集团股份有限公司 无人驾驶车辆的路径控制方法、设备、存储介质及装置
CN111009134A (zh) * 2019-11-25 2020-04-14 北京理工大学 一种基于前车与自车互动的短期车速工况实时预测方法
CN110979321A (zh) * 2019-12-30 2020-04-10 北京深测科技有限公司 一种用于无人驾驶车辆的障碍物躲避方法

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114553972A (zh) * 2020-11-10 2022-05-27 魔门塔(苏州)科技有限公司 应用于自动驾驶的数据传输装置、方法、车载终端和介质
CN114553972B (zh) * 2020-11-10 2024-05-28 魔门塔(苏州)科技有限公司 应用于自动驾驶的数据传输装置、方法、车载终端和介质
CN112580251B (zh) * 2020-11-16 2022-07-12 北京理工大学 基于交通信息和模型预测控制的混动汽车能量管理方法
CN112580251A (zh) * 2020-11-16 2021-03-30 北京理工大学 基于交通信息和模型预测控制的混动汽车能量管理方法
CN112767715A (zh) * 2020-12-29 2021-05-07 合肥工业大学 一种交叉路***通信号灯与智能网联汽车的协同控制方法
CN112767715B (zh) * 2020-12-29 2022-02-11 合肥工业大学 一种交叉路***通信号灯与智能网联汽车的协同控制方法
CN115273498A (zh) * 2021-04-30 2022-11-01 华为技术有限公司 一种车速引导方法及车载设备
CN113393688A (zh) * 2021-05-13 2021-09-14 杭州电子科技大学 一种基于队列长度预测的交叉口生态驾驶优化方法
WO2022241898A1 (zh) * 2021-05-18 2022-11-24 北京理工大学 一种分层式燃料电池汽车节能驾驶方法
CN113085666A (zh) * 2021-05-18 2021-07-09 北京理工大学 一种分层式燃料电池汽车节能驾驶方法
CN113296513B (zh) * 2021-05-24 2022-06-07 东南大学 网联环境下基于滚动时域的应急车辆动态路径规划方法
CN113296513A (zh) * 2021-05-24 2021-08-24 东南大学 网联环境下基于滚动时域的应急车辆动态路径规划方法
CN113377112B (zh) * 2021-06-30 2023-05-05 东风商用车有限公司 一种自动驾驶速度规划及状态协调方法和装置
CN113377112A (zh) * 2021-06-30 2021-09-10 东风商用车有限公司 一种自动驾驶速度规划及状态协调方法和装置
CN113650622A (zh) * 2021-07-16 2021-11-16 东风柳州汽车有限公司 车速轨迹规划方法、装置、设备及存储介质
CN113650622B (zh) * 2021-07-16 2023-06-20 东风柳州汽车有限公司 车速轨迹规划方法、装置、设备及存储介质
CN113734175B (zh) * 2021-07-30 2023-06-23 中汽研(天津)汽车工程研究院有限公司 一种变时条件下两交叉口间节能驾驶策略实时寻优方法
CN113734175A (zh) * 2021-07-30 2021-12-03 中汽研(天津)汽车工程研究院有限公司 一种变时条件下两交叉口间节能驾驶策略实时寻优方法
CN113635900A (zh) * 2021-08-10 2021-11-12 吉林大学 一种预测巡航过程中基于能量管理的换道决策控制方法
CN113635900B (zh) * 2021-08-10 2024-03-19 吉林大学 一种预测巡航过程中基于能量管理的换道决策控制方法
CN113561993A (zh) * 2021-08-13 2021-10-29 苏州智加科技有限公司 车速规划方法、装置及电子设备
CN113741199A (zh) * 2021-09-16 2021-12-03 吉林大学 一种基于智能网联信息的整车经济性速度规划方法
CN113741199B (zh) * 2021-09-16 2024-04-26 吉林大学 一种基于智能网联信息的整车经济性速度规划方法
CN114115298A (zh) * 2022-01-25 2022-03-01 北京理工大学 一种无人车路径平滑方法及***
CN116612648A (zh) * 2023-05-15 2023-08-18 深圳市显科科技有限公司 基于情报板的道路阶段性动态交通疏堵提示方法及装置
CN116612648B (zh) * 2023-05-15 2024-03-26 深圳市显科科技有限公司 基于情报板的道路阶段性动态交通疏堵提示方法及装置
CN116797123A (zh) * 2023-08-28 2023-09-22 深圳市明心数智科技有限公司 一种物流管理与预警方法、***及介质
CN116797123B (zh) * 2023-08-28 2024-02-23 深圳市明心数智科技有限公司 一种物流管理与预警方法、***及介质
CN117755292A (zh) * 2023-12-23 2024-03-26 理工雷科智途(北京)科技有限公司 车辆控制方法和装置
CN117901881A (zh) * 2024-01-29 2024-04-19 重庆赛力斯凤凰智创科技有限公司 一种车辆速度规划方法、装置、计算机设备和存储介质

Also Published As

Publication number Publication date
CN111791887B (zh) 2021-06-04

Similar Documents

Publication Publication Date Title
CN111791887B (zh) 一种基于分层式车速规划的车辆节能驾驶方法
CN111867911B (zh) 车辆控制方法和设备
WO2021114742A1 (zh) 一种混合动力电动汽车综合预测能量管理方法
Nie et al. Real-time dynamic predictive cruise control for enhancing eco-driving of electric vehicles, considering traffic constraints and signal phase and timing (SPaT) information, using artificial-neural-network-based energy consumption model
US8190318B2 (en) Power management systems and methods in a hybrid vehicle
US9545915B2 (en) Electric vehicle and method of battery set-point control
CN102458953B (zh) 车辆控制***中的模块
Li et al. Ecological adaptive cruise control for vehicles with step-gear transmission based on reinforcement learning
Passenberg et al. Combined time and fuel optimal driving of trucks based on a hybrid model
Ngo et al. An optimal control-based algorithm for hybrid electric vehicle using preview route information
CN110225854A (zh) 用于预测性换挡和集成式预测性巡航控制的***和方法
US20110178659A1 (en) Method for controlling a hybrid drive in a rail vehicle
CN112660130A (zh) 基于智能网联信息的新能源汽车滑行控制***、方法及新能源汽车
CN113299107B (zh) 一种多目标融合的交叉口动态车辆网联速度引导控制方法
CN106056238B (zh) 列车区间运行轨迹的规划方法
CN114148325B (zh) 重型混合动力商用车预见性能量管理方法
CN109398426B (zh) 一种定时条件下基于离散蚁群算法的节能驾驶策略寻优方法
CN113821966A (zh) 高速磁浮列车运行节能优化方法、***及存储介质
CN113734175A (zh) 一种变时条件下两交叉口间节能驾驶策略实时寻优方法
CN115534929A (zh) 基于多元信息融合的插电式混合动力汽车能量管理方法
CN116513246A (zh) 一种越野环境速度规划方法、***及设备
CN113741199B (zh) 一种基于智能网联信息的整车经济性速度规划方法
CN113479187A (zh) 一种插电式混合动力汽车分层异步长能量管理方法
Yang et al. Two-stage eco-driving control strategy for heterogeneous connected and automated vehicle platoons
CN114783175A (zh) 基于伪谱法的多信号灯路况下网联车辆节能驾驶控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant