CN111748822A - 一种大型碱性电解水制氢装置的综合热管理*** - Google Patents

一种大型碱性电解水制氢装置的综合热管理*** Download PDF

Info

Publication number
CN111748822A
CN111748822A CN202010500552.4A CN202010500552A CN111748822A CN 111748822 A CN111748822 A CN 111748822A CN 202010500552 A CN202010500552 A CN 202010500552A CN 111748822 A CN111748822 A CN 111748822A
Authority
CN
China
Prior art keywords
heat
heat exchanger
alkaline
gas
alkali liquor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010500552.4A
Other languages
English (en)
Inventor
张存满
吕洪
上官子轩
马军
董太明
周伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUZHOU JINGLI HYDROGEN-MAKING EQUIPMENT CO LTD
Tongji University
Original Assignee
SUZHOU JINGLI HYDROGEN-MAKING EQUIPMENT CO LTD
Tongji University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUZHOU JINGLI HYDROGEN-MAKING EQUIPMENT CO LTD, Tongji University filed Critical SUZHOU JINGLI HYDROGEN-MAKING EQUIPMENT CO LTD
Priority to CN202010500552.4A priority Critical patent/CN111748822A/zh
Publication of CN111748822A publication Critical patent/CN111748822A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

本发明涉及一种大型碱性电解水制氢装置的综合热管理***,该***包括碱性电解水制氢装置和热管理装置,碱性电解水制氢装置包括电解槽和气液分离器,气液分离器的碱液输出端通过碱液循环回路连接至电解槽,热管理装置包括热管理综合换热器、气液分离换热器和碱液循环换热器,气液分离换热器设置在电解槽和气液分离器之间,碱液循环换热器设置在碱液循环回路中,气液分离换热器和热管理综合换热器的换热介质进出口连通形成用于冷却电解槽输出的气液混合状态碱液的第一换热回路,碱液循环换热器和热管理综合换热器的换热介质进出口连通形成用于加热输入至电解槽中的碱液的第二换热回路。与现有技术相比,本发明能实现热能的有效综合利用、适应性好。

Description

一种大型碱性电解水制氢装置的综合热管理***
技术领域
本发明涉及碱性电解水制氢技术领域,尤其是涉及一种大型碱性电解水制氢装置的综合热管理***。
背景技术
氢气的来源是目前氢能发展的重要议题,氢气目前仍作为工业用原料气体,在化工业有着丰富的应用,从来源来说,主要有三种成熟的技术路线;一是化石能源重整制氢;二是工业副产氢气;三是电解水制氢。化石能源重整制氢原料主要为煤炭,成本低廉、技术成熟,但无法消除的二氧化碳排放和化石能源的使用限制了该技术的大规模绿色氢气制取。工业副产氢气主要来源于焦炭、氯碱、合成氨、丙烷脱氢等行业,能为氢能产业初期发展就近提供低成本氢源。电解水制氢绿色环保、生产灵活、纯度高,若配合可再生能源发电、弃电大规模利用,成本可以显著下降,具有极高的商业化潜力,是最有前景的氢能源制取方法。电解水制氢中,目前最为成熟的技术路线是碱性电解水技术。
经过对现有技术的文献检索发现,目前的大型电解水***的研究多集中在电解水设备的开发和优化,以实现电解水设备的集成、降低成本、产品气体的纯化等目的。中国专利文献CN104911626B:一种高压力水电解制氢电解槽公开了一种包括正极端板和负极端板的高压力水电解制氢电解水制氢设备,改装置结构简单、安装方便,使用三元乙丙橡胶垫极大地降低了橡胶垫成本,还能够反复使用,高压状态下不仅可以直接输送高压氢气、氧气,减少气体加压环节,进一步降低了成本。中国专利文献CN1920100A:连续纯化水电解氢气的方法公开了一种利用3干燥塔,周期性连续干燥的连续纯化电解水制氢方法,不仅可以连续获得高纯度产品氢气,还能实现氢气的不浪费,可提高经济效益。中国专利文献CN201326018Y:压力型水电解槽公开了一种工作压力较高的水电解槽,该电解槽由压力槽与重复的电解单元构成,主要的优点在于电解产生的气体压力高,因此能够达到更低的工作电压,从而实现更高的电解效率。中国专利文献CN105483747A:一种电解水制氢气的方法及装置公开了一种采用双极膜将电解池分割为阴阳极区域的电解水制氢装置,该装置能够使酸性环境的析氢反应和碱性条件的析氧反应同步进行,从而降低电解电压,减小能耗提高电解水制氢的效率。中国专利文献CN109055964A:一种改进型电解水制氢设备用辅热装置公开的一种改进型电解水制氢设备用辅热装置把连接块送入制氢设备主体内部时,根据温控器的设定工作温度,能够接通电热管对反应的液体进行辅热,用以提高氢气生产效率。
现有的相关研究中虽然提到了通过对碱性电解水制氢设备***内部的设计来提高碱性电解水制氢的效率,在温度控制方面也考虑到通过辅助加热碱液进提高氢气生产效率,但对电解制氢***的热管理方面还有很多不足。不仅没有考虑电解制氢废热的综合利用,导致电解槽的综合热效率无法高于其制氢效率,更没有考虑电解槽在宽功率波动运行工况下电解槽的热管理技术需求,难以满足电解制氢***在低功率载荷下(比如20%额定功率)的长时间运行,对应用于波动性大、间歇性突出的可再生能源电力***的耦合电解制氢***,传统碱性电解制氢装置的热管***不仅适应性差,而且效率低。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种能实现热能的有效综合利用且适应性好的大型碱性电解水制氢装置的综合热管理***。
本发明的目的可以通过以下技术方案来实现:
一种大型碱性电解水制氢装置的综合热管理***,该***包括碱性电解水制氢装置,所述的碱性电解水制氢装置包括电解槽和气液分离器,所述的气液分离器的碱液输出端通过碱液循环回路连接至电解槽,该***还包括热管理装置,所述的热管理装置包括热管理综合换热器、气液分离换热器和碱液循环换热器,所述的气液分离换热器设置在电解槽和气液分离器之间,所述的碱液循环换热器设置在碱液循环回路中,所述的气液分离换热器和热管理综合换热器的换热介质进出口连通形成第一换热回路,所述的碱液循环换热器和热管理综合换热器的换热介质进出口连通形成第二换热回路,所述的第一换热回路用于冷却电解槽输出的气液混合状态碱液,所述的第二换热回路用于加热碱液循环回路中循环输入至电解槽中的碱液。
优选地,所述的热管理装置还包括储热组件,所述的气液分离换热器的换热介质出口通过储热前端分流器分别连接至热管理综合换热器的换热介质进口和储热组件的进口,所述的储热组件的出口连接至第二换热回路。
优选地,所述的热管理综合换热器还连通外部冷源,流通在热管理综合换热器中的换热介质对所述的外部冷源进行加热。
优选地,所述的热管理综合换热器包括至少两组具有不同温度等级的换热介质出口,分别为第一换热介质出口和第二换热介质出口,所述的第一换热介质出口输出的换热介质的温度高于第二换热介质出口输出的换热介质的温度,所述的第一换热介质出口连接至碱液循环换热器,所述的第二换热介质出口连接至气液分离换热器。
优选地,所述的储热组件包括储热罐。
优选地,所述的储热组件通过换热器后端分流器连接至第二换热回路,所述的换热器后端分流器输入端分别连接热管理综合换热器的第一换热介质出口和储热组件的出口,换热器后端分流器输出端通过碱液循环热管理泵连接至碱液循环换热器。
优选地,所述的气液分离器分别包括氢气侧气液分离器和氧气侧气液分离器,对应地,所述的气液分离换热器分别包括氢气侧换热器和氧气侧换热器,所述的氢气侧换热器和氧气侧换热器分别通过换热管路连通热管理综合换热器形成两条所述的第一换热回路,两条第一换热回路中分别对应设有氢气侧冷却泵和氧气侧冷却泵,所述的氢气侧冷却泵设置在氢气侧换热器的换热介质进口端,所述的氧气侧冷却泵设置在氧气侧换热器的换热介质进口端。
优选地,所述的热管理装置设置在绝热仓中。
优选地,所述的碱液循环回路包括碱液过滤器和碱液循环泵,所述的气液分离器的碱液输出端依次通过碱液过滤器和碱液循环泵连接至电解槽。
优选地,所述的碱性电解水制氢装置还包括碱液预备箱,所述的碱液预备箱通过补碱泵连接至碱液过滤器的输入端。
与现有技术相比,本发明具有如下优点:
(1)本发明设置热管理装置,将碱液循环与热量循环部分解偶,在温度较高的气液混合状态碱液流出电解槽后立即对其进行冷却,将热量收集至热管理装置,并在冷碱液进入电解槽前进行加热,因此能够有效避免因热碱液在气液分离与碱液管路循环时导致的热量损失,提高大型电解水制氢设备工作过程中产生废热的利用率;
(2)本发明采用了气液混合状态碱液首先经过降温后进入气液分离器的设计,大幅降低进入气液分离器的气液混合状态碱液温度,因此能够有效降低氢气或氧气与碱液分离的难度,降低气液分离器的设计与生产成本,同时较低的碱液温度减少了碱液在气液分离时的雾化损失,减少了碱液消耗,能够降低大型电解水制氢设备的运行成本;
(3)本发明采用碱液循环与热量循环部分解偶的设计,碱液循环中各环节的碱液温度普遍降低,将所需的散热功能集中在热管理综合换热器中进行,降低了碱液循环中各部件及管路在工作过程中的热负荷,能够降低对各部件的热要求,有利于降低大型电解水制氢设备的附属设备设计与制造成本;
(4)本发明设置储热组件,通过储热罐中收集从气液分离换热器流出的具有较高温度的换热介质,通过储热罐能够长时间保持其中的换热介质温度的特性,可以在热管理综合换热器的第一换热介质出口输出的换热介质没有足够热量加热碱液循环回路中的循环碱液时利用储热罐内的较高温度的换热介质加热循环碱液,能够使大型碱性电解水制氢设备在较低工作负荷时长时间保持工作温度,有效提高电解水制氢装置的宽功率波动适应性;
(5)本发明的热管理综合换热器连通外部冷源,利用流通在热管理综合换热器中的换热介质对所述的外部冷源进行加热,可以使大型电解水制氢设备在制备氢气的同时有效地对外供应热能,可以为居民生活提供热水与取暖服务,能够有效提高电解水制氢设备的综合热效率;
(6)本发明热管理装置设置在绝热仓中,同时热管理装置中的换热介质流通管路均采用采用了绝热设计,能够减少***整体向外散热,因此一定程度上防止因为冷却液管路向外散热导致的温度下降,提高热管理***与外界换热的集中度,能够提高热能综合利用时的热效率。
附图说明
图1为本发明大型碱性电解水制氢装置的综合热管理***的结构示意图;
图2为传统碱性电解水制氢装置中并行碱液循环与热量循环示意图;
图3为本发明中碱液循环与热量循环部分解耦示意图。
图中,1为氢气侧气体隔膜阀,2为氧气侧气体隔膜阀,3为氢气侧气液分离器,4为氧气侧气液分离器,5为绝热仓,6为氢气侧换热器,7为氧气侧换热器,8为氢气侧冷却泵,9为氧气侧冷却泵,10为整流变压器,11为电解槽,12为碱液循环热管理泵,13为换热器后端分流器,14为碱液循环换热器,15为氢气纯化设备,16为氧气收集或后处理装置,17为储热前端分流器,18为补碱泵,19为热管理综合换热器,20为碱液预备箱,21为碱液过滤器,22为储热罐,23为碱液循环泵,24为冷却水塔。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。注意,以下的实施方式的说明只是实质上的例示,本发明并不意在对其适用物或其用途进行限定,且本发明并不限定于以下的实施方式。
实施例
如图1所示,一种大型碱性电解水制氢装置的综合热管理***,该***包括碱性电解水制氢装置,碱性电解水制氢装置包括电解槽11和气液分离器,气液分离器的碱液输出端通过碱液循环回路连接至电解槽11,该***还包括热管理装置,热管理装置包括热管理综合换热器19、气液分离换热器和碱液循环换热器14,气液分离换热器设置在电解槽11和气液分离器之间,碱液循环换热器14设置在碱液循环回路中,气液分离换热器和热管理综合换热器19的换热介质进出口连通形成第一换热回路,碱液循环换热器14和热管理综合换热器19的换热介质进出口连通形成第二换热回路,第一换热回路用于冷却电解槽11输出的气液混合状态碱液,第二换热回路用于加热碱液循环回路中循环输入至电解槽11中的碱液。本发明热管理装置中热量循环的换液介质为冷却液,冷却液可为任何工作温度适宜的工业冷却介质。此处需要说明的是,在下述描述中冷却液和换热介质等同。
具体地,气液分离器分别包括氢气侧气液分离器3和氧气侧气液分离器4,对应地,气液分离换热器分别包括氢气侧换热器6和氧气侧换热器7,氢气侧换热器 6和氧气侧换热器7分别通过换热管路连通热管理综合换热器19形成两条第一换热回路,两条第一换热回路中分别对应设有氢气侧冷却泵8和氧气侧冷却泵9,氢气侧冷却泵8设置在氢气侧换热器6的换热介质进口端,氧气侧冷却泵9设置在氧气侧换热器7的换热介质进口端。氢气侧气液分离器3的氢气输出端通过氢气侧气体隔膜阀1连接至氢气纯化设备15,氧气侧气液分离器4的氧气输出端通过氧气侧气体隔膜阀2连接至氧气收集或后处理装置16。碱液循环回路包括碱液过滤器 21和碱液循环泵23,气液分离器的碱液输出端依次通过碱液过滤器21和碱液循环泵23连接至电解槽11。碱性电解水制氢装置还包括碱液预备箱20,碱液预备箱 20通过补碱泵18连接至碱液过滤器21的输入端。
热管理装置设置在绝热仓5中,热管理综合换热器19包括至少两组具有不同温度等级的换热介质出口,分别为第一换热介质出口和第二换热介质出口,第一换热介质出口输出的换热介质的温度高于第二换热介质出口输出的换热介质的温度,第一换热介质出口连接至碱液循环换热器14,第二换热介质出口连接至气液分离换热器。
热管理装置还包括储热组件,气液分离换热器的换热介质出口通过储热前端分流器17分别连接至热管理综合换热器19的换热介质进口和储热组件的进口,储热组件的出口连接至第二换热回路。其中,储热组件包括储热罐22。通过储热罐22 中收集从气液分离换热器流出的具有较高温度的换热介质,通过储热罐22能够长时间保持其中的换热介质温度的特性,可以在热管理综合换热器19的第一换热介质出口输出的换热介质没有足够热量加热碱液循环回路中的循环碱液时利用储热罐22内的较高温度的换热介质加热循环碱液,能够使大型碱性电解水制氢设备在较低工作负荷时长时间保持工作温度,有效提高电解水制氢装置的宽功率波动适应性。储热组件通过换热器后端分流器13连接至第二换热回路,换热器后端分流器 13输入端分别连接热管理综合换热器19的第一换热介质出口和储热组件的出口,换热器后端分流器13输出端通过碱液循环热管理泵12连接至碱液循环换热器14。
热管理综合换热器19还连通外部冷源,流通在热管理综合换热器19中的换热介质对外部冷源进行加热。可以使大型电解水制氢设备在制备氢气的同时有效地对外供应热能,可以为居民生活提供热水与取暖服务,能够有效提高电解水制氢设备的综合热效率。
本发明大型碱性电解水制氢装置的综合热管理***包括碱液循环与热量循环两部分:
1、碱液循环
在电解水制氢***工作时,交流供电通过整流变压器10变为直流电进入电解槽11(又称碱性电解水制氢模块,是***的核心),碱液中的水在这里被电解成为氢气和氧气分别在电极表面析出,氢气与氧气的体积比大致为2:1,并进入氢、氧气液出口管,分两路流出电解槽11。
流出电解槽11的是高温碱液,其中混合大量的气体,首先氢气侧碱液在氢气侧换热器6被热管理***冷却,氧气侧碱液在氧气侧碱液换热器被热管理***冷却,冷却后的碱液分别流入氢气侧气液分离器3、氧气侧气液分离器4,氢气侧和氧气侧的气液混合物分别在此经过洗涤冷却器冷却,在重力的作用下实现气液分离,分别经过调整压力的氢气侧气体隔膜阀1与氧气侧气体隔膜阀2后,氢气经过氢气纯化设备15后加压或储存,氧气则进入氧气收集或后处理装置16,可以被收集或者排空。
碱液循环***将气液分离器排出的碱液,在经过碱液过滤器21除去固体杂质后,由碱液循环泵23泵入电解槽11中,形成碱液闭环***。同时,由于电解水制氢过程中,不可避免地会有微量碱性电解质可能会随着气体以碱雾的形式进入纯化装备或排放,需要定期补充从碱液箱中将配置好的碱液通过补给泵注入给碱液循环中补充电解质的量。
2、热量循环
电解水制氢***能耗较高,在正常工作时需要进行冷却散热,而在较低功率负荷工作时需要对其进行保温或者加热,原有的电解水制氢***未对热量进行综合利用,也无法解决长时间低负荷工作时的温度保持,因此本发明创新性提出碱液循环与热量循环部分解耦合的综合热管理***。
本发明中的综合热管理***,参照图1,热管理装置置于绝热仓5中(电解槽 11除外),在热管理装置中,对所有换热介质管道与设备进行绝热处理,以降低热管理***及电解槽11对外散热,提升热利用效率。热管理装置主要包含氢气侧换热器6、氧气侧换热器7、氢气侧冷却泵8、氧气侧冷却泵9、碱液循环热管理泵 12、储热罐22后端分流器、碱液循环换热器14、储热罐22前端换热器、热管理综合换热器19和储热罐22。流出电解槽11的热碱液首先分别通过氢气侧换热器6 和氧气侧换热器7降温,与此同时温度升高的冷却液分别从两个换热器中流出,经过储热前端分流器17,根据热管理***的需求,一部分冷却液流入热管理综合换热器19中受到外部冷却将热量送至热管理***外,进行热能综合利用,如提供生活热水或取暖等使用;或者进入22储热罐22中进行保温,以在电解槽11无法提供足够热量时,用储备的热能对碱液循环进行加热。
在电解槽11按照额定功率运行时,进入热管理综合换热器19中的冷却液,一部分在部分冷却之后,进入储热罐22后端分流器,并经过碱液循环热管理泵12,进入碱液循环换热器14,加热已经冷却的碱液,使进入电解槽11的碱液达到设定的温度。另一部分进入热管理综合换热器19的冷却液,首先在热管理换热器中进行进一步的冷却,冷却后的冷却液经过氢气侧冷却泵8、氧气侧冷却泵9,进入氢气侧换热器6、氧气侧换热器7,冷却电解槽11出口流出的热碱液。
在电解槽11工作负载较低时,碱液出口的碱液流量减少,碱液温度会降低,换热器的换热效率会下降,经过氢气侧、氧气侧换热器7进入到热管理***的热量减少,即便在热管理综合换热器19不对冷却液进行冷却的情况下,通过碱液循环换热器14用于加热碱液的热量也有可能出现不能讲碱液加热到设定值的情况,导致电解槽11工作温度降低,进一步导致电解槽11工作效率下降,碱性电解水制氢设备的宽功率波动适应性下降。
因此本发明在碱液循环与热量循环部分解偶外的第二大创新点,是在热量循环中引入了储热罐22。储热罐22中的冷却液保持较高的温度,根据管理不断更新内部储存的冷却液,通过储热前端分流器17引入较热的冷却液,将储热罐22内部的冷却液温度控制在设定值。在电解槽11工作负载较低时,根据热管理***要求,可以通过储热罐22后端分流器调用储热罐22中的热冷却液,进入碱液循环换热器 14中,能够为碱液提供更多的热量,保证碱液进入电解槽11时的温度。通过将一部分热量储存在较高温度冷却液中,能够有效延长在电解槽11在较低功率工作时的稳定工作时间,保证电解槽11在较低功率工作时的效率,有效提升碱性电解水制氢***的宽功率波动适应性。
本发明大型碱性电解水制氢装置的综合热管理***改进原理:
本发明的绝热热管理***采用双向换热,即在电解槽11碱液出口和入口分别对碱液进行换热,在碱液出口将较热的碱液与气体混合体冷却,并在碱液入口将较冷的碱液利用之前冷却的热量进行加热,讲碱液循环与热量循环部分解耦合,减少了不必要的热量损失,有利于碱性电解水设备工作时产生热能的综合利用,能够高电解槽11的综合热效率,同时提高碱性电解水制氢的功率波动适应性。下面对本发明产生的改进原因进行阐述。
在传统碱性电解水制氢装置中碱液循环与热量循环并行,参照图2,从工作状态下的电解水制氢设备出口流出的温度较高的气液混合状态碱液,在氢气侧与氧气侧的气液分离装置中喷洒常温去离子水洗涤,不断降温并且释放出氢气或氧气,分离的碱液再经过碱液过清器的过滤,并经过冷却水塔24冷却最终经过碱液循环泵 23再次进入电解槽11。在碱液循环过程中,热量循环与之并行,大量热量损失在碱液流动、气液分离器与冷却水塔24中,很难集中利用,并且在电解槽11处于较低工作负荷时,整体散热功率可能高于电解水制氢设备的发热功率,导致电解水制氢设备温度逐渐下降,催化剂活性下降并且电解水制氢效率下降。
使用本发明的绝热主动热管理***,与碱液的双向换热使得碱液循环与热量循环相互解耦,参照图3,从工作状态下的电解水制氢设备出口流出的温度较高的气液混合状态碱液,首先经过氢气/氧气侧换热器7,碱液温度下降,将热量传递给冷却液,之后碱液在气液分离器中经过洗涤,再经过碱液滤清器与碱液循环泵23,此时碱液回路因为初始温度低,因此整个过程热量散失大幅下降。碱液循环的工作介质为碱液,热量循环的工作介质为冷却液,冷却液可为任何工作温度适宜的工业冷却介质。
冷却液经过氢气/氧气侧换热器7的加热,进入热量循环中,受到热管理***调控,如果***工作负荷较高,需要进行散热,则冷却液循环进入热管理综合换热器19中,与***外界交换热量,可以循环利用或者直接冷却;如果***工作负荷较低,不需要散热或需要保温,则冷却液循环进入储热罐22进行短暂储存。一部分冷却液在经过热管理综合换热器19的部分冷却后,经过碱液循环热管理泵12 进入碱液循环换热器14中,加热待进入电解槽11的碱液,从碱液循环换热器14 中流出的冷却液回到热管理综合换热器19中与外界进行换热,进一步冷却。
可以看出,相较于传统碱性电解水制氢装置的碱液循环与热量循环并行,本发明中的绝热主动式热管理***碱液循环与热量循环部分解耦,能够将一部分热量集中在热管理***内进行管理,一方面减少了热能的散失,降低了能耗,另一方面将所需的与外界的热交换集中在热管理综合换热器19中进行,免除了碱液循环中各部件及管路的冷却作用,能够降低对各部件的热要求,同时能够提高冷却热量利用的温度,提供较高品质的热,可以为生活用水、取暖等提供丰富的热源。
在本发明实施例中,参考图2,未经本发明改进前,传统的碱性电解水制氢装置的碱液循环与热量循环并行。碱液在回路中,在电解槽11中被电解,产生氢气与氧气并产生热量,温度上升到95℃,流出电解槽11后,在气液分离器中受到去离子水的洗涤,大幅降温,温度降低到65℃,大量的高品质热源被耗散,无法得到利用。从气液分离器中流出后,碱液通过管路经过碱液过滤器21,流出时温度降低至62℃,再流向碱液循环泵23,流出时温度为60℃,最后收到冷却塔冷却,在流出时达到设定温度,即55℃。碱液进入电解槽11中,受到电解槽11高温环境的加热,同时也有电化学反应释放的热量,温度升高后流出电解槽11,完成碱液循环与热量循环的并行循环。
参照图3,本发明的适用于大型碱性电解水制氢装置的热管理***,碱液循环与热量循环部分解偶。电解水制氢设备正常工作时,在碱液回路中,在电解槽11 中被电解,产生氢气与氧气并产生热量,温度上升到95℃,流出电解槽11后,在氢气侧/氧气侧换热器7中进行初级冷却,在流出换热器时温度为75摄氏度,在氢气/氧气侧气液分离器4中经过洗涤,流出时温度下降至50℃,在流出碱液过滤器 21时温度为47℃,流经碱液循环泵23后的温度为46℃,并进入碱液循环换热器 14,加热至55℃,达到设定温度,进入电解槽11,完成碱液循环。
本发明的热量循环回路与碱液循环回路部分解耦合,在电解槽11中两回路直接相关。在热碱液流入氢气侧/氧气侧换热器7后,热量循环与碱液循环开始解耦合。在大型电解水制氢设备在额定功率附近工作时,在氢气侧/氧气侧换热器7中,热量循环的冷却液被加热,温度升高至73℃,并流入热管理换热器中,一部分冷却液在完全冷却释放高品质热源,由外界进行综合利用,冷却至48℃,再次进入氢气侧/氧气侧换热器7中冷却热碱液;一部分冷却液部分冷却,,一部分高品质热源由外界综合利用,温度下降至65℃,并经过碱液循环热管理泵12,进入到碱液循环换热器14,加热碱液,自身冷却至58℃后,重新进入热管理综合换热器19,将部分低品质热源提供外界利用后,冷却至48℃,重新进入氢气侧/氧气侧换热器 7,完成热量循环。在大型电解水制氢设备在以较低功率运行时,产生热量较少,此时需要调用储存在储热罐22中的较高温度的冷却液,一定量71℃的冷却液经过碱液循环热管理泵12进入碱液循环换热器14中,加热碱液达到设定值,从而在大型电解水制氢设备在较低运行功率时保持温度,保证器正常运行,从而增强大型电解水制氢设备的宽功率波动适应性。
上述实施方式仅为例举,不表示对本发明范围的限定。这些实施方式还能以其它各种方式来实施,且能在不脱离本发明技术思想的范围内作各种省略、置换、变更。

Claims (10)

1.一种大型碱性电解水制氢装置的综合热管理***,该***包括碱性电解水制氢装置,所述的碱性电解水制氢装置包括电解槽(11)和气液分离器,所述的气液分离器的碱液输出端通过碱液循环回路连接至电解槽(11),其特征在于,该***还包括热管理装置,所述的热管理装置包括热管理综合换热器(19)、气液分离换热器和碱液循环换热器(14),所述的气液分离换热器设置在电解槽(11)和气液分离器之间,所述的碱液循环换热器(14)设置在碱液循环回路中,所述的气液分离换热器和热管理综合换热器(19)的换热介质进出口连通形成第一换热回路,所述的碱液循环换热器(14)和热管理综合换热器(19)的换热介质进出口连通形成第二换热回路,所述的第一换热回路用于冷却电解槽(11)输出的气液混合状态碱液,所述的第二换热回路用于加热碱液循环回路中循环输入至电解槽(11)中的碱液。
2.根据权利要求1所述的一种大型碱性电解水制氢装置的综合热管理***,其特征在于,所述的热管理装置还包括储热组件,所述的气液分离换热器的换热介质出口通过储热前端分流器(17)分别连接至热管理综合换热器(19)的换热介质进口和储热组件的进口,所述的储热组件的出口连接至第二换热回路。
3.根据权利要求1所述的一种大型碱性电解水制氢装置的综合热管理***,其特征在于,所述的热管理综合换热器(19)还连通外部冷源,流通在热管理综合换热器(19)中的换热介质对所述的外部冷源进行加热。
4.根据权利要求1所述的一种大型碱性电解水制氢装置的综合热管理***,其特征在于,所述的热管理综合换热器(19)包括至少两组具有不同温度等级的换热介质出口,分别为第一换热介质出口和第二换热介质出口,所述的第一换热介质出口输出的换热介质的温度高于第二换热介质出口输出的换热介质的温度,所述的第一换热介质出口连接至碱液循环换热器(14),所述的第二换热介质出口连接至气液分离换热器。
5.根据权利要求2所述的一种大型碱性电解水制氢装置的综合热管理***,其特征在于,所述的储热组件包括储热罐(22)。
6.根据权利要求4所述的一种大型碱性电解水制氢装置的综合热管理***,其特征在于,所述的储热组件通过换热器后端分流器(13)连接至第二换热回路,所述的换热器后端分流器(13)输入端分别连接热管理综合换热器(19)的第一换热介质出口和储热组件的出口,换热器后端分流器(13)输出端通过碱液循环热管理泵(12)连接至碱液循环换热器(14)。
7.根据权利要求1所述的一种大型碱性电解水制氢装置的综合热管理***,其特征在于,所述的气液分离器分别包括氢气侧气液分离器(3)和氧气侧气液分离器(4),对应地,所述的气液分离换热器分别包括氢气侧换热器(6)和氧气侧换热器(7),所述的氢气侧换热器(6)和氧气侧换热器(7)分别通过换热管路连通热管理综合换热器(19)形成两条所述的第一换热回路,两条第一换热回路中分别对应设有氢气侧冷却泵(8)和氧气侧冷却泵(9),所述的氢气侧冷却泵(8)设置在氢气侧换热器(6)的换热介质进口端,所述的氧气侧冷却泵(9)设置在氧气侧换热器(7)的换热介质进口端。
8.根据权利要求1所述的一种大型碱性电解水制氢装置的综合热管理***,其特征在于,所述的热管理装置设置在绝热仓(5)中。
9.根据权利要求1所述的一种大型碱性电解水制氢装置的综合热管理***,其特征在于,所述的碱液循环回路包括碱液过滤器(21)和碱液循环泵(23),所述的气液分离器的碱液输出端依次通过碱液过滤器(21)和碱液循环泵(23)连接至电解槽(11)。
10.根据权利要求9所述的一种大型碱性电解水制氢装置的综合热管理***,其特征在于,所述的碱性电解水制氢装置还包括碱液预备箱(20),所述的碱液预备箱(20)通过补碱泵(18)连接至碱液过滤器(21)的输入端。
CN202010500552.4A 2020-06-04 2020-06-04 一种大型碱性电解水制氢装置的综合热管理*** Pending CN111748822A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010500552.4A CN111748822A (zh) 2020-06-04 2020-06-04 一种大型碱性电解水制氢装置的综合热管理***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010500552.4A CN111748822A (zh) 2020-06-04 2020-06-04 一种大型碱性电解水制氢装置的综合热管理***

Publications (1)

Publication Number Publication Date
CN111748822A true CN111748822A (zh) 2020-10-09

Family

ID=72674648

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010500552.4A Pending CN111748822A (zh) 2020-06-04 2020-06-04 一种大型碱性电解水制氢装置的综合热管理***

Country Status (1)

Country Link
CN (1) CN111748822A (zh)

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112899706A (zh) * 2021-01-18 2021-06-04 阳光电源股份有限公司 一种水电解制氢***及其控制方法
CN112899726A (zh) * 2021-01-18 2021-06-04 阳光电源股份有限公司 一种水电解制氢***及其控制方法
CN112921343A (zh) * 2021-02-20 2021-06-08 河北建投新能源有限公司 一种冷热氢联供***及控制方法
CN113215592A (zh) * 2021-03-15 2021-08-06 嘉寓氢能源科技(辽宁)有限公司 一种大型碱性电解水制氢装置的综合热管理***
CN113249736A (zh) * 2021-04-22 2021-08-13 浙江大学 一种综合可再生能源的水电解氢热联产***及方法
CN113373458A (zh) * 2021-06-17 2021-09-10 全球能源互联网研究院有限公司 一种波动功率输入下的质子交换膜电解水制氢***及方法
CN113564619A (zh) * 2021-08-23 2021-10-29 清华大学 一种电解制氢***和电解制氢方法
CN113621976A (zh) * 2021-08-26 2021-11-09 四川华能氢能科技有限公司 一种电解水制氢***及其实现方法
CN113699538A (zh) * 2021-08-31 2021-11-26 中国华能集团清洁能源技术研究院有限公司 一种带储热的电解制氢***及其运行方法
CN113699539A (zh) * 2021-09-17 2021-11-26 中国华能集团清洁能源技术研究院有限公司 一种动态制氢过程的热集成***及方法
CN113737203A (zh) * 2021-09-27 2021-12-03 长江勘测规划设计研究有限责任公司 蒸发冷却介质自循环全浸式的水电解制氢***及使用方法
CN113774431A (zh) * 2021-10-26 2021-12-10 中国华能集团清洁能源技术研究院有限公司 一种碱性制氢电解槽的热量管理***及方法
CN113881951A (zh) * 2021-11-03 2022-01-04 中国华能集团清洁能源技术研究院有限公司 一种碱液分段循环电解***及其工作方法
CN113881949A (zh) * 2021-10-14 2022-01-04 深圳市凯豪达氢能源有限公司 地热在不稳定电源下碱性水电解制氢中的应用***
CN113913846A (zh) * 2021-11-09 2022-01-11 西南石油大学 一种电解水制氢制氧反应装置
CN113930804A (zh) * 2021-10-09 2022-01-14 深圳市凯豪达氢能源有限公司 一种具有碱温保持的风电制氢装置
CN114087904A (zh) * 2021-12-22 2022-02-25 清华大学 电制氢余热利用装置和方法
CN114108021A (zh) * 2021-11-19 2022-03-01 中国华能集团清洁能源技术研究院有限公司 一种自热启动电解水制氢***及其运行方法
CN114293199A (zh) * 2022-01-11 2022-04-08 阳光氢能科技有限公司 制氢方法和制氢***
CN114318389A (zh) * 2021-12-22 2022-04-12 无锡隆基氢能科技有限公司 制氢设备和制氢设备的电解槽温度控制方法
CN114481161A (zh) * 2022-01-28 2022-05-13 上海羿沣氢能科技有限公司 电解水制氢***及制氧子***
CN114561668A (zh) * 2022-03-01 2022-05-31 国家电投集团氢能科技发展有限公司 具有蓄热装置的制氢***和制氢***的控制方法
CN114574877A (zh) * 2022-04-06 2022-06-03 中国船舶重工集团公司第七一八研究所 一种具有余热利用的电解水制氢***
CN114574874A (zh) * 2022-02-28 2022-06-03 阳光氢能科技有限公司 一种电解水制氢***及其热管理***
CN114606509A (zh) * 2021-10-18 2022-06-10 中国科学院广州能源研究所 一种用于制氢电解槽阵列的热管理***及方法
CN114696332A (zh) * 2022-03-23 2022-07-01 无锡隆基氢能科技有限公司 太阳能制氢***的控制方法、装置、***及存储介质
CN114717576A (zh) * 2022-05-07 2022-07-08 阳光氢能科技有限公司 一种制氢***和碱液循环方法
CN114808029A (zh) * 2022-04-14 2022-07-29 华中科技大学 一种碱性电解水制氢的热管理调节***及其调节方法
CN114807962A (zh) * 2022-04-14 2022-07-29 华中科技大学 一种基于吸收式热泵的碱性电解水制氢***及其调节方法
CN114875439A (zh) * 2022-05-23 2022-08-09 阳光氢能科技有限公司 制氢***及其热管理方法、装置
CN114959740A (zh) * 2022-06-16 2022-08-30 清华四川能源互联网研究院 规模化碱性电解水制氢的停机电解槽保温***
WO2022179885A1 (en) * 2021-02-25 2022-09-01 Electrochaea GmbH Heat exchange system
CN114990602A (zh) * 2022-05-12 2022-09-02 中国华能集团清洁能源技术研究院有限公司 一种用于电解水制氢装置的脱盐水集成***
CN115233256A (zh) * 2022-07-19 2022-10-25 华北电力大学 一种电解水制氢电解槽温控***
CN115233247A (zh) * 2022-06-23 2022-10-25 中国船舶重工集团公司第七一八研究所 一种海上风电解制氢***的气液分离装置和分离方法
CN116536710A (zh) * 2023-06-30 2023-08-04 中石油深圳新能源研究院有限公司 热熔盐换热装置和气液分离装置
WO2023169400A1 (zh) * 2022-03-11 2023-09-14 天合光能股份有限公司 一种光储制氢***及其运行方法
WO2023231348A1 (zh) * 2022-05-31 2023-12-07 同济大学 组合式碱液罐及带该组合式碱液罐的碱水电解制氢***
CN117466365A (zh) * 2023-03-09 2024-01-30 中国科学院大连化学物理研究所 一种电解水制氢耦合海水淡化***及方法
WO2024046399A1 (zh) * 2022-09-02 2024-03-07 四川大学 一种无需纯水的电解制氢***
WO2024022927A3 (en) * 2022-07-28 2024-05-02 John Cockerill Hydrogen Belgium Waste heat recovery, storage and utilization system
CN114481161B (zh) * 2022-01-28 2024-06-21 上海羿沣氢能科技有限公司 电解水制氢***及制氧子***

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004210597A (ja) * 2003-01-06 2004-07-29 Toshiba Corp 排熱利用水素・酸素システムおよび液体水素の製造方法
RU2008103439A (ru) * 2008-01-29 2009-08-10 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" им. С.П. Королева" (RU) Автономная система энергопитания и способ ее эксплуатации
CN202440551U (zh) * 2012-01-16 2012-09-19 华锐风电科技(集团)股份有限公司 风力发电电解海水***
CN104694950A (zh) * 2015-03-20 2015-06-10 国家电网公司 一种耦合太阳能光热的高温电解水制氢***
CN204455305U (zh) * 2015-02-15 2015-07-08 中国船舶重工集团公司第七一八研究所 一种含氚重水自循环电解***
CN204690125U (zh) * 2015-03-20 2015-10-07 胡建洋 制氢设备水碱补给***
CN106299412A (zh) * 2016-07-18 2017-01-04 全球能源互联网研究院 一种氢储能***中的热控制***及应用
CN106340659A (zh) * 2016-08-31 2017-01-18 中国东方电气集团有限公司 能源供给***
CN111042887A (zh) * 2019-12-03 2020-04-21 深圳大学 一种用于电解槽余热回收的发电***
CN213013112U (zh) * 2020-06-04 2021-04-20 同济大学 一种大型碱性电解水制氢装置的综合热管理***

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004210597A (ja) * 2003-01-06 2004-07-29 Toshiba Corp 排熱利用水素・酸素システムおよび液体水素の製造方法
RU2008103439A (ru) * 2008-01-29 2009-08-10 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" им. С.П. Королева" (RU) Автономная система энергопитания и способ ее эксплуатации
CN202440551U (zh) * 2012-01-16 2012-09-19 华锐风电科技(集团)股份有限公司 风力发电电解海水***
CN204455305U (zh) * 2015-02-15 2015-07-08 中国船舶重工集团公司第七一八研究所 一种含氚重水自循环电解***
CN104694950A (zh) * 2015-03-20 2015-06-10 国家电网公司 一种耦合太阳能光热的高温电解水制氢***
CN204690125U (zh) * 2015-03-20 2015-10-07 胡建洋 制氢设备水碱补给***
CN106299412A (zh) * 2016-07-18 2017-01-04 全球能源互联网研究院 一种氢储能***中的热控制***及应用
CN106340659A (zh) * 2016-08-31 2017-01-18 中国东方电气集团有限公司 能源供给***
CN111042887A (zh) * 2019-12-03 2020-04-21 深圳大学 一种用于电解槽余热回收的发电***
CN213013112U (zh) * 2020-06-04 2021-04-20 同济大学 一种大型碱性电解水制氢装置的综合热管理***

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112899706A (zh) * 2021-01-18 2021-06-04 阳光电源股份有限公司 一种水电解制氢***及其控制方法
CN112899726A (zh) * 2021-01-18 2021-06-04 阳光电源股份有限公司 一种水电解制氢***及其控制方法
CN112899706B (zh) * 2021-01-18 2023-11-07 阳光氢能科技有限公司 一种水电解制氢***及其控制方法
CN112899726B (zh) * 2021-01-18 2023-11-07 阳光氢能科技有限公司 一种水电解制氢***及其控制方法
CN112921343A (zh) * 2021-02-20 2021-06-08 河北建投新能源有限公司 一种冷热氢联供***及控制方法
WO2022179885A1 (en) * 2021-02-25 2022-09-01 Electrochaea GmbH Heat exchange system
CN113215592A (zh) * 2021-03-15 2021-08-06 嘉寓氢能源科技(辽宁)有限公司 一种大型碱性电解水制氢装置的综合热管理***
CN113249736A (zh) * 2021-04-22 2021-08-13 浙江大学 一种综合可再生能源的水电解氢热联产***及方法
CN113373458A (zh) * 2021-06-17 2021-09-10 全球能源互联网研究院有限公司 一种波动功率输入下的质子交换膜电解水制氢***及方法
CN113564619A (zh) * 2021-08-23 2021-10-29 清华大学 一种电解制氢***和电解制氢方法
CN113621976A (zh) * 2021-08-26 2021-11-09 四川华能氢能科技有限公司 一种电解水制氢***及其实现方法
CN113699538A (zh) * 2021-08-31 2021-11-26 中国华能集团清洁能源技术研究院有限公司 一种带储热的电解制氢***及其运行方法
CN113699539A (zh) * 2021-09-17 2021-11-26 中国华能集团清洁能源技术研究院有限公司 一种动态制氢过程的热集成***及方法
CN113737203A (zh) * 2021-09-27 2021-12-03 长江勘测规划设计研究有限责任公司 蒸发冷却介质自循环全浸式的水电解制氢***及使用方法
CN113930804A (zh) * 2021-10-09 2022-01-14 深圳市凯豪达氢能源有限公司 一种具有碱温保持的风电制氢装置
CN113881949A (zh) * 2021-10-14 2022-01-04 深圳市凯豪达氢能源有限公司 地热在不稳定电源下碱性水电解制氢中的应用***
CN114606509B (zh) * 2021-10-18 2023-10-10 中国科学院广州能源研究所 一种用于制氢电解槽阵列的热管理***及方法
CN114606509A (zh) * 2021-10-18 2022-06-10 中国科学院广州能源研究所 一种用于制氢电解槽阵列的热管理***及方法
CN113774431A (zh) * 2021-10-26 2021-12-10 中国华能集团清洁能源技术研究院有限公司 一种碱性制氢电解槽的热量管理***及方法
CN113881951A (zh) * 2021-11-03 2022-01-04 中国华能集团清洁能源技术研究院有限公司 一种碱液分段循环电解***及其工作方法
CN113913846A (zh) * 2021-11-09 2022-01-11 西南石油大学 一种电解水制氢制氧反应装置
CN114108021A (zh) * 2021-11-19 2022-03-01 中国华能集团清洁能源技术研究院有限公司 一种自热启动电解水制氢***及其运行方法
CN114318389A (zh) * 2021-12-22 2022-04-12 无锡隆基氢能科技有限公司 制氢设备和制氢设备的电解槽温度控制方法
WO2023116015A1 (zh) * 2021-12-22 2023-06-29 无锡隆基氢能科技有限公司 制氢设备和制氢设备的电解槽温度控制方法
CN114087904A (zh) * 2021-12-22 2022-02-25 清华大学 电制氢余热利用装置和方法
CN114318389B (zh) * 2021-12-22 2023-11-07 无锡隆基氢能科技有限公司 制氢设备和制氢设备的电解槽温度控制方法
CN114293199A (zh) * 2022-01-11 2022-04-08 阳光氢能科技有限公司 制氢方法和制氢***
CN114481161A (zh) * 2022-01-28 2022-05-13 上海羿沣氢能科技有限公司 电解水制氢***及制氧子***
CN114481161B (zh) * 2022-01-28 2024-06-21 上海羿沣氢能科技有限公司 电解水制氢***及制氧子***
CN114574874A (zh) * 2022-02-28 2022-06-03 阳光氢能科技有限公司 一种电解水制氢***及其热管理***
CN114561668B (zh) * 2022-03-01 2024-04-26 国家电投集团氢能科技发展有限公司 具有蓄热装置的制氢***和制氢***的控制方法
CN114561668A (zh) * 2022-03-01 2022-05-31 国家电投集团氢能科技发展有限公司 具有蓄热装置的制氢***和制氢***的控制方法
WO2023169400A1 (zh) * 2022-03-11 2023-09-14 天合光能股份有限公司 一种光储制氢***及其运行方法
CN114696332A (zh) * 2022-03-23 2022-07-01 无锡隆基氢能科技有限公司 太阳能制氢***的控制方法、装置、***及存储介质
CN114574877A (zh) * 2022-04-06 2022-06-03 中国船舶重工集团公司第七一八研究所 一种具有余热利用的电解水制氢***
CN114574877B (zh) * 2022-04-06 2023-05-05 中国船舶重工集团公司第七一八研究所 一种具有余热利用的电解水制氢***
CN114808029A (zh) * 2022-04-14 2022-07-29 华中科技大学 一种碱性电解水制氢的热管理调节***及其调节方法
CN114807962B (zh) * 2022-04-14 2023-09-29 华中科技大学 一种基于吸收式热泵的碱性电解水制氢***及其调节方法
CN114807962A (zh) * 2022-04-14 2022-07-29 华中科技大学 一种基于吸收式热泵的碱性电解水制氢***及其调节方法
CN114808029B (zh) * 2022-04-14 2023-09-01 华中科技大学 一种碱性电解水制氢的热管理调节***及其调节方法
CN114717576B (zh) * 2022-05-07 2024-03-29 阳光氢能科技有限公司 一种制氢***和碱液循环方法
CN114717576A (zh) * 2022-05-07 2022-07-08 阳光氢能科技有限公司 一种制氢***和碱液循环方法
CN114990602A (zh) * 2022-05-12 2022-09-02 中国华能集团清洁能源技术研究院有限公司 一种用于电解水制氢装置的脱盐水集成***
CN114875439A (zh) * 2022-05-23 2022-08-09 阳光氢能科技有限公司 制氢***及其热管理方法、装置
WO2023231348A1 (zh) * 2022-05-31 2023-12-07 同济大学 组合式碱液罐及带该组合式碱液罐的碱水电解制氢***
CN114959740A (zh) * 2022-06-16 2022-08-30 清华四川能源互联网研究院 规模化碱性电解水制氢的停机电解槽保温***
CN114959740B (zh) * 2022-06-16 2023-06-23 清华四川能源互联网研究院 规模化碱性电解水制氢的停机电解槽保温***
CN115233247A (zh) * 2022-06-23 2022-10-25 中国船舶重工集团公司第七一八研究所 一种海上风电解制氢***的气液分离装置和分离方法
CN115233256A (zh) * 2022-07-19 2022-10-25 华北电力大学 一种电解水制氢电解槽温控***
WO2024022927A3 (en) * 2022-07-28 2024-05-02 John Cockerill Hydrogen Belgium Waste heat recovery, storage and utilization system
WO2024046399A1 (zh) * 2022-09-02 2024-03-07 四川大学 一种无需纯水的电解制氢***
CN117466365A (zh) * 2023-03-09 2024-01-30 中国科学院大连化学物理研究所 一种电解水制氢耦合海水淡化***及方法
CN117466365B (zh) * 2023-03-09 2024-06-07 中国科学院大连化学物理研究所 一种电解水制氢耦合海水淡化***及方法
CN116536710A (zh) * 2023-06-30 2023-08-04 中石油深圳新能源研究院有限公司 热熔盐换热装置和气液分离装置

Similar Documents

Publication Publication Date Title
CN111748822A (zh) 一种大型碱性电解水制氢装置的综合热管理***
CN213013112U (zh) 一种大型碱性电解水制氢装置的综合热管理***
WO2021196564A1 (zh) 一种宽功率电解水制氢***及方法
CN111826669B (zh) 具有宽功率波动适应性的大型电解水制氢***及控制方法
CN211872097U (zh) 一种宽功率电解水制氢***
WO2016150168A1 (zh) 一种耦合太阳能光热的高温电解水制氢***
CN211854136U (zh) 一种电解水制氢余热利用***
CN111336571A (zh) 一种电解水制氢余热利用***及其工作方法
CN114592207B (zh) 一种适应快速宽功率波动的电解制氢***及控制方法
CN113350989A (zh) 燃煤发电耦合可再生能源发电二氧化碳捕集方法及***
CN205222680U (zh) 一种零碳排放的甲醇水重整制氢***及其燃料电池汽车
CN113889648B (zh) 一种mw级热电联供燃料电池电站
CN208748209U (zh) 一种风能宽功率下电解水制氢装置
CN213521311U (zh) 一种弃风电解水制氢能源综合利用***
CN113137783A (zh) 一种利用热泵回收电解水制氢余热的***及方法
CN114150331A (zh) 一种电解制氢余热利用***
CN213680909U (zh) 电解水氢热联供装置
CN208395286U (zh) 一种风电电解水制氢***
CN215062987U (zh) 一种利用热泵回收电解水制氢余热的***
CN215209640U (zh) 基于光伏电池的质子交换膜电解制氢装置
CN114412599A (zh) 一种电解制氢耦合燃气轮机发电***
CN220633032U (zh) 一种计及电解槽保温的绿色甲醇合成***
CN117117975B (zh) 一种基于低温余热利用的氢水电联产***及方法
CN114807959B (zh) 一种适用于宽功率波动的高效率制氢***
CN114481161B (zh) 电解水制氢***及制氧子***

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination