CN111748532A - Application of novel p-coumaroyl-CoA ligase in biosynthesis of phloretin - Google Patents

Application of novel p-coumaroyl-CoA ligase in biosynthesis of phloretin Download PDF

Info

Publication number
CN111748532A
CN111748532A CN202010449008.1A CN202010449008A CN111748532A CN 111748532 A CN111748532 A CN 111748532A CN 202010449008 A CN202010449008 A CN 202010449008A CN 111748532 A CN111748532 A CN 111748532A
Authority
CN
China
Prior art keywords
ala
leu
gly
val
thr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010449008.1A
Other languages
Chinese (zh)
Other versions
CN111748532B (en
Inventor
赵广荣
李玲玲
刘金丛
刘雪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN202010449008.1A priority Critical patent/CN111748532B/en
Publication of CN111748532A publication Critical patent/CN111748532A/en
Application granted granted Critical
Publication of CN111748532B publication Critical patent/CN111748532B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/93Ligases (6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/24Preparation of oxygen-containing organic compounds containing a carbonyl group
    • C12P7/26Ketones
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y602/00Ligases forming carbon-sulfur bonds (6.2)
    • C12Y602/01Acid-Thiol Ligases (6.2.1)
    • C12Y602/010124-Coumarate-CoA ligase (6.2.1.12)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention discloses application of a novel p-coumaroyl-CoA ligase in biosynthesis of phloretin, and belongs to the technical field of enzyme engineering. The invention discovers that Aa4CL derived from azotobacter (Aromatium aromaticum) with an amino acid sequence shown as SEQ ID No.1 or Rj4CL derived from Rhodococcus jostii RHA1 with an amino acid sequence shown as SEQ ID No.2 can firstly synthesize a phloretin product in engineering escherichia coli by taking p-dihydrocoumaric acid as a substrate. The invention widens the application range of the p-coumaroyl-CoA ligase Aa4CL and Rj4CL, and lays a foundation for the industrial production of phloretin.

Description

Application of novel p-coumaroyl-CoA ligase in biosynthesis of phloretin
Technical Field
The invention belongs to the technical field of enzyme engineering, and relates to application of novel p-coumaroyl-CoA ligase in phloretin biosynthesis.
Background
Phloretin (Phloretin) with the chemical name of 2,4, 6-trihydroxy-3 (4-hydroxyphenyl) propiophenone is an important dihydrochalcone medicine intermediate. Phlorizin, a glycosylation product of phloretin, is an SGLT2 inhibitor and a natural diabetes drug; the trilobatin which is another glycosylation product improves the diabetes through alpha-glucosidase; the hydroxylation product of phloretin, 3-hydroxy phloretin, is the substance with the highest antioxidant activity in phloretin derivatives, and is the synthetic precursor of 3-hydroxy phlorizin and aspartame.
p-coumaroyl-CoA ligase (4 CL) can catalyze p-dihydrocoumaric acid substrate to generate p-dihydrocoumaroyl-CoA, and then under the action of chalcone synthase (CHS), 1 molecule of p-dihydrocoumaroyl-CoA and 3 molecules of malonyl-CoA are catalyzed to be condensed to generate phloretin. The p-dihydrocoumaroyl-CoA ligase can also catalyze p-coumaric acid substrate to generate p-coumaroyl-CoA, and then catalyze 1 molecule of p-coumaroyl-CoA and 3 molecules of malonyl-CoA to synthesize naringenin under the action of chalcone synthetase. Unfortunately, phloretin has not been synthesized in E.coli, and since 4CL has been found to be poorly active towards p-dihydrocoumaric acid, p-coumaroyl-CoA ligase is the rate-limiting step in the phloretin biosynthesis process.
The azotobacter (Aromatium aromaticum) and Rhodococcus jositii RHA1 strains can use p-dihydrocoumaric acid as the only carbon source, and 4CL (Aa4CL) in azotobacter and 4CL (Rj4CL) in Rhodococcus are supposed to participate in the degradation pathway of p-dihydrocoumaric acid. Rj4CL has been demonstrated in vitro to use p-coumaric acid as a substrate. However, no report is available on the synthesis of phloretin.
Disclosure of Invention
The invention aims to overcome the defects of the prior art, provides the application of p-coumaroyl-CoA ligase in biosynthesis of phloretin, and solves the problem that 4CL is low in activity on p-dihydrocoumaric acid in the phloretin synthesis process in the prior art.
The technical scheme of the invention is as follows: an application of p-coumaroyl-CoA ligase in biosynthesis of phloretin, wherein the amino acid sequence of the p-coumaroyl-CoA ligase is shown as SEQ ID No.1 or SEQ ID No. 2.
In one embodiment of the invention, the p-coumaroyl-CoA ligase is Aa4CL derived from azotobacter, the amino acid sequence of which is shown in SEQ ID No. 1;
in one embodiment of the invention, the p-coumaroyl-CoA ligase is Rj4CL from rhodococcus and has the amino acid sequence shown in SEQ ID No. 2;
the invention has the advantages that:
the invention has the beneficial effects that firstly, the invention discovers that Aa4CL derived from azotobacter and Rj4CL derived from rhodococcus can carry out esterification reaction by taking p-dihydrocoumaric acid as a substrate, and then, phloretin is synthesized under the action of chalcone synthetase, and the catalytic capability of phloretin on p-dihydrocoumaric acid can not be achieved by the existing 4 CL. Secondly, the substrates of Aa4CL and Rj4CL have good selectivity, and the synthesis capacity of phloretin is higher and the synthesis capacity of naringenin byproducts is lower. Thirdly, the invention realizes the synthesis of the phloretin in the escherichia coli and lays a foundation for the industrial production of the phloretin product.
According to the invention, through experimental screening of Aa4CL and Rj4CL, the p-dihydrocoumaric acid is found to be used as a substrate for CoA esterification reaction, and the CoA esterification reaction is catalyzed by CHS to generate phloretin, and the substrate selectivity is good. The invention discloses the application of Aa4CL and Rj4CL in phloretin biosynthesis for the first time, and expands the application range of Aa4CL and Rj4 CL.
Drawings
FIG. 1 shows the liquid chromatogram of the fermentation of strain BPL1-4 (with p-dihydrocoumaric acid added); wherein 1-phloretin standard; 2-BPL 3; 3-BPL 1; 4-BPL 2; 5-BPL 4.
Detailed Description
Coli strains e.coli BL21(DE3) and e.coli DH5 α referred to in the examples below were purchased from tokyo holojin biotechnology limited.
The media formulations in the following examples:
LB liquid medium: 10g/L NaCl, 10g/L peptone and 5g/L yeast powder, the balance being water, sterilizing at 121 ℃ under 0.1MPa for 20 min. Solid culture medium can be prepared by adding 1.5g/100mL agar powder.
M9 liquid medium: anhydrous Na2HPO46.78g/L, KH2PO 43 g/L, NH4Cl 1g/L, NaCl 0.5g/L, yeast powder 1g/L, and water in balance, and sterilizing at 121 deg.C under 0.1MPa for 20 min. After sterilization, sterilized MgSO40.24g/L, CaCl211.1mg/L and glucose 5g/L are added. The antibiotic concentrations are 100 mug/L ampicillin respectively; kanamycin sulfate 50. mu.g/L. The mother liquor 1M MgSO4, 1M CaCl2 and 20% glucose were autoclaved at 115 ℃ for 30 min.
The detection method involved in the examples:
after fermentation, 5mL of fermentation liquid is taken to be placed in a 15mL centrifuge tube, ethyl acetate with the same volume is added, the mixture is shaken for 30min on a MIX-2500 mini mixer, the mixture is centrifuged for 10min at 8000rpm, supernatant is taken to be subjected to rotary evaporation, and extraction and rotary evaporation are repeated once. Dissolving with 1mL of anhydrous ethanol, filtering with 0.22 μm organic microporous membrane, and detecting by HPLC. Detection conditions 4.6X 250mm C18 chromatographic column; the mobile phase composition is 45 percent of methanol, 55 percent of water and 0.1 percent of formic acid, and the flow rate is 1 mL/min; an ultraviolet detector for detecting the wavelength of 290 nm; the sample volume is 10 mu L; the column temperature was 25 ℃.
The present invention will be further described with reference to the following examples.
Example 1 construction of expression vector and recombinant Strain for p-Coumaroyl-CoA ligase
According to the amino acid sequence of HaCHS (AF315345) of Hypericum (Hypericum anhydrosum), the preference of escherichia coli to codons is combined, common enzyme cutting sites are removed, a full-length HaCHS gene derived from Hypericum is designed, the HaCHS gene is connected between NdeI/XhoI enzyme cutting sites of pETDuet-1 plasmid, and the vector plasmid pPL1 is obtained through full-artificial synthesis.
According to the amino acid sequence of Aa4CL (CAI09146.1) of azotobacter, the preference of escherichia coli to codon is combined, common enzyme cutting sites are removed, a full-length Aa4cl gene is designed, the nucleotide sequence of the gene is shown as SEQ ID No.3, the Aa4cl gene is connected between EcoRI/HindIII enzyme cutting sites of pRSFDuet-1 plasmid, and the vector plasmid is completely synthesized and named as pPA 1.
According to the amino acid sequence of Rj4CL (WP _011597362.1) of rhodococcus, the preference of escherichia coli to codons is combined, common enzyme cutting sites are removed, a full-length Rj4cl gene is designed, the nucleotide sequence of the full-length Rj4cl gene is shown in SEQ ID No.4, the Rj4cl gene is connected between EcoRI/HindIII enzyme cutting sites of pRSFDuet-1 plasmid, and the vector plasmid is obtained through total artificial synthesis and is named as pPA 2.
According to the amino acid sequence of Pa4CL (AJT43268.1) of moss (Plagiophaga apendiculum), the preference of Escherichia coli to codons is combined, common enzyme cutting sites are removed, a Pa4cl gene derived from full-length azotobacter is designed, the nucleotide sequence of the gene is shown as SEQ ID No.5, the Pa4cl gene is connected between EcoRI/HindIII enzyme cutting sites of pRSFDuet-1 plasmid, and the obtained vector plasmid is named as pPA3 after full-artificial synthesis.
According to the amino acid sequence of At4CL (U18675) of Arabidopsis thaliana (Arabidopsis thaliana), the preference of Escherichia coli to codons is combined, common enzyme cutting sites are removed, a full-length At4cl gene is designed, the nucleotide sequence of the full-length At4cl gene is shown as SEQ ID No.6, the At4cl gene is connected between EcoRI/HindIII enzyme cutting sites of pRSFDuet-1 plasmid, and the vector plasmid is obtained through total artificial synthesis and is named as pPA 4.
Plasmids pPL1 and pPA1 were transformed into E.coli BL21(DE3) competent by simultaneous electric shock, cultured overnight on LB solid medium containing ampicillin and kanamycin double antibody, and positive clones were selected, designated strain BPL1, and stored for use.
Plasmids pPL1 and pPA2 were transformed into E.coli BL21(DE3) competent by simultaneous electric shock, cultured overnight on LB solid medium containing ampicillin and kanamycin double antibody, and positive clones were selected, designated strain BPL2, and stored for use.
Plasmids pPL1 and pPA3 were transformed into E.coli BL21(DE3) competent by simultaneous electric shock, cultured overnight on LB solid medium containing ampicillin and kanamycin double antibody, and positive clones were selected, designated strain BPL3, and stored for use.
Plasmids pPL1 and pPA4 were transformed into E.coli BL21(DE3) competent by simultaneous electric shock, cultured overnight on LB solid medium containing ampicillin and kanamycin double antibody, and positive clones were selected, designated strain BPL4, and stored for use.
Example 2 biosynthesis of phloretin by recombinant strains
The recombinant strain BPL1-4 is respectively inoculated in an LB liquid culture medium according to the inoculation proportion of 1 percent, ampicillin and kana antibiotic are added, the culture is carried out at 37 ℃ and 220rpm with shaking for 12h, then the recombinant strain BPL1-4 is transferred to an M9 fermentation culture medium containing the antibiotic, 0.1M IPTG is added, 300mg/L p-dihydrocoumaric acid is used as a substrate, 30 ℃ and 220rpm are carried out with shaking for 48h, and then the production amount of phloretin and the consumption amount of p-dihydrocoumaric acid are detected.
By HPLC detection, strains BPL3 and BPL4 showed a small background consumption of p-dihydrocoumaric acid, and phloretin was not detected. Strains BPL1 and BPL2 consumed 220mg/L and 291mg/L p-dihydrocoumaric acid, respectively, yielding 0.50mg/L and 0.15mg/L phloretin. Therefore, Aa4CL and Rj4CL can synthesize phloretin using p-dihydrocoumaric acid as a substrate, while At4CL and Pa4CL cannot catalyze the synthesis of phloretin (see table 1 for details).
And (4) conclusion: aa4CL and Rj4CL have p-dihydrocoumaric acid substrate catalytic capability, are greatly superior to At4CL and Pa4CL, and are suitable for phloretin biosynthesis.
TABLE 1 fermentation Synthesis of phloretin by recombinant strains
Figure BDA0002506831560000041
Example 3 biosynthesis of naringenin by recombinant strains
Respectively inoculating the recombinant strain BPL1-4 in an LB liquid culture medium according to the inoculation proportion of 1%, adding ampicillin and kanamycin antibiotic, culturing at 37 ℃ and 220rpm under shaking for 12h, then transferring the recombinant strain BPL1-4 to an M9 fermentation culture medium containing the antibiotic, 0.1M IPTG, adding 300mg/L p-coumaric acid as a substrate, fermenting at 30 ℃ and 220rpm under shaking for 48h, and then detecting the generation amount of naringenin and the consumption amount of p-coumaric acid.
Through HPLC detection, the strain BPL3 consumes 26mg/L of p-coumaric acid, and synthesizes 16mg/L of naringenin. The strains BPL1 and BPL2 respectively consume 17mg/L and 0.5mg/L of p-coumaric acid, and synthesize 8.7mg/L and 1.8mg/L of naringenin (see Table 2 for details). Therefore, Aa4CL and Rj4CL can synthesize naringenin with p-coumaric acid as a substrate, but the effect is not as good as At4 CL.
TABLE 2 fermentation synthesis of naringenin by recombinant strains
Figure BDA0002506831560000051
The invention has been described in an illustrative manner, and it is to be understood that any simple variations, modifications or other equivalent changes which can be made by one skilled in the art without departing from the spirit of the invention fall within the scope of the invention.
Sequence listing
<110> Tianjin university
<120> application of novel p-coumaroyl-CoA ligase in biosynthesis of phloretin
<160>6
<170>SIPOSequenceListing 1.0
<210>1
<211>625
<212>PRT
<213>Aromatoleum aromaticum
<400>1
Met Val Thr Pro Thr Glu Asn Pro Met Ser Thr Val Ile Ser Asp Ile
15 10 15
Asp Ala Met Phe Ala Arg Pro Val Val Asn Ile Glu Ala Arg Pro Asp
20 25 30
Gly Ser Arg Val Leu Arg Ser Gly Ile Gln Leu Pro Asp Gly Tyr Ala
35 40 45
Arg Cys Val Gly Glu Trp Leu Glu Arg Trp Ala Arg Asp Thr Pro Glu
50 55 60
Arg Leu Phe Leu Ala Glu Arg Asn Val Ala Gly Glu Trp Asp Arg Val
65 70 75 80
Ser Tyr Gly Glu Ala Arg Arg Arg Val Ile Ala Ile Ala Thr Trp Leu
85 90 95
Leu Gly Gln Asn Leu Ser Ala Glu Arg Pro Val Ala Ile Leu Ser Asp
100 105 110
Asn Ser Ile Glu His Ala Leu Leu Met Leu Ala Ala Met His Ile Gly
115 120 125
Val Pro Ser Cys Ala Ile Ser Ser Gly Asn Ser Leu Met Ser Lys Asp
130 135 140
Phe Ala Lys Leu Lys Ala Asn Ile Glu Leu Leu Arg Pro Gly Val Ile
145 150 155 160
Tyr Ala Asp Gln Val Gly Lys Phe Ala Ala Ala Ile Asp Ala Ile Arg
165170 175
Pro Leu His Asp Gly Val Val Val Ala Gly Gly Gly Ser Glu Ser Thr
180 185 190
Ala Gly Cys Met Pro Phe Ala Ala Ile Glu Ala Asp Ser Asp Glu Ala
195 200 205
Ala Val Met Glu Ala Tyr Ala Arg Ile Thr Pro Asp Thr Ile Ala Lys
210 215 220
Phe Leu Phe Thr Ser Gly Ser Val Gly Thr Pro Lys Ala Val Ile Asn
225 230 235 240
Thr Gln Arg Met Leu Cys Ala Ser Gln Leu Ala Lys Glu Leu Val Trp
245 250 255
Pro Phe Leu Leu His Glu Pro Pro Leu Leu Met Glu Trp Leu Pro Trp
260 265 270
Ser His Thr Phe Gly Ser Asn His Asn Phe Asn Met Val Leu Arg Phe
275 280 285
Gly Gly Ser Met Tyr Leu Asp Asp Gly Lys Pro Thr Pro Ala Leu Leu
290 295 300
Asp Lys Thr Leu Arg Asn Leu Arg Glu Val Ser Pro Thr Ile Tyr Phe
305 310 315 320
Ser Val Pro Arg Ala Phe Asp Met Leu Val Pro Val Leu Arg Arg Asp
325330 335
Lys Val Leu Arg Asp Ser Phe Phe Lys Arg Leu Lys Leu Ile Phe Tyr
340 345 350
Ala Gly Ala Ala Leu Pro Gln His Leu Trp Ala Glu Leu Glu Asn Leu
355 360 365
Ser Glu Glu Ala Thr Gly Arg Arg Val Thr Met Val Ser Ser Trp Gly
370 375 380
Ser Thr Glu Thr Ser Pro Leu Ala Thr Asp Cys His Phe Gln Ala Val
385 390 395 400
Arg Ser Gly Val Ile Gly Val Pro Val Pro Gly Thr Glu Leu Lys Leu
405 410 415
Val Pro Ser Ala Asp Lys Leu Glu Val Arg Val Arg Gly Pro Asn Val
420 425 430
Phe Pro Gly Tyr Trp Lys Gln Pro Glu Leu Thr Ala Lys Ser Phe Asp
435 440 445
Asp Glu Gly Phe Tyr Leu Ile Gly Asp Ala Val Glu Phe Val Asp Pro
450 455 460
Ala Arg Pro Glu Gln Gly Leu Leu Phe Asp Gly Arg Val Gly Glu Asp
465 470 475 480
Phe Lys Leu Leu Thr Gly Thr Trp Val His Val Gly Ala Leu Arg Val
485 490495
Lys Gly Ile Asp Ala Leu Lys Pro Val Ala Gln Asp Ile Val Val Thr
500 505 510
Gly His Asp Arg Asp Asp Ile Gly Phe Leu Val Phe Pro Asn Ile Pro
515 520 525
Glu Cys Arg Ser Leu Cys Pro Gly Leu Pro Ser Asp Ala Pro Val Glu
530 535 540
Gln Val Leu Ser Asn Pro Ala Val Leu Ala Arg Val Arg Leu Gly Met
545 550 555 560
Ala Ala Met Met Gln Ala Gly Gly Gly Ser Ser Thr Cys Pro Thr Arg
565 570 575
Ala Leu Leu Met Ala Glu Pro Pro Ser Val Glu Ala Gly Glu Ile Thr
580 585 590
Asp Lys Gly Tyr Ile Asn Gln Arg Ala Val Leu Thr Arg Arg Arg Asp
595 600 605
Leu Ile Glu Ser Leu Tyr Ala Ala Met Pro Asp Lys Ser Val Val Thr
610 615 620
Ala
625
<210>2
<211>512
<212>PRT
<213>Rhodococcus jostii RHA1
<400>2
Met Met Asp Asn Glu Gly Ile Gly Ser Trp Leu Glu Arg Arg Ile Thr
1 5 10 15
Met Thr Pro Lys Asn Glu Ala Leu Val Phe Asp Gly Arg Ala Val Thr
20 25 30
Tyr Glu Glu Met Ala Leu Arg Thr Arg Arg Leu Ala His Gly Leu Arg
35 40 45
Ala Leu Gly Val Glu Lys Gly Asp Cys Val Gly Phe Phe Gly Phe Asn
50 55 60
Asp Pro Ala Ala Leu Glu Val Met Phe Ala Ala Gly Leu Leu Gly Ala
65 70 75 80
Thr Tyr Leu Pro Leu Asn Ala Arg Leu Thr Ala Glu Glu Ala Arg Phe
85 90 95
Val Leu Gly Asp Ser Arg Cys Thr Thr Val Ile Phe Gly Asp Gln Gln
100 105 110
Ala Asp Val Ala Gln Glu Leu Ala Gln Ser Asp Thr Pro Val Thr Thr
115 120 125
Trp Ile Gly Leu Gly Asp Ser Trp Ser Thr His Thr Tyr Glu Gly Val
130 135 140
Arg Ala Gly Gln Pro Asp Thr Arg Ile Asp Glu Gln Val Gly Leu Asp
145 150 155 160
Asp Leu Ser Val Leu Met Tyr Ser Ser Gly Thr Thr Gly Ala Pro Lys
165 170 175
Gly Val Met Leu Ser His Gly Asn Met Leu Trp Asn Ala Leu Asn Gln
180 185 190
Leu Leu Ala Gln Asp Met Thr Ser Lys Glu Arg Thr Leu Ser Val Ala
195 200 205
Pro Leu Phe His Ile Gly Gly Ile Gly Gly Ala Val Thr Pro Thr Leu
210 215 220
Leu Asn Gly Gly Thr Val Val Leu Leu Arg Lys Phe Asp Ala Gly Val
225 230 235 240
Val Leu Asp Thr Ile Glu Lys Glu Arg Ile Thr Thr Phe Phe Ala Val
245 250 255
Pro Thr Met Ile Gln Glu Leu Trp His His Pro Arg Phe Ala Asp Ala
260 265 270
Asp Leu Ser Ser Leu Arg Ala Ile Cys Val Ala Gly Ala Pro Leu Pro
275 280 285
Glu Ala Leu Ile Ser Pro Trp Gln Asp Arg Asp Val Ala Ile Thr Gln
290 295 300
Ala Tyr Gly Leu Thr Glu Thr Ala Pro Ser Val Thr Met Leu Ser Ser
305 310 315 320
Ala Asp Val Arg Thr Lys Ile Gly Ser Ala Gly Lys Arg Thr Phe Phe
325 330 335
Thr Asp Val Asp Val Val Arg Pro Asp Gly Ser Ser Ala Glu Pro Asn
340 345 350
Glu Ile Gly Glu Ile Val Ala Lys Gly Pro Asn Val Met Leu Gly Tyr
355 360 365
Leu Asn Gln Pro Glu Ala Thr Ala Arg Thr Ile Val Asp Gly Trp Leu
370 375 380
His Thr Gly Asp Ala Gly Tyr Phe Asp Asp Glu Gly Phe Leu Phe Ile
385 390 395 400
Cys Asp Arg Tyr Lys Asp Met Tyr Ile Ser Gly Gly Glu Asn Val Tyr
405 410 415
Pro Ala Glu Val Glu Ala Ala Leu Leu Lys Leu Asp Gly Ile Arg Glu
420 425 430
Ala Ala Val Ile Gly Val Pro His Glu Lys Trp Gly Glu Thr Gly Met
435 440 445
Ala Phe Val Val Ala Ala Asp Gly Thr Thr Leu Asp Glu Glu Thr Val
450 455 460
Arg Ala Arg Leu Arg Glu Lys Leu Ala Gly Phe Lys Ile Pro Thr Phe
465 470 475 480
Ile Gln Ile Ala Glu Ala Leu Pro Arg Thr Ala Thr Gly Lys Ile Arg
485 490 495
Lys Pro Asp Leu Arg Lys Leu Ala Ala Ser Gln Pro Val Ser Thr Ser
500 505 510
<210>3
<211>1878
<212>DNA
<213> Artificial sequence ()
<400>3
atggttaccc cgaccgagaa cccgatgagc accgtgatca gcgacattga tgcgatgttt 60
gcgcgtccgg tggttaacat cgaagcgcgt ccggacggta gccgtgttct gcgtagcggt 120
attcagctgc cggatggtta tgcgcgttgc gtgggcgagt ggctggaacg ttgggcgcgt 180
gacaccccgg aacgtctgtt cctggcggag cgtaacgttg cgggtgaatg ggatcgtgtg 240
agctatggcg aggcgcgtcg tcgtgttatc gcgattgcga cctggctgct gggtcaaaac 300
ctgagcgcgg agcgtccggt ggcgatcctg agcgacaaca gcattgaaca cgcgctgctg 360
atgctggcgg cgatgcacat cggtgttccg agctgcgcga ttagcagcgg caacagcctg 420
atgagcaagg actttgcgaa gctgaaagcg aacatcgagc tgctgcgtcc gggtgttatt 480
tacgcggatc aagtgggcaa attcgctgcg gcgatcgacg cgattcgtcc gctgcacgat 540
ggtgtggttg ttgcgggtgg cggtagcgaa agcaccgcgg gctgcatgcc gtttgcggcg 600
atcgaggcgg acagcgatga agcggcggtg atggaggcgt atgcgcgtat caccccggat 660
accattgcga agttcctgtt taccagcggt agcgttggca ccccgaaagc ggtgattaac 720
acccagcgta tgctgtgcgc gagccaactg gcgaaggagc tggtttggcc gttcctgctg 780
catgagccgc cgctgctgat ggaatggctg ccgtggagcc acaccttcgg tagcaaccac 840
aactttaaca tggtgctgcg tttcggcggt agcatgtacc tggacgatgg caagccgacc 900
ccggcgctgc tggacaaaac cctgcgtaac ctgcgtgaag ttagcccgac catctatttt 960
agcgtgccgc gtgcgttcga tatgctggtt ccggtgctgc gtcgtgacaa agttctgcgt 1020
gatagcttct ttaagcgtct gaaactgatc ttctacgcgg gtgcggcgct gccgcagcac 1080
ctgtgggcgg agctggaaaa cctgagcgag gaagcgaccg gtcgtcgtgt tacgatggtg 1140
agcagctggg gcagcaccga gaccagcccg ctggcgaccg actgccactt ccaagcggtt 1200
cgtagcggtg tgattggcgt tccggtgccg ggcaccgagc tgaagctggt tccgagcgcg 1260
gataaactgg aagttcgtgt gcgtggcccg aacgtgtttc cgggttactg gaagcagccg 1320
gagctgaccg cgaagagctt cgacgatgaa ggtttttatc tgattggtga tgcggttgag 1380
ttcgtggacc cggcgcgtcc ggaacaaggt ctgctgtttg acggtcgtgt tggcgaagat 1440
ttcaagctgc tgaccggcac ctgggttcat gtgggtgcgc tgcgtgttaa gggcatcgac 1500
gcgctgaaac cggtggcgca ggacattgtt gtgaccggtc acgatcgtga cgatatcggc 1560
ttcctggtgt ttccgaacat tccggagtgc cgtagcctgt gcccgggtct gccgagcgat 1620
gcgccggttg aacaagtgct gagcaacccg gcggttctgg cgcgtgtgcg tctgggtatg 1680
gcggcgatga tgcaagcggg cggtggcagc agcacctgcc cgacccgtgc gctgctgatg 1740
gcggagccgc cgagcgttga ggcgggtgaa atcaccgaca agggctacat taaccaacgt 1800
gcggtgctga cccgtcgtcg tgacctgatc gaaagcctgt atgcggcgat gccggataaa 1860
agcgttgtga ccgcgtaa 1878
<210>4
<211>1539
<212>DNA
<213> Artificial sequence ()
<400>4
atgatggaca acgaaggtat cggcagctgg ctggagcgtc gtattaccat gaccccgaag 60
aacgaagcgc tggtgttcga tggccgtgcg gttacctacg aggaaatggc gctgcgtacc 120
cgtcgtctgg cgcacggtct gcgtgcgctg ggtgtggaaa aaggcgactg cgttggtttc 180
tttggcttca acgatccggc ggcgctggaa gtgatgtttg cggcgggtct gctgggtgcg 240
acctatctgc cgctgaacgc gcgtctgacc gcggaggaag cgcgttttgt gctgggtgac 300
agccgttgca ccaccgttat ctttggtgac cagcaagcgg atgttgcgca ggagctggcg 360
caaagcgaca ccccggttac cacctggatt ggtctgggcg atagctggag cacccacacc 420
tacgaaggtg tgcgtgcggg tcagccggac acccgtatcg atgagcaagt gggcctggac 480
gatctgagcg ttctgatgta tagcagcggc accaccggtg cgccgaaggg tgttatgctg 540
agccacggca acatgctgtg gaacgcgctg aaccagctgc tggcgcaaga catgaccagc 600
aaagaacgta ccctgagcgt tgcgccgctg ttccacatcg gtggcattgg tggcgcggtg 660
accccgaccc tgctgaacgg tggcaccgtg gttctgctgc gtaagtttga cgcgggtgtg 720
gttctggata ccatcgagaa agaacgtatt accaccttct ttgcggtgcc gaccatgatc 780
caggaactgt ggcatcaccc gcgttttgcg gatgcggatc tgagcagcct gcgtgcgatt 840
tgcgttgcgg gtgcgccgct gccggaagcg ctgatcagcc cgtggcagga ccgtgatgtg 900
gcgattaccc aagcgtacgg tctgaccgag accgcgccga gcgtgaccat gctgagcagc 960
gcggacgttc gtaccaagat tggtagcgcg ggcaaacgta ccttctttac cgacgttgat 1020
gtggttcgtc cggatggtag cagcgcggag ccgaacgaaa tcggcgagat tgtggcgaag 1080
ggcccgaacg ttatgctggg ttacctgaac caaccggaag cgaccgcgcg taccattgtg 1140
gacggttggc tgcacaccgg tgatgcgggc tatttcgacg atgaaggttt cctgtttatc 1200
tgcgaccgtt acaaagatat gtatattagc ggtggcgaga acgtgtatcc ggcggaagtg 1260
gaagcggcgc tgctgaagct ggacggcatc cgtgaggcgg cggtgattgg tgttccgcac 1320
gaaaaatggg gtgagaccgg catggcgttt gtggttgcgg cggacggcac caccctggat 1380
gaggaaaccg ttcgtgcgcg tctgcgtgaa aagctggcgg gtttcaaaat cccgaccttt 1440
attcaaattg cggaggcgct gccgcgtacc gcgaccggca agattcgtaa accggatctg 1500
cgtaagctgg cggcgagcca accggtgagc accagctaa 1539
<210>5
<211>1644
<212>DNA
<213> Artificial sequence ()
<400>5
atgggttacg aaaaatctgg ttaccgtgaa tctgacggta tctacgactc ttctttcccg 60
tctatcccga ccccgcgtga catcgacgtt accacctact gcatcttcca gcagcagtac 120
ggtgaccgtg ttgctctgat agacgctgtt accggtgcta aactgaccta ctctgaactg 180
cgttctgcta tcgactctgt tgctgctggt ctggctcagt ctggtgttaa acagggtgac 240
gttgttatga tatgcatgcc gaactctatc cactggccga tactgctgtt cggttctctg 300
cgtatcggtg ctgttgttac caccgctaac ccggttggta acgttcagga aatcggtcgt 360
caggctaaag actctcgtac cgcttacctg ataaccgttc cggaactgtg cggtaaactg 420
gcttctctga acatcccgct ggttctgaac gacatggact ctctgggtaa caaaaaacag 480
ttccacggtg ctgctttcgc tcgtttctct gaactgctga aagctgaccg taaaaaagtt 540
ccgcaggttc gtatcaaaga aaaagacacc gctaccctgc tgtactcttc tggtactacc 600
ggtgcttcta aaggtgttat cctgacccac ctgaacctgg ttgaatctat caaccagcgt 660
atggttgctg acccgcgttc tttccaggtt gctgaagaag ttcagatata cggtgttatc 720
atcccgctgt tccacgttat gggtatgatg gctatctgca tgccgaccct gcgtaaaggt 780
gaccagatgg ttgttttccc gaaattcgac ctggctgaaa tgctgggtgc ggttcagagg 840
ttccgtatca ccggcctggc tctggttccg ccgatactgg ttctgctgtc taaatctccg 900
ctggttgaaa aatacgacct gtcttctctg caactgatag gtttcggtgc tgctccggct 960
ggtgacctgt ctggtgtttc taaacgtttc cgtggtgttt acctgcgtca gggttacggt 1020
atgaccgaaa ccgcttcttc tggtactggt gttccgctgg aagacgttga ctacgctaac 1080
aaacacaact cttgcggtct gctggttccg aacatgcagg ctaaagttgt tgacgttctg 1140
accggtaaac cgctgccgcc gggtaaagaa ggtgaactgt ggctgcgtgg tctgaacgtt 1200
atgaaaggtt acctgaacaa cgaaaaagct accgctgaaa ccctggacaa agacggttgg 1260
ctgcacaccg gtgacctggc taaaatcgac gagcgtggct tcgtatacat cgtggaccgt 1320
ctgaaagaac tgataaaata caaaggtttc caggttgctc cggctgaact ggaatctatc 1380
ctgctgtctc actctgacat catggacgct gctgttgttc cgttcccgga cgaagaagct 1440
ggtgaaatcc cggttgcttt cgttgttcgt cgtccgggta ctaccctgac cggtaactct 1500
atcatggaat ttgttgcttc taaagtttct ccgtacaaaa aaatccgtcg tgttatcttc 1560
gttgacacca tcccgaaact ggaatctggt aaaatcctgc gtaaagaact gaaatctaaa 1620
ctgctgccgt cttctaaact gtaa 1644
<210>6
<211>1686
<212>DNA
<213> Artificial sequence ()
<400>6
atggcgccac aagaacaagc agtttctcag gtgatggaga aacagagcaa caacaacaac 60
agtgacgtca ttttccgatc aaagttactg gatatttaca tcccgaacca cctatctctc 120
cacgactaca tcttccaaaa catctccgaa ttcgccacta agccttgcct aatcaacgga 180
ccaaccggcc acgtgtacac ttactccgac gtccacgtca tctcccgcca aatcgccgcc 240
aattttcaca aactcggcgt taaccaaaac gacgtcgtca tgctcctcct cccaaactgt 300
cccgaattcg tcctctcttt cctcgccgcc tccttccgcg gcgcaaccgc caccgccgca 360
aaccctttct tcactccggc ggagatagct aaacaagcca aagcctccaa caccaaactc 420
ataatcaccg aagctcgtta cgtcgacaaa atcaaaccac ttcaaaacga cgacggagta 480
gtcatcgtct gcatcgacga caacgaatcc gtgccaatcc ctgaaggctg cctccgcttc 540
accgagttga ctcagtcgac aaccgaggca tcagaagtca tcgactcggt ggagatttca 600
ccggacgacg tggtggcact accttactcc tctggcacga cgggattacc aaaaggagtg 660
atgctgactc acaagggact agtcacgagc gttgctcagc aagtcgacgg cgagaacccg 720
aatctttatt tccacagcga tgacgtcata ctctgtgttt tgcccatgtt tcatatctac 780
gctttgaact cgatcatgtt gtgtggtctt agagttggtg cggcgattct gataatgccg 840
aagtttgaga tcaatctgct attggagctg atccagaggt gtaaagtgac ggtggctccg 900
atggttccgc cgattgtgtt ggccattgcg aagtcttcgg agacggagaa gtatgatttg 960
agctcgataa gagtggtgaa atctggtgct gctcctcttg gtaaagaact tgaagatgcc 1020
gttaatgcca agtttcctaa tgccaaactc ggtcagggat acggaatgac ggaagcaggt 1080
ccagtgctag caatgtcgtt aggttttgca aaggaacctt ttccggttaa gtcaggagct 1140
tgtggtactg ttgtaagaaa tgctgagatg aaaatagttg atccagacac cggagattct 1200
ctttcgagga atcaacccgg tgagatttgt attcgtggtc accagatcat gaaaggttac 1260
ctcaacaatc cggcagctac agcagagacc attgataaag acggttggct tcatactgga 1320
gatattggat tgatcgatga cgatgacgag cttttcatcg ttgatcgatt gaaagaactt 1380
atcaagtata aaggttttca ggtagctccg gctgagctag aggctttgct catcggtcat 1440
cctgacatta ctgatgttgc tgttgtcgca atgaaagaag aagcagctgg tgaagttcct 1500
gttgcatttg tggtgaaatc gaaggattcg gagttatcag aagatgatgt gaagcaattc 1560
gtgtcgaaac aggttgtgtt ttacaagaga atcaacaaag tgttcttcac tgaatccatt 1620
cctaaagctc catcagggaa gatattgagg aaagatctga ggacaaaact agcaaatgga 1680
ttgtaa 1686

Claims (3)

1. An application of p-coumaroyl-CoA ligase in biosynthesis of phloretin is characterized in that the amino acid sequence of the p-coumaroyl-CoA ligase is shown as SEQ ID No.1 or SEQ ID No. 2.
2. The use of p-coumaroyl-CoA ligase of claim 1 for the biosynthesis of phloretin, wherein the amino acid sequence of SEQ ID No.1 is Aa4CL from azotobacter.
3. Use of p-coumaroyl-CoA ligase according to claim 1 for the biosynthesis of phloretin, wherein the amino acid sequence of SEQ ID No.2 is Rj4CL from rhodococcus.
CN202010449008.1A 2020-05-25 2020-05-25 Application of novel p-coumaroyl-CoA ligase in biosynthesis of phloretin Active CN111748532B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010449008.1A CN111748532B (en) 2020-05-25 2020-05-25 Application of novel p-coumaroyl-CoA ligase in biosynthesis of phloretin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010449008.1A CN111748532B (en) 2020-05-25 2020-05-25 Application of novel p-coumaroyl-CoA ligase in biosynthesis of phloretin

Publications (2)

Publication Number Publication Date
CN111748532A true CN111748532A (en) 2020-10-09
CN111748532B CN111748532B (en) 2022-04-15

Family

ID=72673904

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010449008.1A Active CN111748532B (en) 2020-05-25 2020-05-25 Application of novel p-coumaroyl-CoA ligase in biosynthesis of phloretin

Country Status (1)

Country Link
CN (1) CN111748532B (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005084305A2 (en) * 2004-03-01 2005-09-15 Regents Of The University Of Minnesota Flavonoids
WO2007009181A1 (en) * 2005-07-20 2007-01-25 Agriculture Victoria Services Pty Ltd Modification of flavonoid biosynthesis in plants
US20070232495A1 (en) * 2006-03-24 2007-10-04 Nappa Alvaro O Compositions and methods to add value to plant products, increasing the commercial quality, resistance to external factors and polyphenol content thereof
WO2016016826A1 (en) * 2014-08-01 2016-02-04 Andrew Patrick Dare Methods and materials for manipulating phloridzin production
CN107574176A (en) * 2016-07-05 2018-01-12 天津大学 A kind of improved resveratrol biological production
CN107974484A (en) * 2017-11-10 2018-05-01 嘉兴欣贝莱生物科技有限公司 Chalcone synthase modeling method in phloretin biosynthetic process
CN110229804A (en) * 2019-05-23 2019-09-13 天津大学 A kind of limonene synzyme SynLS1 and its application
CN112899314A (en) * 2021-02-04 2021-06-04 陕西师范大学 Method for promoting recombinant yarrowia lipolytica to synthesize phloretin

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005084305A2 (en) * 2004-03-01 2005-09-15 Regents Of The University Of Minnesota Flavonoids
WO2007009181A1 (en) * 2005-07-20 2007-01-25 Agriculture Victoria Services Pty Ltd Modification of flavonoid biosynthesis in plants
US20070232495A1 (en) * 2006-03-24 2007-10-04 Nappa Alvaro O Compositions and methods to add value to plant products, increasing the commercial quality, resistance to external factors and polyphenol content thereof
WO2016016826A1 (en) * 2014-08-01 2016-02-04 Andrew Patrick Dare Methods and materials for manipulating phloridzin production
CN107574176A (en) * 2016-07-05 2018-01-12 天津大学 A kind of improved resveratrol biological production
CN107974484A (en) * 2017-11-10 2018-05-01 嘉兴欣贝莱生物科技有限公司 Chalcone synthase modeling method in phloretin biosynthetic process
CN110229804A (en) * 2019-05-23 2019-09-13 天津大学 A kind of limonene synzyme SynLS1 and its application
CN112899314A (en) * 2021-02-04 2021-06-04 陕西师范大学 Method for promoting recombinant yarrowia lipolytica to synthesize phloretin

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
NCBI: "Long-chain-fatty-acid-CoA ligase (EC 6.2.1.3) [Aromatoleum aromaticum EbN1]", 《GENBANK DATABASE》 *
OTANI,H.等: "MULTISPECIES: p-hydroxycinnamoyl-CoA synthetase [Bacteria]", 《GENBANK DATABASE》 *
XUE LIU等: "Modular metabolic engineering for production of phloretic acid,phloretin and phlorizin in Escherichia coli", 《CHEMICAL ENGINEERING SCIENCE》 *
刘金丛: "大肠杆菌中根皮素合成途径的构建", 《中国学位论文全文数据库》 *
刘金丛等: "微生物合成根皮素及其糖苷研究进展", 《中国生物工程杂志》 *
左芳雷等: "类黄酮化合物的微生物代谢工程研究进展", 《食品研究与开发》 *

Also Published As

Publication number Publication date
CN111748532B (en) 2022-04-15

Similar Documents

Publication Publication Date Title
JP6169073B2 (en) Isoprene synthase, polynucleotide encoding the same, and method for producing isoprene monomer
CN111094557B (en) Alcohol dehydrogenase mutant and application thereof in synthesis of diaryl chiral alcohol
KR102089516B1 (en) CO hydrating enzyme and method for producing formic acid using the same
CN108546690B (en) Short-chain dehydrogenase and mutant thereof, and preparation and application of gene
CN108690854B (en) Method for producing L-glufosinate-ammonium by using chemical-enzymatic method
CN113265433A (en) Bifunctional carbon glycoside glycosyl transferase and application thereof
CN109022515B (en) Biocatalytic preparation method of 6-O-norpapaverine
CN111748532B (en) Application of novel p-coumaroyl-CoA ligase in biosynthesis of phloretin
JP2024510210A (en) Mogroside biosynthesis
CN113699195B (en) Method for biosynthesis of xylose
CN112592912B (en) Glycosidase, encoding gene thereof and application thereof
CN110387361A (en) Aldehyde ketone reductase and application thereof
CN107937364B (en) Kidney bean epoxide hydrolase mutant with improved enantioselectivity
CN112322596B (en) 7 alpha-hydroxysteroid dehydrogenase mutant J-1-1 delta C6 and application thereof
CN111500600B (en) 3-sterone-1, 2-dehydrogenase and gene sequence and application thereof
CN107523582B (en) Engineering bacterium for producing coniferyl alcohol, construction method and application of engineering bacterium for producing coniferyl alcohol
CN111394289A (en) Genetically engineered bacterium and application thereof, and method for producing prostaglandin E2
CN114214294B (en) Cytochrome P450 mutant and application thereof
CN110257352A (en) A kind of epoxide hydrolase and application thereof
CN115851789A (en) Terpene synthase for producing germacrene A and application thereof
CN114277024B (en) Novel triterpene synthase and application thereof
CN111172213B (en) Method for preparing L-2-aminobutyric acid by double-enzyme tandem
CN111254180B (en) Method for preparing (S) -1,2,3, 4-tetrahydroisoquinoline-3-formic acid by enzymatic resolution
CN112342204B (en) Enzymatic synthesis method of dabigatran intermediate and lipase
CN111254181B (en) Method for preparing (S) -1,2,3, 4-tetrahydroisoquinoline-3-formic acid by chemical enzyme method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant