CN111742572B - 用于调整接收波束的方法及装置 - Google Patents

用于调整接收波束的方法及装置 Download PDF

Info

Publication number
CN111742572B
CN111742572B CN201980013377.1A CN201980013377A CN111742572B CN 111742572 B CN111742572 B CN 111742572B CN 201980013377 A CN201980013377 A CN 201980013377A CN 111742572 B CN111742572 B CN 111742572B
Authority
CN
China
Prior art keywords
beam direction
receive beam
receive
base station
change information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201980013377.1A
Other languages
English (en)
Other versions
CN111742572A (zh
Inventor
施平
何小寅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Technologies Co Ltd
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Publication of CN111742572A publication Critical patent/CN111742572A/zh
Application granted granted Critical
Publication of CN111742572B publication Critical patent/CN111742572B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种用户设备(user equipment,UE),用于执行用于调整接收波束的方法。所述UE执行:使用具有第一接收波束方向的所述接收波束从基站接收第一通信信号,其中,所述第一通信信号包括波束方向变化信息;根据所述波束方向变化信息将所述接收波束从所述第一接收波束方向调整为第二接收波束方向;基于具有所述第二接收波束方向的所述接收波束从所述基站接收第二通信信号。通过所述方法,所述UE可以基于基站波束与其自身之间的相对移动,主动调整所述接收波束方向。

Description

用于调整接收波束的方法及装置
相关申请案交叉申请
本申请要求2018年2月23日提交的发明名称为“Fast Test Mode Beam Alignmentfor Mobile Devices”的第62/634,589号美国临时专利申请和2018年12月31日提交的发明名称为“A Method and Apparatus for Adjusting a Reception Beam”的第62/787,070号美国临时专利申请的优先权和利益,这些申请均以引用的方式并入。
技术领域
本发明通常涉及无线通信技术,尤其是涉及一种用于调整用户设备(userequipment,UE)波束发送和接收参数以便从UE天线接收信号并发送信号的方法及装置。
背景技术
先进的无线通信***和设备采用强方向性天线***来提高天线增益,例如使用如5G NR和802.11ad/ay等毫米波(mmWave)通信。通常,在信号相位和信号振幅等方面,对在天线***传输过程中驱动不同天线的信号进行不同的加权,从而形成波束形状。类似地,对接收信号分量的振幅和相位进行不同的加权,以强调根据指定波束形状和方向接收的信号。用于发送和接收的波束成形可以通过降低干扰来提高吞吐量。
然而,由于毫米波的性质,相比其他类型的信号,环境因素对波束成形通信期间信号传输的影响更大。在波束成形通信中,采用波束转向改变相控阵天线的辐射方向图的主瓣方向。然后,接收器必须以相应的方式调整其波束方向,从而与发射器所发送的波束保持波束对准。如果发射器与接收器之间的波束对准丢失,则需要波束成形协议过程来重新对准波束。如果未对准的波束不能支持所需的链路预算或容量,则该协议过程将需要时间来重新建立无线链路以对准波束。在现有技术中,基站跟踪UE以调整其到所述UE的波束,但是仍可能发生波束未对准,从而需要波束成形协议过程步骤来重新建立波束对准。然而,进行该波束成形协议过程会干扰通信,甚至可能在执行该协议过程时导致UE和基站无法进行数据通信。
发明内容
示例性实施例的第一方面包括由用户设备(UE)执行的方法。在所述方法中,所述UE确定接收波束的第一接收波束方向;使用具有所述第一接收波束方向的所述接收波束从基站接收第一通信信号,其中,所述第一通信信号包括波束方向变化信息;根据所述波束方向变化信息将所述接收波束从所述第一接收波束方向调整为第二接收波束方向;基于具有所述第二接收波束方向的所述接收波束从所述基站接收第二通信信号。通过所提供的解决方案,在UE与基站之间相对移动之后,所述UE可以响应所述波束方向的所述变化,调整其波束方向。相应地,UE可以基于基站波束与其自身之间的相对角移动,主动调整所述接收波束方向。
示例性实施例的第二方面包括由基站执行的方法。在所述方法中,所述基站通过所述基站的发送波束将第一通信信号发送到所述UE,其中,所述第一通信信号包括波束方向变化信息,所述发送波束具有第一发送波束方向;通过改变为第二发送波束方向的所述发送波束发送第二通信信号。通过所提供的解决方案,所述基站可以经由具有所述发送波束指向的第一波束方向的发送波束,通知所述波束方向变化信息,使得所述UE可以响应所述波束方向对所述UE的变化而调整其波束方向。
示例性实施例的第三方面包括设备,其中,所述设备包括:包括指令的非瞬时性存储器;与所述存储器通信的一个或多个处理器,其中,所述一个或多个处理器执行所述指令以执行示例性实施例的所述第一方面中由所述UE执行的步骤。
示例性实施例的第四方面包括UE。其中,终端设备包括示例性实施例的所述第一方面中终端设备的功能。所述功能可以通过硬件实现,也可以通过由硬件执行的软件实现。所述硬件或所述软件包括一个或多个与上述功能对应的模块。
示例性实施例的第五方面包括计算机存储介质。其中,所述计算机存储介质存储示例性实施例的所述第一方面中的所述终端设备执行的指令,并存储示例性实施例的所述第一方面或所述第四方面中执行的程序。
附图说明
本发明的各个方面以示例方式说明,不受附图的限制,其中,相同参考符号指示元件。
图1示出了用于进行数据通信的无线网络。
图2A示出了根据示例性实施例的具有发送波束的基站。
图2B示出了根据示例性实施例的具有发送波束的基站。
图3示出了根据示例性实施例的物理信道和在所述物理信道上传输信号。
图4A示出了可以实现根据本发明的方法和教示的用户设备的示例。
图4B示出了可以实施根据本发明的方法和教示的基站的示例。
图4C示出了可以实施根据本发明的方法和教示的用户设备的示例。
图4D示出了根据本发明实施例的利用大量天线进行基带处理和模拟波束成形的接收路径的示例。
图5A示出了可以实施根据本发明的方法和教示的OTA测试***的示例。
图5B示出了可以实施根据本发明的方法和教示的OTA测试***的示例。
图5C示出了可以实施根据本发明的方法和教示的OTA测试***的示例。
图5D示出了可以实施根据本发明的方法和教示的现网中的示例。
图6A示出了可以由根据本发明的方法和教示实现的映射表的示例。
图6B和图6C示出了以下场景的示例:在UE固定坐标中,根据本发明改变基站波束从基站的角移动。
图6D示出了跟踪和优化基站波束的示例。
图7A示出了基于基站波束的角移动调整和优化UE波束的示例。
图7B示出了基于基站波束的角移动调整和优化UE波束的示例。
图8示出了基于基站波束的角移动调整和优化UE波束的示例。
图9示出了可用于实施各种实施例的网络***的框图。
具体实施方式
本发明涉及使用用户设备中的运动传感器确定基站中测量天线的角移动以进行波束对准的技术。
应理解,本发明的当前实施例可以以许多不同形式实施,权利要求的范围不应被解释为限于本文阐述的实施例。相反,提供这些实施例是为了使本发明彻底和完整,并将本发明实施例的概念充分传达给本领域技术人员。事实上,本发明旨在涵盖包括在由所附权利要求书定义的本发明的精神和范围内的这些实施例的替代物、修改和等同物。此外,在本发明的当前实施例的以下详细描述中,阐述了许多具体细节,以便提供透彻的理解。然而,本领域普通技术人员应清楚的是,可以在没有这些具体细节的情况下实践本发明的当前实施例。
在本文所述的***中:
·相控阵天线常用于商业毫米波通信中,如5G新空口(new radio,NR)。
·天线阵列形成定向毫米波波束,空间能量效率更高,接收灵敏度更高。
·存在如下场景:基站将在不改变波束ID的情况下引导基站波束跟随UE的移动,例如,在移动训练中跟踪移动车辆或人员,或在测试中表征UE无线性能。
·为了表征毫米波UE的无线性能,使用在球形空间内的EIRP/EIS分布。
·对于每个球面角度,所述UE将操纵相控阵天线使UE波束指向基站波束的方向。将在该方向上测量EIRP/EIS。通过移动UE或移动UE和测量天线来实现在球面方向上对EIRP/EIS的测量。可以使用多个测量天线来加快测量速度。
·在主动测试中,UE或测量天线的移动,或切换测量天线会导致波束不对准;所述UE需要将UE的波束以最大限度与测量天线的最大增益方向对准。
·将预留时间进行波束搜索和对准。该对准过程将减缓EIRP/EIS测量,或有EIRP较低或EIS较高的风险。
应理解,除非上下文另有明确说明,否则单数形式“一个(种)”和“所述”包括复数个参考对象。因此,例如,对“组件表面”的参考包括对一个或多个此类表面的参考。
本发明实施例中涉及的一些术语如下:
“波束”可以理解为空间滤波或空间参数。用于发送信号的波束可以称为发送波束(Tx波束),可以是空间发送滤波(空间域发送滤波),或空间发送参数(空域发送参数);用于接收信号的波束可以称为接收波束(Rx波束),可以是空间接收滤波(spatial receivefilter/space-receiveing filter),也可以是空间接收参数(空间域接收参数)。
波束成形是基于天线阵列的信号预处理技术。波束成形通过调整天线阵列中每个单元(每根天线)的加权系数,形成定向波束,从而获得明显的阵列增益。波束成形技术可以是数字波束成形技术、模拟波束成形技术或混合数字/模拟波束成形技术。所述发送波束可以指,在通过天线发送信号后,在不同空间方向上形成的信号强度的分布。所述接收波束可以指,从天线接收的无线信号在不同空间方向上的信号强度分布。
波束成形可以分为由基站执行的发送波束成形,和由UE执行的接收波束成形。通常,发送波束成形通过使用多个天线使传播到达区域集中在特定方向上来提高方向性。可以将多个天线布置为天线阵列,该天线阵列中包括的每个天线可以称为阵元。可以按直线阵和平面阵等各种类型配置天线阵列。当采用发送波束成形时,通过增加信号方向性,增加发送距离。此外,由于信号几乎不沿除定向方向以外的其他方向传输,因此UE的信号干扰将显著降低。UE可以通过接收天线阵列对接收到的信号进行波束成形。接收波束成形将无线电波的接收集中在特定方向上,以增加从对应方向入射的接收信号的灵敏度,并从接收信号中排除从对应方向以外的方向入射的信号,从而提供屏蔽干扰信号的增益。
通过具有定向组件实现波束成形允许改变波束的方向以调整接收端与发送端之间的相对位置。天线阵列通过调整天线阵列中天线的移相器,可以利用多个具有特定延迟的共用天线等效地实现定向天线,其中,基于接收波束在特定方向上的参数调整天线的移相器。
波束对关系是发送波束与接收波束之间的对关系,或空间发送滤波与空间接收滤波之间的对关系。通过在作为波束对关系的发送波束与接收波束之间传输信号,可以获得较大的波束成形增益。
在一个示例中,发送端(如基站)与接收端(如UE)可以通过波束训练获得波束对关系。基站可以利用波束扫描技术发送参考信号,UE也可以利用波束扫描技术接收参考信号。具体地,基站可以在空间中形成不同的定向波束,并可以产生多个方向性不同的发送波束,从而通过不同的定向波束发送参考信号。这使得参考信号在发送波束指向的方向上的功率最大化。UE也可以通过波束成形在空间中形成不同的定向接收波束,并调整波束成形参数,以生成多个不同方向的接收波束,从而确定接收波束最大化并具有最佳信号强度或质量的方向。
在这种过程之后的操作期间,发送波束和接收波束对准或几乎对准。对于下行波束成形,应选择根据UE和基站各自的结构在各个方向上生成的基站的一个或多个发送波束与UE的一个或多个接收波束的最佳波束对,然后应执行下行波束跟踪过程,其中,基站和UE都识别波束对上的信息。
图1示出了用于进行数据通信的无线网络。通信***100包括用户设备110A-110C、无线接入网(radio access network,RAN)120A-120B、核心网130、公共交换电话网络(public switched telephone network,PSTN)140、互联网150以及其他网络160。其他或替代网络包括私有和公共数据包网络,包括公司内部网。虽然该图中示出了一定数量的这些组件或元件,但是***100中可以包括任意数量的这些组件或元件。
在一个实施例中,无线网络可以是包括至少一个基站(如5G基站)的第五代(5G)网络,可以采用正交频分复用(orthogonal frequency-division multiplexing,OFDM)和短于1ms(例如,大约100微秒或200微秒)的传输时间间隔(transmission time interval,TTI),以与通信设备通信。通常,基站也可以用于指eNB和5G BS(gNB)、接入点、传输点等中的任一者。此外,所述网络还可以包括网络服务器,其中,所述网络服务器用于对经由至少一个eNB或gNB从所述通信设备接收的信息进行处理。
***100使多个无线用户能够发送和接收数据和其他内容。***100可以实施一种或多种信道接入方法,例如但不限于码分多址(code division multiple access,CDMA)、时分多址(time division multiple access,TDMA)、频分多址(frequency divisionmultiple access,FDMA)、正交FDMA(orthogonal FDMA,OFDMA)或单载波FDMA(single-carrier FDMA,SC-FDMA)等。
用户设备(user equipment,UE)110A-110C用于在***100中操作和/或通信。例如,用户设备110A-110C用于发送和/或接收无线信号或有线信号。每个用户设备110A-110C表示任何合适的终端用户设备,可以包括如下设备(或可以称为):用户装置/设备、无线发送/接收单元(UE)、移动台、固定或移动用户单元、寻呼机、蜂窝电话、个人数字助理(personal digital assistant,PDA)、智能手机、笔记本电脑、触摸板、无线传感器、可穿戴设备或消费类电子设备。
在所描述的实施例中,RAN 120A-120B分别包括一个或多个基站170A、170B(统称为基站170)。每个基站170用于与UE 110A、110B、110C中的一个或多个无线连接,以便能够接入核心网130、PSTN 140、互联网150和/或其他网络160。例如,基站(BS)170可以包括若干众所周知的设备中的一个或多个,如基站收发器(base transceiver station,BTS)、Node-B(NodeB)、演进型NodeB(eNB)、下一代(第五代)(5G)NodeB(gNB)、家庭NodeB、家庭eNodeB、站点控制器、接入点(access point,AP),或无线路由器,或服务器、路由器、交换机、运输点或具有有线网络或无线网络的处理实体。
在一个实施例中,基站170A构成RAN 120A的一部分,RAN 120A可以包括其他基站、元件和/或设备。类似地,基站170B构成RAN 120B的一部分,其中,RAN 120B可以包括其他基站、元件和/或设备。每个基站170都在特定地理区域(有时称为“小区”)内操作以发送和/或接收无线信号。在一些实施例中,可以采用多输入多输出(multiple-input multiple-output,MIMO)技术,每个小区具有多个收发器。
基站170(例如,170A和170B)使用无线通信链路经由一个或多个空口(未示出)与用户设备110A-110C中的一个或多个进行通信。所述空口可以利用任何合适的无线接入技术。
设想***100可以使用多个信道接入功能,例如包括各种方案,其中,基站170和用户设备110A-110C用于实施长期演进(Long Term Evolution,LTE)无线通信标准、先进LTE(LTE-A)和/或LTE广播(LTE Broadcast,LTE-B)。在其他实施例中,基站170和用户设备110A-110C用于实施UMTS、HSPA或HSPA+标准和协议。当然,可以利用其他多接入方案和无线协议。
RAN 120A-120B与核心网130通信,以向用户设备110A-110C提供语音、数据、应用、基于IP的语音传输(Voice over Internet Protocol,VoIP)或其他服务。应理解,RAN120A-120B和/或核心网130可以与一个或多个其他RAN(未示出)直接或间接通信。核心网130还可以用作其他网络(如PSTN 140,互联网150和其他网络160)的网关接入。此外,一些或全部用户设备110A-110C可以包括使用不同无线技术和/或协议经由不同无线链路与不同无线网络通信的功能。
RAN 120A-120B还可以包括毫米波和/或微波接入点(AP)。所述AP可以是基站170的一部分,也可以位于远离基站170的位置。所述AP可以包括但不限于连接点(mmW CP)或能够进行mmW通信的基站170(例如,mmW基站)。mmW AP可以在从24GHz到100GHz等频率范围内发送和接收信号,但不要求在该整个范围内工作。如本文所使用的,术语“基站”用于指基站和/或无线接入点。
通常,图1表示利用本发明中所描述的波束成形通信和过程的通信。更具体地,可以在图1的电路和设备内使用所公开的用于在发射器与接收器之间保持波束对准的装置和相关方法。虽然图1示出了通信***的一个示例,但是可以对图1进行各种更改。例如,所述通信***100可以按任何合适配置包括任何数量的用户设备、基站、网络或其他组件。还应理解,术语“用户设备”可以指在蜂窝或移动通信***中与无线网络节点通信的任何类型的无线设备。用户设备的非限制性示例是目标设备、设备到设备(device-to-device,D2D)用户设备、机器类型用户设备或能够进行机器到机器(machine-to-machine,M2M)通信的用户设备、笔记本电脑、PDA、iPad、平板电脑、移动终端、智能手机、消费类***设备(consumerperipheral equipment,CPE)、笔记本电脑嵌入设备(laptop embedded equipment,LEE)、笔记本电脑加载设备(laptop mounted equipment,LME)和USB加密狗。
图2A示出了根据示例性实施例的具有发送和接收波束的基站。基站的发送波束是指UE的接收波束,基站的接收波束是指UE的发送波束。基站202管理按照其服务覆盖区域划分为一个或多个扇区的小区204,并使用波束成形方案形成多个发送/接收(Tx/Rx)波束BM1-BM7,其中,所述波束成形方案如数字波束成形(例如,发送(Tx)前快速傅里叶逆变换(pre-Inverse Fast Fourier Transform,pre-IFFT)波束成形/接收(Rx)后快速傅里叶逆变换(post-FFT)波束成形)、模拟波束成形(例如,Tx post-IFFT波束成形/Rx pre-FFT波束成形)或其组合。基站202通过同时或连续扫描波束成形信号来发送波束成形信号,例如,从波束BM1开始到BM7结束,结合图4A至图4C进行更详细的描述。
基站202可以包括用于发送和/或接收无线通信信号、块、帧、传输流、数据包、消息和/或数据的一个或多个天线(未示出),或者可以与所述一个或多个天线(未示出)相关联。在一个实施例中,基站的天线可以包括天线阵列,用于生成一个或多个定向波束,例如用于经由一个或多个波束成形链路进行通信。
在其他实施例中,基站的天线可以包括一个或多个天线振子、组件、单元、组装和/或阵列的任何其他天线配置、结构和/或布置。例如,基站的天线可以包括相控阵天线、全向天线、单振子天线、多振子天线和/或一组切换式波束天线等。所述天线阵列可以包括一个或多个天线振子,例如可以用于创建强方向性天线波束图。例如,所述天线振子可以置于预定义几何形状的阵列(例如二维阵列)中,也可以配置成形成一个或多个强定向性天线方向图或波束,其中,可以通过在天线振子处设置适当的信号相位和/或通过基带处理,或通过从一组切换式波束天线中选择一个切换式波束天线来操纵所述一个或多个强定向性天线方向图或波束。
在其他实施例中,可以采用双极化天线振子。这里,天线阵列的单个振子可以包括多个极化天线。多个振子可以组合在一起形成天线阵列。所述极化天线可以径向间隔开。例如,可以将两个极化天线垂直布置,以形成水平极化天线和垂直极化天线。
在一些实施例中,基站202可用于控制天线阵列生成和操纵一个或多个波束以使其指向一个或多个其他设备,例如UE 110A或110B。基站202和UE 110A可以利用毫米波通信频段为较大的覆盖小区区域204提供无线连接。
用户设备(UE),如基站202服务的用户设备110A-110B,可用于在不支持Rx波束成形的情况下全向接收信号;在通过每次使用一个波束成形方向图支持Rx波束成形时,接受信号;或通过同时使用不同方向的多个波束成形方向图支持Rx波束成形时接收信号。
如果用户设备110A-110B不支持Rx波束成形,则用户设备110A-110C测量基站170的每个发送波束中参考信号(reference s ignal,RS)的信道质量并将测量结果报告给基站202。基站202从基站的多个Tx波束中为用户设备110A-110C选择最佳发送波束。如果用户设备110A-110C用于支持Rx波束成形,则用户设备110A-110C针对每个接收波束图案测量从基站202接收的多个Tx波束的信道质量,并将所有Tx-Rx波束配对的全部或部分高阶测量结果报告给基站202。基站202可以将合适的Tx波束分配给用户设备110A-110C。如果用户设备110A-110C能够从基站202接收多个Tx波束或支持多个基站Tx-用户设备Rx波束对,则基站202可以在考虑空间复用、通过重复传输或同时传输进行分集传输的情况下选择波束。
图2B示出了根据本发明实施例的毫米波移动宽带(millimeter-wave mobilebroadband,MMB)通信***200。在所示实施例中,***200包括基站202、UE 110A-110B。基站202用于与UE 110A和110B通信。
基站202和UE 110A-110B可以使用每个天线或天线阵列进行波束成形。天线阵列可以形成不同宽度的波束,如宽波束或窄波束。分别在基站202与UE 110A和110B之间建立波束对链路。波束对链路可以是基站202的发送波束与UE 110A的接收波束之间的链路。
在下行链路中,基于基站的发送波束成形,或基站的发送波束成形和MS的接收波束成形的组合进行波束成形。
本发明中的实施例还可以应用于基站到基站无线通信和移动站到移动站无线通信,并且不限于基站与移动站之间的通信。
图3示出了根据示例性实施例的物理信道和传输信号。当用户设备110A-110C(图1)开机或进入新小区(如小区204(图2))时,用户设备110执行初始小区搜索或波束搜索302。初始小区搜索302涉及获取与基站170(例如可以是基站170)的同步。具体地,用户设备110通过从基站170接收主同步信道(Primary Synchronization Channel,P-SCH)和从同步信道(Secondary Synchronization Channel,S-SCH)将其时序与基站170同步并获取小区标识(ID)和其他信息。随后,用户设备110可以通过从基站170接收物理广播信道(PhysicalBroadcast Channel,PBCH)获取小区中的广播信息。在初始小区搜索期间,用户设备110可以通过接收下行参考信号(downlink reference signal,DL RS)来监测下行(downlink,DL)信道状态。
在初始小区搜索之后,用户设备110A-110C可以在304处通过接收物理下行控制信道(Physical Downlink Control Channel,PDCCH)并基于PDCCH中包括的信息接收物理下行共享信道(Physical Downlink Shared Channel,PDSCH)来获取详细***信息。
如果用户设备110A-110C初始接入基站170或没有无线资源向基站170传输信号,则用户设备110A-110C可以在306处执行与基站170的随机接入过程。在随机接入过程306期间。
在完成上述过程后,在308处,用户设备110A-110C可以从基站170接收PDCCH和/或PDSCH,并向基站170发送物理上行共享信道(PUSCH)和/或PUCCH,这是一般DL和UL信号传输过程。具体地,用户设备110A-110C接收PDCCH上的下行控制信息(downlink controlinformation,DCI)。例如,DCI包括用户设备110A-110C的资源分配信息等控制信息。
用户设备110A-110C在上行链路(uplink,UL)信道上向基站170发送或从基站170在DL信道上接收的控制信息包括DL/UL应答/否定应答(ACKnowledgment/NegativeACKnowledgment,ACK/NACK)信号、信道质量指示(Channel Quality Indicator,CQI)、预编码矩阵索引(Precoding Matrix Index,PMI)、秩指示(Rank Indicator,RI)等。可以在PUSCH和/或PUCCH上传输所述控制信息,如CQI、PMI、RI等。
参考本发明附件中的各种图,在毫米波通信中,广泛使用相控阵天线来满足无线链路预算要求。通信具有强方向性。对于每个发送波束,存在UE的最优接收波束。基站的发送波束与UE的接收波束相对应。通常,3GPP定义了支持三种波束管理过程搜索和跟踪基站的发送波束所必需的网络参数。这些过程需要花费时间,在极端条件下有可能丢失链路。存在与用于跟踪基站波束的信号相关联的网络容量折衷。或者,UE可以加快基站波束搜索和精化,通过使用由包括陀螺仪和加速度计的运动传感器生成的角移动信息来保持良好的波束跟踪。为了表征移动设备的无线性能,除了TRP/TIS之外,还使用球面空间内的EIRP/EIS分布(CDF)。期望UE将其最佳UE波束与来自球面空间中各个方向的基站波束对准。UE的角移动是UE的移动,该移动可能导致UE的接收波束的角度变化。
为了实现球面覆盖,可以采用UE旋转或测量天线和UE均旋转进行EIRP/EIS测试。当只有UE旋转时,UE的角运动信息足以调整UE波束(也指UE的接收波束)。当UE和测量天线(或基站天线)均旋转时,UE无法获知测量天线信息的角移动,无额外的信令。仅利用UE传感器数据的角移动信息,UE可能无法跟踪测量天线波束的移动(测量天线波束也可以指基站的发射波束)。在另一种场景下,基站需要跟踪UE在汽车或高速列车内的移动。UE的移动是可预测的。基站可以在不使用不同波束ID的情况下配置和引导其发送波束跟踪UE移动,从而减少波束切换开销。UE将经历同一发送波束ID的波束方向改变。关键的是调整接收波束以跟随基站波束(基站的发送波束)的波束方向变化,并保持良好的波束对准。通常,UE不会利用基站信令知晓波束方向变化。测量天线的角移动或基站波束相对于基站的变化信息,因为UE的运动传感器不会提供此类信息。本发明的目的是,每当测量天线发生旋转或基站波束的信息变化时,向UE发送此类信息。利用该波束方向变化信息,UE将确定UE与一个或多个测量天线之间的相对移动,或UE与基站波束之间的相对移动,从而知晓如何调整UE波束(指UE的接收波束)来跟踪测量天线波束或基站波束(指基站的发送波束)。UE波束调整涉及,通过标准定义的波束管理过程,使用选定的最佳UE波束来监测UE角移动和跟踪基站的波束方向(也指发送波束方向)。每当UE与基站之间存在相对角移动,并且UE知晓方位角和仰角的相对方向变化时,UE能够根据方位角和评估角度的变化来改变活动波束。
在典型的EIRP/EIS CDF测量中,基站仿真器会改变测量天线波束(即基站的发送波束)的极化。这种极化变化相当于UE的旋转。即使测量天线的方向相同,UE也需要使UE波束重新对准以与新极化对应。在本发明中,UE波束也指UE的接收波束,是空间接收滤波或空间接收参数(空间域接收参数)。或者,UE波束是指从天线接收的无线信号在不同空间方向上的信号强度分布。本发明针对由基站发送并由UE接收的信号,用于通过来自基站的信令命令或任何信号识别极化。UE可以对两个正交极化采用两个映射表,每个极化对应一个映射表。在UE接收到发送波束的极化变化信息后,UE可以根据来自基站的有关极化变化的信令切换到另一映射表。
3GPP中定义的关于波束管理过程的一些现有解决方案是基于信号质量的。当UE与空中下载(over-the-air,OTA)性能测试的测量天线之间,或UE与基站之间发生极化变化或相对移动时,基站或基站仿真器可以为UE配置训练信号和训练波束,以使UE波束与基站波束对准。在本发明中,基站波束称为基站的发送波束。在本发明中,UE波束称为UE的接收波束。
由于基站仿真器需要等待每个测量角度和极化的对准完成,因此UE使UE波束与基站天线对准的方法需要花费时间。这很耗费时间,而且对于EIS测试来说可能存在问题。不同供应商的测试解决方案,等待时间可能不够。该解决方案利用来自UE上的传感器以及信令和极化变化信令的角移动信息,并且该解决方案可以比现有解决方案更快地调整波束。
图4A示出了可以实现与根据本发明的教示对应的方法和硬件的用户设备(UE)110的示例。如图4A所示,UE 110A包括:至少一个处理器404,经耦合以与收发器402通信,所述收发器402用于发送和接收无线通信信号;存储器406,用于接收由处理器404执行的计算机指令,并且用于存储和检索数据。处理器404实施存储器406中存储的计算机指令所定义的UE 110A的各种处理操作。例如,处理器404可以执行信号编码、数据处理、功率控制、输入/输出处理或任何其他能够使UE 110A在***100(图1)中操作的功能。处理器404还可以与输入/输出(I/O)408通信以接收用户选择和输入并产生有关用户消耗的信息。I/O设备408便于与用户进行交互。每个输入/输出设备1108包括用于向用户提供信息或从用户接收信息的任何合适的结构,如扬声器、麦克风、小键盘、键盘、显示器或触摸屏。
处理器404可以包括用于执行一个或多个操作的任何合适的处理或计算设备。例如,处理器404可以包括微处理器、微控制器、数字信号处理器、现场可编程门阵列或专用集成电路。
收发器402用于调制数据或其他内容以由至少一个天线410进行发送。收发器402还用于将至少一个天线410所接收的数据或其他内容解调制。每个收发器402可以包括用于生成信号进行无线发送和/或处理无线接收的信号的任何合适的结构。每个天线410包括用于发送和/或接收无线信号的任何合适的结构。应理解,可以在UE 110中使用一个或多个收发器402,可以在UE 110中使用一个或多个天线410。尽管以单个功能单元示出,但收发器402也可以使用至少一个发射器和至少一个接收器实现,其中,每个发射器和接收器具有一个或多个模拟信号路径。
存储器406存储由UE 110使用、生成或收集的指令和数据。例如,存储器406可以存储由一个或多个处理器404执行的软件或固件指令以及用于减少或消除传入信号中的干扰的数据。每个存储器406包括任何合适的易失性和/或非易失性存储和检索设备。可以使用任何合适类型的存储器,如随机存取存储器(random access memory,RAM)、只读存储器(read-only memory,ROM)、硬盘、光盘、用户识别模块(subscriber identity module,SIM)卡、记忆棒、安全数字(secure digital,SD)存储卡等。
图4B示出了可以实施根据本发明的方法和教示的基站170的示例。如图4B所示,基站170包括至少一个处理器458、至少一个发射器452、至少一个接收器454、一个或多个天线460和至少一个存储器456。处理器458实施基站170的各种处理操作,如信号编码、数据处理、功率控制、输入/输出处理或任何其他功能。每个处理器458包括用于执行一个或多个操作的任何合适的处理或计算设备。例如,每个处理器458可以包括微处理器、微控制器、数字信号处理器、现场可编程门阵列或专用集成电路。
每个发射器452包括用于生成信号以无线发送到一个或多个UE或其他设备的任何合适的结构。每个接收器454包括用于处理从一个或多个UE或其他设备无线接收的信号的任何合适的结构。虽然以单独的组件示出,但至少一个发射器452和至少一个接收器454可以组合成收发器。每个天线460包括用于发送和/或接收无线信号的任何合适的结构。虽然共用天线460在这里示出为耦合到发射器452和接收器454,但一个或多个天线460可以耦合到一个或多个发射器452,一个或多个单独的天线460可以耦合到一个或多个接收器454。每个存储器456包括任何合适的易失性和/或非易失性存储和检索设备。
图4C示出了可以实施根据本发明的方法和教示的UE的实施例。如图4C所示,UE410包括至少一个处理器404。处理器404实施UE 410的各种处理操作。例如,处理器404可以执行信号编码、数据处理、功率控制、输入/输出处理或任何其他能够使UE 410在通信***(如图1的***100)中操作的功能。处理器404可以包括用于执行一个或多个操作的任何合适的处理或计算设备。例如,处理器404可以包括微处理器、微控制器、数字信号处理器、现场可编程门阵列、专用集成电路或调制解调器基带。处理器404可以将基带或中频信号发送到射频(radio frequency,RF)收发器412,以便通过RF进行转换并经由天线阵列利用波束成形发送处理进行发送。
UE 410还包括至少一个射频(RF)收发器412。RF收发器412可以与收发器402相同,也可以不同。RF收发器412用于调制数据或其他内容以由至少一个天线410经由RF信号进行发送。RF收发器412还用于将至少一个天线410所接收的数据或其他内容解调制。RF收发器412可以包括用于生成信号进行无线发送和/或处理无线接收的信号的任何合适的结构。每个天线410包括用于发送和/或接收无线信号的任何合适的结构。应理解,可以在UE 110中使用一个或多个收发器402,可以在UE 110中使用一个或多个天线410。尽管以单个功能单元示出,但收发器402也可以使用至少一个发射器和至少一个单独接收器实现。
UE 410还包括多个移相器416。多个移相器416都用于从处理器404接收移相器控制信号并执行所述信号中的移相器416控制指令。在图4C中,每个天线410对应一个移相器。在其他实施例中,移相器416可以与一个或多个天线410对应。
UE 410还包括多个放大器414,所述放大器414可以分别在相应模拟发送和接收路径中包括功率放大器(power amplifier,PA)和低噪声放大器(low noise amplifier,LNA)。放大器414的PA放大来自天线410的传出RF信号进行辐射。放大器414的LNA放大从天线410接收的传入RF信号。放大器414可以用于在发送和接收RF信号期间从处理器404接收增益控制指令,尽管图4C中未示出此类控制信号。虽然示出了仅一个天线410对应每个放大器414,但放大器414可以耦合到一个或多个天线410。
此外,UE 410包括图4C中未示出的至少一个存储器。存储器406耦合到处理器404并存储UE 410使用、生成或收集的指令和数据。例如,存储器可以存储由一个或多个处理器404执行的软件或固件指令以及用于减少或消除传入信号中的干扰的数据。每个存储器406包括任何合适的易失性和/或非易失性存储和检索设备。存储器可以与处理器404和/或RF收发器412结合,存储器也可以与处理器404和RF收发器412分离。
图4D示出了根据本发明实施例的利用大量天线进行基带处理和模拟波束成形的接收路径。接收路径440包括波束成形架构,在该架构中,在RX天线处接收的所有信号都通过放大器414(例如,低噪声放大器(LNA))和移相器416进行处理。然后,将信号组合成模拟流,可以进一步将模拟流转换为基带信号并在基带中进行处理。
如图4D所示,天线410(也指接收天线)接收由基站的发射天线经由空中下载发送的信号。每个接收天线可以有一个或多个天线振子。来自RX天线的信号通过LNA 414和移相器416进行处理。在合路器420处合并这些信号以形成模拟流。总共可以形成多个模拟流。可以经由RF收发器将每个模拟流进一步转换为基带信号。可以在处理器中处理转换后的数字信号以获得恢复的NS信息流,其中,所述处理器可以是基带RX MIMO处理模块404或其他基带处理模块。控制器422可以与包括基带处理器的处理器404、RF收发器412、RX波束成形模块418和RX天线阵列410交互。所述控制器可以:获取基站发送的包括波束方向变化信息的第一通信信号;根据所述波束方向变化信息确定第二接收波束方向;根据所述波束方向变化信息,将接收波束从第一接收波束方向调整为第二接收波束方向。例如,控制器422可以调整RF收发器412、RF波束成形模块或RX天线阵列以将接收波束调整为第二接收波束方向。所述控制器可以耦合到未示出的存储器和未示出的处理器。
图5A示出了可以实施根据本发明的方法和教示的OTA测试***的示例。在图5A中,***500包括UE 110A、基站天线501。基站天线501可以是测量天线,也可以是UE 110A与基站501通信的基站天线。在图5A中,UE 110A在方位角和仰角上旋转,基站天线501是固定的。UE的传感器可以检测UE 110A与基站天线501之间的相对运动。UE 110A的传感器可以检测UE 110A与来自基站天线501的发送波束之间的相对运动。
图5B示出了可以实施根据本发明的方法和教示的OTA测试***的另一个示例。在图5B中,UE 110A在方位角上旋转,基站天线501在仰角上旋转。UE的传感器可以检测UE110A与基站天线501之间的相对运动。因此,UE 110A的传感器可以检测UE 110A与来自基站天线501的发送波束之间的相对运动。
图5C示出了可以实施根据本发明的方法和教示的OTA测试***的另一个示例。与图5B相比,图5C中的***包括基于测试策略呈所设计间距的多个天线。因此,切换天线可以覆盖所有仰角。在图5C中,UE 110A在方位角上旋转,基站天线501沿着小仰角旋转。UE110A的传感器可以检测UE 110A与基站天线501之间的方位角变化的相对运动。因此,UE110A的传感器可以检测UE 110A与来自基站天线501的发送波束之间的相对运动。
图5D示出了可以实施根据本发明的方法和教示的现网中的另一个实施例。在该实施例中,UE 110A沿着从t0到t2的方向移动,而基站170跟踪UE移动并在不改变基站波束ID的情况下重新引导基站波束跟随UE的移动。UE的运动传感器可以提供速度信息。在UE固定的坐标中,基站波束方向逐渐变化。基站可以利用UE报告的不同基站波束的基站波束信号强度/质量预测UE的新位置。基站可以利用UE报告的不同基站波束的基站波束信号质量和UE的速度信息来预测UE的新位置。UE的运动传感器可以提供速度信息。利用预测的UE新位置,基站可以确定新的基站波束来跟踪UE移动。
图6A示出了可以由根据本发明的方法和教示实现的映射表的示例。映射表601包括UE坐标中接收波束的每个波束方向(也指接收波束方向)与接收波束参数的映射。相对于UE的波束方向是相对于UE的球面的接收波束方向。接收波束方向由二维坐标(用“方块”表示)基于仰角(θ)和方位角(φ)描述。(其他球面坐标可能也适用)。相控阵天线***可以由通过仰角(θ)和方位角(φ)索引的表来表征,该表映射到UE 110固定的坐标中的量化方向。仰角(θ)方向为180度,方位角(φ)方向为360度。作为示例,在仰角(θ)方向上的每个方块可以对应20度。方位角(φ)方向上的每个方块可以对应30度。在其他情况下,每个方块在仰角(θ)方向或方位角(φ)方向上可以对应不同的覆盖范围。
每个接收波束方向(θ,φ)对应一个接收波束参数。所述接收波束参数用于配置与天线(或天线阵列的天线振子)相关的组件,以从基站接收信号,从而形成指向所述接收波束方向的接收波束。所述接收波束参数包括天线索引和组件配置,接收波束参数用于配置与天线对应的组件,从而形成具有接收波束方向的接收波束。所述组件配置可以是移位器配置、放大器配置。当所述接收波束由天线阵列形成时,所述天线索引可以是天线阵列索引,所述组件配置可以是与所述天线阵列的天线阵子对应的配置。对于每个接收波束方向(θ,φ),分析***中的每个天线(或天线阵列中的天线振子)以找到每个移相器416(延迟)和放大器414的最优设置(即,确定最佳性能的相控阵天线)。在UE 110A具有多个天线阵列的情况下,每个天线阵列可以用天线阵列索引进行标识。对于每个接收波束方向,选择具有相应移相器和放大器增益设置的UE天线阵列。在一个实施例中,选择两个相控阵天线配置,一个配置对应一个极化。相应的配置存储在配置表602中。
例如,对于每个接收波束方向,配置表602配置有包括天线阵列中每个天线振子的相控阵配置的接收波束参数。在图6A的示例中,天线阵列具有四个(4)个天线振子,因此配置表602包括四个对应的天线索引(天线索引1-天线索引4)和组件配置(相控阵配置1-相控阵配置4)。然而,应理解,可能存在任何数量的环境。每个方向的多个相控阵天线可以用于分集操作,或MIMO配置以支持发送或接收方向上的一个以上流。
另外,对于每个接收波束方向,存在最优天线阵列配置(或最优天线阵列配置列表),当UE 110A扫描每个发送训练波束序列的可能接收波束时,在获取阶段可以通过最优接收波束方向标识发送波束方向。
图6B和图6C示出了在UE固定坐标系中的场景示例。根据本发明,在所述UE固定坐标系中,由于UE旋转(角移动)而改变发送波束方向。在该示例中,发送波束是固定的,来自基站的发送波束的角移动(旋转)等效于UE的角移动(旋转)。在UE固定坐标系中,UE不会区分由于方向变化或由于UE旋转而引起的UE接收波束的方向变化。
如果发送波束方向在地固坐标系中没有变化,则通过利用来自包括陀螺仪和加速度计的运动传感器的旋转信息补偿UE移动,UE可以调整UE波束(也指接收波束)并将接收波束对准发送波束方向。在发送波束方向变化的情况下,UE无法使用其旋转信息预测在UE固定坐标系中的波束方向。需要通过基站的信号获取波束方向变化信息。
图6D示出了跟踪和优化基站的发送波束的示例。如所描绘的,示出了具有旧接收波束方向(原始、先前或第一)接收波束方向和新接收波束方向(在UE方向改变之后,也指第二接收波束方向)的情况603以及对应的配置表604和配置表605。特别地,在跟踪状态期间,当前接收波束参数(天线阵列索引、天线阵列配置)与在波束搜索和对准过程中确定的接收波束相关联。所述当前接收波束参数可以指第一接收波束参数。UE基于UE方位变化的变化(Δθ,Δφ)预测接收波束在UE固定坐标系中的方位(接收波束方向)。UE方位变化是利用附接到UE的陀螺仪和加速度计的信息推导出的。基于检测到的UE方位变化,可以基于配置表604和配置表605中的接收波束参数确定天线切换状态(应使用/选择哪个天线阵列)和相移器配置。UE的旋转需要三个自变量。在UE固定坐标系中,可以不将UE旋转认为是发送波束的波束方向变化,而是认为是基站波束极化变化。在一个实施例中,如果极化方向角度发生变化,使得其超出限制/阈值,则天线配置和组件配置可以从一个极化变化为另一个极化。在另一个实施例中,可以更新配置表604和配置表605以反映场景变化,如天线变化等。在UE固定坐标系中,UE无法区分由于UE旋转或基站波束变化或UE旋转且基站波束变化而引起的接收波束的方向变化。期望基站在相同波束ID的方向改变或极化改变时通知UE。
下面是参照各图讨论的波束获取和跟踪的示例性实现方式。下文所述的实现方式并非旨在加以限制,只是出于讨论目的的实现方式的一个实例。
如上所述,波束获取在对应设备(例如,基站170和UE 110)之间建立初始波束配置,使得设备能够发起通信,如毫米波频带通信。在基站170和UE 110A经由波束对链路(基站的发送波束和UE的接收波束、基站的接收波束和UE的发送波束)建立通信之后,UE 110A可以使用传感器提供的信息来确定UE 110A正在操作的特定环境。
在波束搜索过程中,从基站170向UE 110A发送一系列训练波束。每个训练波束被配置为特定方向,并由UE 110接收。在一个实施例中,UE天线方向图被配置为全向。在另一个实施例中,如果UE 110A具有多个相控阵天线,则仅将配置表中列出的天线(针对特定环境)配置为对应方向。UE 110A将使用所有可用的UE波束(覆盖所有预定方向)接收训练波束(也指基站波束,或基站的发送波束)并将接收到的训练波束ID或信号最强的波束报告回基站170。例如,如果基站170被配置为16个不同方向(基站波束)并且UE 110A具有来自相控阵天线的6个可用UE波束。将有96个训练波束-接收波束对(16个BS波束×6个UE波束,其中UE将使用其所有可用UE波束(6个UE波束)搜索16个训练波束中的每个训练波束。在接收到训练波束(基站波束)之后,UE 110A将报告质量最佳(通常信号最强)的训练波束,或信号质量较高的少数波束。在本示例中,出于论述目的,UE 110A报告训练波束2具有最佳质量。在UE110A将质量最佳的波束或信号质量较高的少数波束报告回基站170之后,基站170在向UE110发送信号时,可能开始使用质量最佳的发送波束进行发送,而UE 110A可能开始使用相应的UE波束进行接收或进行波束精对准。
在一个实施例中,可以通过对基站波束方向进行微调来实现基站170与UE 110A之间的附加对准。基站170将向UE 110A信号通知预定基站细波束搜索。基站将在UE报告的最佳基站波束方向附近使用更细/更窄的波束进行发送。UE 110A将UE波束固定为来自先前波束搜索结果的最佳UE波束。UE 110A将报告具有固定UE波束的最佳基站波束。
在波束搜索/对准过程中,UE 110A可以配置全向阵列,或使用配置表中的波束列表。波束搜索/对准中使用的配置表可以与跟踪状态中使用的表相同。波束搜索/对准中使用的配置表可以不同,从而在(θ,φ)空间中以粗分辨率覆盖所有方向,或者由于某些相控天线阵列被视为在该环境中无法使用而覆盖有限方向。在完成初始对准之后,UE 110A可以启动UE细波束搜索。UE 110A可以加载与跟踪状态对应的配置表,如图6A至图6D所示。在一个实施例中,当基站170现在使用报告的最佳发送波束进行发送时,在初始波束搜索/对准阶段使用全向方向图时,UE 110A将搜索确定的配置表的所有可能方向(θ,φ)。在另一个实施例中,当UE 110A在搜索/对准状态中使用可用UE波束的列表,而基站170使用报告的波束进行发送时,UE 110A将搜索接收波束(θ0,φ0)的邻域。
然后,UE 110A可以利用配置表中定义的最佳UE波束将相控阵天线配置为确定的最佳方向来完成精细对准过程。例如,如果UE 110A利用2号天线在(45,90)方向上获得最高的信号质量,则UE 110A将选择2号天线,并配置为使用配置表中指示的预定相控阵配置。
在实施波束搜索和精化之后,UE 110A开始波束跟踪以跟踪基站的发送波束。如上所述,波束跟踪是指更新UE 110A与基站170之间的波束配置,以保持最佳波束对准。波束跟踪取决于基站170与UE 110之间的无线信道条件、UE 110的相对运动和方向。如果信道相干时间(在此期间,假设信道是静态的,接收波束方向保持不变)足够长,则将使用运动/方位信息保持跟踪状态。通道相干时间决定了运动/方位信息的提供频率。信道相干时间可以通过UE 110的速度推导出,可以通过GPS传感器等估计UE 110的速度。基于先前实施的过程,UE 110A知晓相控阵天线配置和接收波束方向。例如,并且遵循上述示例,UE 110A知晓最强信号来自方向(45,90)。
当基站波束(本发明中也指基站的发送波束)改变方位(例如,旋转、强风将天线***移动到其他方向)时,基站170将发送波束的波束方向变化信息发送给UE 110。UE 110A可以基于发送波束的波束方向变化信息确定相对于UE 110A的方向变化(Δθ,Δφ)。所述波束方向变化信息可以是发送波束的角度变化信息,也可以是接收波束的角度变化信息。所述接收波束的角度变化信息可以由基站基于发送波束的角度变化信息以及基站与UE之间的距离确定。如果基站通知的波束方向变化信息是发送波束的角度变化信息,则接收波束的角度变化信息可以由基站基于发送波束的角度变化信息以及基站与UE之间的距离确定。在其他示例中,波束方向变化信息可以是发送波束方向的信息,或第二接收波束方向的信息。如果基站通知的波束方向变化信息是发送波束方向,则第二接收波束方向可以由基站基于发送波束方向和基站与UE之间的距离确定。
例如,基于第一接收波束方向(θ,φ)和发送波束的波束方向变化信息(Δθ,Δφ),UE 110A可以计算第二接收波束方向为(θ–Δθ,φ–Δφ)。所述第一接收波束方向为在UE接收波束方向变化信息之前,接收波束的方位。例如,如果发送波束在地固坐标系中旋转(30,0),则方位变化信息(Δθ,Δφ)为(30,0),即发送波束的波束变化信息。第一接收波束方向(45,90)将在基站170固定的坐标系中变为第二接收波束方向(15,90)((45–30),(90–0)=(15,90))。如果UE未旋转,则UE将UE固定坐标与地固坐标对准,然后UE 110A可以使用与第二接收波束方向(θ–Δθ,φ–Δφ)对应的接收波束参数来配置组件。在其他示例中,如果UE也在地固坐标系中旋转(–30,0),则波束方向变化(Δθ,Δφ)信息为基站波束变化信息与UE移动信息的组合(–30+30)(0+0),则UE 110的坐标系中的(45,90)方向仍为(45,90)方向((45–30+30),(90–0+0))。然后,UE 110A可以使用与第二波束方向(θ–Δθ,φ–Δφ)对应的接收波束参数来配置组件。
在其他示例中,如果发送波束在地固坐标系中旋转(30,0),则方位变化信息(Δθ,Δφ)为(30,0),即接收波束的波束方向变化信息。第一接收波束方向(45,90)将在基站170固定的坐标系中变为第二接收波束方向(15,90)((45+30),(90+0)=(135,90))。如果UE未旋转,则UE将UE固定坐标与地固坐标对准,然后UE 110可以使用第二波束方向(θ+Δθ,φ+Δφ)来配置UE的天线。
在一个实施例中,配置所述组件涉及天线切换。在另一个实施例中,UE的方位变化在与基站波束方向垂直的平面内。对于这种情况,会出现配置表格的相同索引(θ,φ),而如果方位变化超过阈值,则可以使用不同极化的相控阵配置。
图7A至图7B示出了根据所公开实施例的各个方面的波束转向流程图。在随后的讨论中,所公开的过程由用户设备执行。然而,应理解,实施不限于用户设备,可以采用参考图1至图3、图4A至图4C、图5A至图5D、图6A至图6D和图9描述的任何***和/或组件来实施这些过程。
参考图7A,用户设备(例如,UE 110)将使用接收波束的接收波束参数初始配置与相控阵的天线或天线振子对应的组件。为了加快搜索/对准过程,接收波束可以是全向的,或者仅覆盖有限的方向,或者使用有限数量的天线。UE 110A将对可用接收波束的列表进行波束搜索并确定接收波束的最佳接收波束方向以便与基站170通信。在其他示例中,UE110A可以利用与基站107协商、协议协定等其他解决方案,以确定接收波束的最佳接收波束方向。在UE 110A与基站107之间的通信中,UE可以将接收波束的当前接收波束方向确定为第一接收波束方向。UE 110A配置与一个或多个天线对应的组件以在基于映射表中的配置确定的接收波束方向上形成接收波束。
在702中,UE 110A处于活动状态呼叫中并跟踪发送波束以与基站170通信。UE110A基于接收波束从基站170接收通信信号。UE的接收波束具有第一接收波束方向。
所述第一接收波束方向与发送波束方向对准或接近对准。
UE的第一天线可以是UE的单个天线,也可以是UE的天线阵列的多个天线阵子。
在704中,UE 110A使用UE 110A的陀螺仪和加速度计来感测其自身的移动。UE110A可以标识响应于UE的角移动,相对于UE的波束方向变化。相对于UE的波束方向变化可以是接收波束的角度变化信息。根据先前建立的角度方向估计角度变化并确定定义接收波束参数的适当表项,从而确定相对于UE的波束方向变化。
在706中,UE 110A基于UE的接收波束确定是否从基站接收第一通信信号(测试命令)。第一通信信号170包括波束方向变化信息。如果UE 110A从基站170接收第一通信信号,则UE 110A执行708以使用来自内置传感器和信令的角移动来更新UE波束的角移动。如果UE110A没有从基站接收第一通信信号,则UE 110A执行710以使用来自内置传感器的角移动来更新UE角移动。
所述第一通信信号包括波束方向变化信息。所述波束方向变化信息可以是发送波束的角度变化信息,也可以是接收波束的角度变化信息。所述波束方向变化信息也可以是发送波束方向的信息,或第二接收波束方向的信息。
在708中,UE 110A使用来自传感器的角移动和第一通信信号中的方向变化信息来确定UE固定坐标中的第二接收波束方向。
在确定UE 110接收第一通信信号之后,UE 110结合UE 110的角移动和波束方向变化信息,基于UE 110的角移动和方向变化信息确定接收波束在UE固定坐标系中的波束变化信息。UE 110基于接收波束在UE固定坐标系中的波束变化信息确定第二接收波束方向。所述第二接收波束方向是基于第一接收波束方向和UE固定坐标系中第一UE波束方向的变化,如上所述并说明。
如果波束方向变化信息是第二发送波束方向的信息,或第二接收波束方向的信息,则UE基于第二发送波束方向的信息,或第二接收波束方向的信息确定第二接收方向。
在710中,UE 110A使用来自传感器的移动更新UE角移动。
在确定UE 110A未接收到包括波束方向变化信息的第一通信信号之后,UE 110A基于UE110的角移动确定接收波束方向信息。
在确定UE 110A未接收到包括波束方向变化信息的第一通信信号之后,UE 110A基于在UE固定坐标系中UE 110A的角移动确定接收波束的角度变化信息。UE 170基于UE固定坐标系中第一UE波束方向的变化来确定第二接收波束方向。
在712中,UE 110A确定是否从基站170接收到包括极化变化信息的第二测试命令。如果UE 110A从基站170接收到极化变化信息,则UE 110A执行714和716。如果UE 110A未从基站接收到发送波束的极化变化信息,则UE 110A执行716。所述极化变化信息可以是发送波束的极化变化信息,也可以是接收波束的极化变化信息。
在714中,UE 110A基于相对于UE 110的第二波束方向将映射表切换到其他极化,或者UE切换映射表中与极化对应的项。
在716中,UE 110A将接收波束调整为第二接收波束方向和/或极化,并基于具有第二接收波束方向的接收波束从基站接收第二通信信号。
在标识发送波束方向的变化后,UE 110确定第二接收波束方向。所述第二接收波束方向是基于第一接收波束方向和接收波束的波束变化信息,如上所述并说明。UE 110可以将UE的接收波束调整为第二接收波束方向。例如,UE可以重新配置或切换与UE的天线阵列对应的组件(如,移相器、放大器等),或者,可以根据极化的匹配而改变移相器的现有相位设置。或者,UE可以基于与第二接收波束方向对应的第二接收波束参数调整移相器或放大器。
在UE 110A确定第二接收波束方向之后,UE 110A通过将第一(先前)接收波束方向转向为第二接收波束方向以将UE的接收波束对准基站的发送波束来配置与天线阵列对应的组件。UE 110A使用映射表确定与第二接收波束方向对应的接收波束参数。在一个实施例中,UE通过使用与第二接收波束方向对应的接收波束参数来调整与天线阵列对应的组件。所述调整包括从天线阵列中的一个天线切换到另一个天线。
参考图7B,用户设备(例如,UE 110)将使用接收波束的接收波束参数初始配置与相控阵的天线或天线振子对应的组件。为了加快搜索/对准过程,接收波束可以是全向的,或者仅覆盖有限的方向,或者使用有限数量的天线。UE 110A将对可用接收波束的列表进行波束搜索并确定接收波束的最佳接收波束方向以便与基站170通信。在其他示例中,UE110A可以利用与基站107协商、协议协定等其他解决方案,以确定接收波束的最佳接收波束方向。在UE 110A与基站107之间的通信中,UE可以将接收波束的当前接收波束方向确定为第一接收波束方向。UE 110A配置与一个或多个天线对应的组件以在基于映射表中的配置确定的接收波束方向上形成接收波束。
在702’中,UE 110A处于活动状态呼叫中并跟踪发送波束以与基站170通信。UE110A基于接收波束从基站170接收通信信号。UE的接收波束具有第一接收波束方向。
所述第一接收波束方向与发送波束方向对准或接近对准。
在704’中,UE 110A基于UE的接收波束从基站接收第一通信信号。其中,所述接收波束具有第一接收波束方向。第一通信信号170包括波束方向变化信息。所述波束方向变化可以是接收波束的角度变化信息。根据先前建立的角度方向估计角度变化并确定定义接收波束参数的适当表项,从而确定波束方向变化。
在706’中,UE 110A确定是否获取到UE 110的移动信息。如果UE 110A获取到UE110的移动信息,则UE 110A执行708’;如果UE 110A未获取到UE 110的移动信息,则UE110A执行710’。
UE 110A的移动信息可以是UE 110的角移动信息。UE 110A可以通过UE 110的陀螺仪和加速度计感测UE 110A的角移动。
UE 110A可以标识响应于UE 110的角移动,第一UE波束方向的变化。例如,基于UE110中的一个或多个传感器确定方向变化。UE还可以标识响应于来自基站170的波束方向变化信息,UE波束方向的变化。UE 110A还可以标识响应于基站波束变化信息和UE 110的角移动,接收波束指向的波束方向变化。
在708’中,UE 110A利用来自传感器的角移动和第一通信信号中的波束方向变化信息来确定UE固定坐标中的接收波束方向。
在确定UE 110接收第一通信信号之后,UE 110结合UE 110的角移动和波束方向变化信息,基于UE 110的角移动和方向变化信息确定接收波束在UE固定坐标系中的波束变化信息。UE 110基于接收波束在UE固定坐标系中的波束变化信息确定第二接收波束方向。所述第二接收波束方向是基于第一接收波束方向和UE固定坐标系中第一UE波束方向的变化,如上所述并说明。
如果波束方向变化信息包括第二发送波束方向的信息,或第二接收波束方向的信息,则UE基于第二发送波束方向,或第二接收波束方向确定第二UE方向。
在710’中,UE 110A基于来自基站170的波束方向变化信息确定第二接收波束方向。
在确定UE 110A未接收到包括波束方向变化信息的第一通信信号之后,UE 110A基于UE110的角移动确定接收波束方向信息。
在确定UE 110A未接收到包括波束方向变化信息的第一通信信号之后,UE 110A基于在UE固定坐标系中UE 110A的角移动确定接收波束的角度变化信息。UE 170基于UE固定坐标系中第一UE波束方向的变化来确定第二接收波束方向。
在步骤712’中,UE 110A确定是否从基站170接收到极化变化信息。如果UE 110A从基站170接收到极化变化信息,则UE 110A执行714’和716’。如果UE 110A未从基站接收到发送波束的极化变化信息,则UE 110A执行716’。所述极化变化信息可以是发送波束的极化变化信息,也可以是接收波束的极化变化信息。
在714’中,UE 110A基于相对于UE 110的第二波束方向将映射表切换到其他极化,或者UE切换映射表中与极化对应的项。
在716’中,UE 110A将接收波束调整为第二接收波束方向和/或极化,并基于具有第二接收波束方向的接收波束从基站接收第二通信信号。
在标识发送波束方向的变化后,UE 110确定第二接收波束方向。所述第二接收波束方向是基于第一接收波束方向和接收波束的波束变化信息,如上所述并说明。UE 110可以将UE的接收波束调整为第二接收波束方向。例如,UE可以重新配置或切换与UE的天线阵列对应的组件(如,移相器、放大器等),或者,可以根据极化的匹配而改变移相器的现有相位设置。或者,UE可以基于与第二接收波束方向对应的第二接收波束参数调整移相器或放大器。
在UE 110A确定第二接收波束方向之后,UE 110A通过将第一(先前)接收波束方向转向为第二接收波束方向以将UE的接收波束对准基站的发送波束来配置与天线阵列对应的组件。UE 110A使用映射表确定与第二接收波束方向对应的接收波束参数。在一个实施例中,UE通过使用与第二接收波束方向对应的接收波束参数来调整与天线阵列对应的组件。所述调整包括从天线阵列中的一个天线切换到另一个天线。
图8示出了根据所公开实施例的各个方面的波束转向流程图。在随后的讨论中,所公开的过程由用户设备执行。然而,应理解,实施不限于用户设备,可以采用参考图1至图3、图4A至图4C、图5A至图5D、图6A至图6D和图9描述的任何***和/或组件来实施这些过程。
在802中,UE 110A针对多个接收波束方向确定接收波束的接收波束参数。所述多个接收波束方向包括第一接收波束方向和第二接收波束方向。所述接收波束的接收波束参数包括第一接收波束参数和第二接收波束参数。UE 110A搜索实现相位偏移和相位增益的可用配置,并获得每个接收方向的最佳接收波束参数。UE 110A在每个接收波束方向与所述接收波束参数中对应的接收波束参数之间生成映射关系。映射表可以参见图6。
在804中,UE确定最佳发送波束/接收波束对,以确定接收波束的第一接收波束方向,并基于接收波束与基站建立通信,跟踪基站的发送波束。
UE可以执行波束搜索以确定接收波束的第一接收波束方向。UE可以使用其他解决方案来确定接收波束的第一接收波束方向,如与基站107协商、协议约定等来确定接收波束的最佳接收波束方向。在UE 110A与基站107之间的通信中,UE可以将接收波束的当前接收波束方向确定为第一接收波束方向。
在806中,UE 110A基于具有所述第一接收波束方向的接收波束从基站170接收第一通信信号,其中,所述第一通信信号包括波束方向变化信息。
所述第一通信信号包括波束方向变化信息。所述发送波束的方向变化信息包括发送波束的角移动信息,如发送波束的旋转角度信息。
在808中,UE基于所述方向变化信息确定第二接收波束方向。
在810中,UE 110A确定与第二接收波束方向对应的第二接收波束参数。
在812中,所述UE基于所述第二接收波束参数调整所述接收波束,以将所述接收波束转向为所述第二接收波束方向。
图9为可用于实施各种实施例的网络设备的框图。特定网络设备可利用所有所示的组件或仅所述组件的子集,且设备之间的集成程度可能不同。此外,网络设备900可以包括组件的多个实例,如多个处理单元、处理器、存储器、发射器、接收器等等。网络设备900可以包括配备一个或多个输入/输出设备(如网络接口、存储接口等)的处理单元。网络设备900可以包括中央处理单元(central processing unit,CPU)910、存储器920、大容量存储设备930和连接到总线960的I/O接口940。总线960可以是任意类型的几种总线架构中的一种或多种,包括存储器总线或存储器控制器、外设总线等。
中央处理单元(CPU)910、存储器920、大容量存储设备930和I/O接口940经由总线相互连接。或者,中央处理单元(CPU)910、存储器920、大容量存储设备930和I/O接口940直接彼此连接。
CPU 910可包括任何类型的电子数据处理器。存储器920可包括任意类型的***存储器,如静态随机存取存储器(static random access memory,SRAM)、动态随机存取存储器(dynamic random access memory,DRAM)、同步DRAM(synchronous DRAM,SDRAM)、只读存储器(read-only memory,ROM)或其组合等等。在一个实施例中,存储器920可以包括在开机时使用的ROM以及在执行程序时使用的存储程序和数据的DRAM。在实施例中,存储器920是非瞬时的。大容量存储设备930可包括任意类型的存储设备,用于存储数据、程序和其他信息,并使数据、程序和其他信息可经由总线960访问。例如,大容量存储设备930可包括固态硬盘、硬盘驱动器、磁盘驱动器、光盘驱动器等中的一种或多种。
设备900还包括一个或多个网络接口950,其中,所述一个或多个网络接口950可以包括如以太网线等有线链路,和/或用于接入节点的无线链路;或一个或多个网络970。网络接口950允许处理单元1001经由网络970与远程单元通信。例如,网络接口950可以经由一个或多个发射器/发射天线以及一个或多个接收器/接收天线提供无线通信。在一个实施例中,所述设备与局域网或广域网耦合以进行数据处理以及与远端设备(如其他处理单元、因特网、远端存储设备等)通信。
应理解,本发明可以具体体现为许多不同的形式且不应被解释为仅限于本文所阐述的实施例。相反,提供这些实施例是为了使本主题彻底和完整,并将本发明充分传达给本领域技术人员。事实上,本主题旨在覆盖包括在由所附权利要求书限定的本主题公开的精神和范围内的这些实施例的替代物、修改和等同物。另外,在本主题的以下详细描述中,阐述了许多具体细节以便提供对本主题的透彻理解。然而,本领域的普通技术人员将清楚,可以在没有此类具体细节的情况下实践本主题。
本文结合根据本发明实施例的方法、装置(***)和计算机程序产品的流程图说明和/或框图来描述本发明的各方面。应理解,流程图说明和/或框图的每个方框以及流程图说明和/或方框图中的方框的组合可以由计算机程序指令实现。这些计算机程序指令可以提供给通用计算机、专用计算机或其他可编程数据处理装置的处理器以生成机器,如此,经由计算机或其他可编程指令执行装置的处理器执行的指令创建用于实现流程图和/或框图的一个或多个框中指定的功能/动作的机制。
非瞬时性计算机可读介质包括所有类型的计算机可读介质,包括磁存储介质、光存储介质和固态存储介质,具体不包括信号。应理解,软件可以安装在设备中并可以随设备一同出售。或者,可以获取软件并将其装载到设备中,包括经由光盘介质或任何形式的网络或分配***获取软件,包括例如从软件创作者拥有的服务器或从软件创作者不拥有但使用的服务器获取软件。例如,可以将软件存储在服务器上,以便经由互联网分布。
本文中所用的术语仅仅是为了描述特定方面,并且并不旨在限制本发明。除非上下文清楚说明,否则本文所用的单数形式“一”和“所述”也包括复数形式。应进一步了解,本说明书中所用的术语“包括”说明存在所陈述特征、整数、步骤、操作、元件和/或组件,但并不排除存在或添加一个或多个其他特征、整数、步骤、操作、元件、组件和/或其组合。
呈现对本发明的描述是为了说明和描述,并不旨在按照所公开形式对本发明穷举或限于本发明。在不脱离本发明的范围和精神的情况下,本领域技术人员将清楚多种修改和改变。选择和描述本发明的各个方面以便更好地解释本发明的原理和实际应用,并且使本领域技术人员能够理解本发明适合预期特定用途的各种修改。
出于本文档的目的,与所公开的技术相关联的每个过程可以由一个或多个计算设备连续地执行。过程中的每个步骤可以由与其他步骤中使用的计算设备相同或不同的计算设备执行,并且每个步骤不一定由单个计算设备执行。
下文列出了本发明的其他示例,但权利要求书不应仅限于已说明的内容。
示例1.一种由用户设备(UE)执行的方法,包括:
使用具有第一接收波束方向的接收波束从基站接收第一通信信号,其中所述第一通信信号包括波束方向变化信息;
根据所述波束方向变化信息将所述接收波束从所述第一接收波束方向调整为第二接收波束方向;
基于具有所述第二接收波束方向的所述接收波束从所述基站接收第二通信信号。
示例2.根据示例1所述的方法,其中,所述波束方向变化信息包括发送波束的角度变化信息,或所述接收波束的角度变化信息。
示例3.根据示例2所述的方法,还包括:
根据所述第一接收波束方向和所述发送波束的所述角度变化信息,确定所述第二接收波束方向;或者,
根据所述第一接收波束方向和所述接收波束的所述角度变化信息,确定所述第二接收波束方向。
示例4.根据示例1所述的方法,其中,所述波束方向变化信息包括发送波束方向的信息,或所述第二接收波束方向的信息。
示例5.根据示例1至4中任一项所述的方法,还包括:
确定所述UE的移动信息;
基于所述波束方向变化信息和所述UE的所述运动信息,确定所述第二接收波束方向。
示例6.根据示例1至5中任一项所述的方法,还包括:获取与第二波束方向对应的接收波束参数。
示例7.根据示例6所述的方法,其中,所述将所述接收波束调整为所述第二接收波束方向包括:基于所述接收波束参数调整所述接收波束。
示例8.根据示例7所述的方法,其中,所述基于所述接收波束参数调整所述接收波束包括:基于所述第二接收波束参数使移相器或放大器移位。
示例9.根据示例1至8中任一项所述的方法,其中,所述波束方向变化信息包括方位角信息和仰角信息。
示例10.根据示例1至7所述的方法,包括:
确定多个接收波束方向的接收波束参数,其中,所述多个接收波束方向包括所述第一接收波束方向和所述第二接收波束方向;
在每个接收波束方向与所述接收波束参数中对应的接收波束参数之间生成映射关系。
示例11.根据示例1至10中任一项所述的方法,其中,所述接收波束参数包括UE天线索引和与所述UE天线相关的配置。
示例12.根据示例1所述的方法,其中,所述波束方向变化信息包括极化变化信息。
示例13.根据示例12所述的方法,其中,每个极化对应所述接收波束方向与所述接收波束参数之间的映射。
示例14.根据示例11所述的方法,其中,所述天线包括天线阵列的多个天线振子。
示例15.一种由基站执行的方法,包括:
通过所述基站的发送波束将第一通信信号发送到用户设备(UE),其中,所述第一通信信号包括波束方向变化信息,所述发送波束具有第一发送波束方向;
通过改变为第二发送波束方向的所述发送波束发送第二通信信号。
示例16.根据示例15所述的方法,其中,所述波束方向变化信息包括发送波束的角度变化信息,或所述接收波束的角度变化信息。
示例17.根据示例15所述的方法,其中,所述波束方向变化信息包括所述第二发送波束方向的信息,或第二接收波束方向的信息。
示例18.根据示例15至17中任一项所述的方法,其中,所述波束方向变化信息包括方位角信息和仰角信息。
示例19.根据示例15至18中任一项所述的方法,其中,所述波束方向变化信息包括极化变化信息。
示例20.一种设备,包括:
包括指令的非瞬时性存储器;
与所述存储器通信的一个或多个处理器,其中,所述一个或多个处理器执行所述指令以:
使用具有第一接收波束方向的接收波束从基站接收第一通信信号,其中所述第一通信信号包括波束方向变化信息;
根据所述波束方向变化信息将所述接收波束从所述第一接收波束方向调整为第二接收波束方向;
基于具有所述第二接收波束方向的所述接收波束从所述基站接收第二通信信号。
示例21.根据示例20所述的设备,其中,所述波束方向变化信息包括发送波束的角度变化信息,或所述接收波束的角度变化信息。
示例22.根据示例21所述的设备,其中,所述处理器还用于:
根据所述第一接收波束方向和所述发送波束的所述角度变化信息,确定所述第二接收波束方向;或者,
根据所述第一接收波束方向和所述接收波束的所述角度变化信息,确定所述第二接收波束方向。
示例23.根据示例21至22中任一项所述的设备,其中,所述处理器还用于:
确定所述UE的移动信息;
基于所述波束方向变化信息和所述UE的所述移动信息,确定所述第二接收波束方向。
示例24.根据示例21至23中任一项所述的设备,其中,所述波束方向变化信息包括方位角信息和仰角信息。
示例25.一种非瞬时性计算机可读存储介质,包括指令,其中,所述指令用于使处理器:
确定接收波束的第一接收波束方向;
使用具有第一接收波束方向的接收波束从基站接收第一通信信号,其中所述第一通信信号包括波束方向变化信息;
根据所述波束方向变化信息将所述接收波束从所述第一接收波束方向调整为第二接收波束方向;
基于具有所述第二接收波束方向的所述接收波束从所述基站接收第二通信信号。
示例26.一种设备,包括:
包括指令的非瞬时性存储器;
与所述存储器通信的一个或多个处理器,其中,所述一个或多个处理器执行所述指令以:
确定接收波束的第一接收波束方向;
接收从基站发送的波束方向变化信息;
根据所述波束方向变化信息指示将所述接收波束从所述第一接收波束方向调整为第二接收波束方向;
虽然已经以特定于结构特征和/或方法动作的语言描述了主题,但是应理解,所附权利要求书中定义的主题不必局限于上文描述的具体特征或动作。而是,公开上述具体特征和动作作为实施权利要求的示例形式。

Claims (19)

1.一种由用户设备(user equipment,UE)执行的方法,其特征在于,包括:
使用具有第一接收波束方向的接收波束从基站接收第一通信信号,其中,所述第一通信信号包括波束方向变化信息,所述波束方向变化信息包括方位角信息和仰角信息;
根据所述波束方向变化信息将所述接收波束从所述第一接收波束方向调整为第二接收波束方向;
基于具有所述第二接收波束方向的所述接收波束从所述基站接收第二通信信号;
所述波束方向变化信息包括极化变化信息。
2.根据权利要求1所述的方法,其特征在于,所述波束方向变化信息包括发送波束的角度变化信息,或所述接收波束的角度变化信息。
3.根据权利要求2所述的方法,其特征在于,还包括:
根据所述第一接收波束方向和所述发送波束的所述角度变化信息,确定所述第二接收波束方向;或者,
根据所述第一接收波束方向和所述接收波束的所述角度变化信息,确定所述第二接收波束方向。
4.根据权利要求1所述的方法,其特征在于,所述波束方向变化信息包括发送波束方向的信息,或所述第二接收波束方向的信息。
5.根据权利要求1至4中任一项所述的方法,其特征在于,还包括:
确定所述UE的移动信息;
基于所述波束方向变化信息和所述UE的所述移动信息,确定所述第二接收波束方向。
6.根据权利要求1至4中任一项所述的方法,其特征在于,还包括:
获取与所述第二接收波束方向对应的第二接收波束参数。
7.根据权利要求6所述的方法,其特征在于,所述将所述接收波束从所述第一接收波束方向调整为所述第二接收波束方向包括:
基于与所述第二接收波束方向对应的所述第二接收波束参数,调整所述接收波束。
8.根据权利要求7所述的方法,其特征在于,所述基于所述第二接收波束参数调整所述接收波束包括:基于与所述第二接收波束方向对应的所述第二接收波束参数,调整移相器或放大器。
9.根据权利要求1至4中任一项所述的方法,其特征在于,包括:
确定多个接收波束方向的接收波束参数,其中,所述多个接收波束方向包括所述第一接收波束方向和所述第二接收波束方向;
在每个接收波束方向与所述接收波束参数中对应的接收波束参数之间生成映射关系。
10.根据权利要求1至4中任一项所述的方法,其特征在于,所述接收波束参数包括UE天线索引和与所述UE天线相关的配置。
11.根据权利要求1至4中任一项所述的方法,其特征在于,每个极化对应所述接收波束方向与所述接收波束参数之间的映射。
12.根据权利要求10所述的方法,其特征在于,所述UE天线包括天线阵列的多个天线振子。
13.一种由基站执行的方法,其特征在于,包括:
通过所述基站的发送波束将第一通信信号发送到用户设备(UE),其中,所述第一通信信号包括波束方向变化信息,所述发送波束具有第一发送波束方向,所述波束方向变化信息包括方位角信息和仰角信息;
通过改变为第二发送波束方向的所述发送波束发送第二通信信号;
所述波束方向变化信息包括极化变化信息。
14.根据权利要求13所述的方法,其特征在于,所述波束方向变化信息包括发送波束的角度变化信息,或接收波束的角度变化信息。
15.根据权利要求13所述的方法,其特征在于,所述波束方向变化信息包括所述第二发送波束方向的信息,或第二接收波束方向的信息。
16.一种设备,其特征在于,包括:
包括指令的非瞬时性存储器;
与所述存储器通信的一个或多个处理器,其中,所述一个或多个处理器执行所述指令:
使用具有第一接收波束方向的接收波束从基站接收第一通信信号,其中,所述第一通信信号包括波束方向变化信息,所述波束方向变化信息包括方位角信息和仰角信息;
根据所述波束方向变化信息将所述接收波束从所述第一接收波束方向调整为第二接收波束方向;
基于具有所述第二接收波束方向的所述接收波束从所述基站接收第二通信信号;
所述波束方向变化信息包括极化变化信息。
17.根据权利要求16所述的设备,其特征在于,所述波束方向变化信息包括发送波束的角度变化信息,或所述接收波束的角度变化信息。
18.根据权利要求17所述的设备,其特征在于,所述处理器还用于:
根据所述第一接收波束方向和所述发送波束的所述角度变化信息,确定所述第二接收波束方向;或者,
根据所述第一接收波束方向和所述接收波束的所述角度变化信息,确定所述第二接收波束方向。
19.根据权利要求17或18所述的设备,其特征在于,所述处理器还用于:
确定所述设备的移动信息;
基于所述波束方向变化信息和所述设备的所述移动信息,确定所述第二接收波束方向。
CN201980013377.1A 2018-02-23 2019-01-31 用于调整接收波束的方法及装置 Active CN111742572B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201862634589P 2018-02-23 2018-02-23
US62/634,589 2018-02-23
US201862787070P 2018-12-31 2018-12-31
US62/787,070 2018-12-31
PCT/CN2019/074047 WO2019161733A1 (en) 2018-02-23 2019-01-31 A method and apparatus for adjusting a reception beam

Publications (2)

Publication Number Publication Date
CN111742572A CN111742572A (zh) 2020-10-02
CN111742572B true CN111742572B (zh) 2022-05-24

Family

ID=67686932

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980013377.1A Active CN111742572B (zh) 2018-02-23 2019-01-31 用于调整接收波束的方法及装置

Country Status (3)

Country Link
US (1) US11570628B2 (zh)
CN (1) CN111742572B (zh)
WO (1) WO2019161733A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113330690B (zh) * 2019-01-22 2024-05-14 瑞典爱立信有限公司 用于利用波束成形的通信的方法和装置
JP2020194999A (ja) * 2019-05-24 2020-12-03 株式会社フジクラ Rfモジュール
US11128366B2 (en) * 2019-06-17 2021-09-21 Qualcomm Incorporated Triggered sidelink quasi-colocation parameter update
US11271612B2 (en) * 2019-08-30 2022-03-08 Qualcomm Incorporated Antenna switch scheduling
US10938468B1 (en) * 2019-12-11 2021-03-02 At&T Mobility Ii Llc Millimeter wave idle channel optimization
CN113395774A (zh) * 2020-03-13 2021-09-14 苹果公司 使用传感器输入实现的毫米波链路的可靠性和功率效率的改善
US11909477B2 (en) 2020-05-27 2024-02-20 Nokia Technologies Oy Uplink beam reconfiguration
WO2022073168A1 (en) * 2020-10-08 2022-04-14 Qualcomm Incorporated Autonomous boresight beam adjustment small cell deployment
CN114449099B (zh) * 2020-11-02 2023-07-28 华为技术有限公司 一种设备方位调整的方法、终端设备和可读存储介质
EP4238339A4 (en) * 2020-12-24 2024-03-20 Huawei Technologies Co., Ltd. BEAM INDICATION FRAMEWORK FOR DETECTION-ASSISTED MIMO
CN114697980B (zh) * 2020-12-25 2024-04-16 大唐移动通信设备有限公司 信号发送方法、目标感知方法、设备和存储介质
CN114828034B (zh) * 2021-01-22 2024-06-11 华为技术有限公司 一种波束方向的调节方法及相关设备
KR20220163134A (ko) * 2021-06-02 2022-12-09 삼성전자주식회사 무선 통신 시스템에서 상향링크 전송을 위한 편파를 식별하는 장치 및 방법
CN113659340A (zh) * 2021-08-04 2021-11-16 上海移远通信技术股份有限公司 毫米波天线方向控制方法、装置、终端设备及介质
WO2023010563A1 (zh) * 2021-08-06 2023-02-09 Oppo广东移动通信有限公司 一种无线通信方法及装置、终端设备、网络设备
CN118251847A (zh) * 2021-10-29 2024-06-25 华为技术有限公司 敏捷波束跟踪

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103052086A (zh) * 2013-01-22 2013-04-17 华为技术有限公司 一种毫米波相控阵波束对准方法及通信设备
CN103748799A (zh) * 2011-08-10 2014-04-23 三星电子株式会社 用于无线通信***中的波束锁定的装置及方法
CN103814529A (zh) * 2011-07-15 2014-05-21 三星电子株式会社 在无线通信***中用于波束锁定的装置和方法
CN105992236A (zh) * 2015-03-17 2016-10-05 三星电子株式会社 电子设备及其使用波束形成执行无线通信的方法
CN107078782A (zh) * 2014-12-05 2017-08-18 英特尔公司 网络辅助的毫米波束同步和对准
WO2017146758A1 (en) * 2016-02-25 2017-08-31 Intel IP Corporation Device and method of using brrs configuration

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2009141914A (ru) * 2007-04-27 2011-06-10 НТТ ДоСоМо, Инк. (JP) Мобильная станция, базовая станция и способ конфигурирования зоны связи, реализуемый заданной базовой станцией
US9516563B2 (en) * 2013-01-21 2016-12-06 Intel Corporation Apparatus, system and method of handover of a beamformed link
KR102154326B1 (ko) * 2013-11-20 2020-09-09 삼성전자주식회사 무선통신 시스템에서 빔포밍 방법 및 장치
KR101808588B1 (ko) * 2014-05-30 2017-12-13 한국전자통신연구원 교차편파를 이용한 인접 빔 간 간섭 제거 방법 및 신호 송수신 방법
KR102220286B1 (ko) * 2014-08-28 2021-02-25 삼성전자주식회사 이동 통신 시스템에서 빔 설정 방법 및 장치
CN106454871A (zh) * 2015-08-06 2017-02-22 中兴通讯股份有限公司 一种波束使用方法及装置
US10148557B2 (en) * 2015-12-30 2018-12-04 Facebook, Inc. Link maintenance in point-to-point wireless communication networks
US10433184B2 (en) * 2015-12-31 2019-10-01 Motorola Mobility Llc Method and apparatus for directing an antenna beam based on a location of a communication device
CN107041012B (zh) * 2016-02-03 2022-11-22 北京三星通信技术研究有限公司 基于差分波束的随机接入方法、基站设备及用户设备
WO2017179951A1 (en) * 2016-04-14 2017-10-19 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving signal through beamforming in communication system
DE112017006735T5 (de) * 2017-01-05 2019-10-24 Sony Corporation Kommunikationsvorrichtungen, infrastrukturgeräte und verfahren
KR102439591B1 (ko) * 2017-08-23 2022-09-02 삼성전자주식회사 무선 통신 시스템에서 빔 운용을 위한 장치 및 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103814529A (zh) * 2011-07-15 2014-05-21 三星电子株式会社 在无线通信***中用于波束锁定的装置和方法
CN103748799A (zh) * 2011-08-10 2014-04-23 三星电子株式会社 用于无线通信***中的波束锁定的装置及方法
CN103052086A (zh) * 2013-01-22 2013-04-17 华为技术有限公司 一种毫米波相控阵波束对准方法及通信设备
CN107078782A (zh) * 2014-12-05 2017-08-18 英特尔公司 网络辅助的毫米波束同步和对准
CN105992236A (zh) * 2015-03-17 2016-10-05 三星电子株式会社 电子设备及其使用波束形成执行无线通信的方法
WO2017146758A1 (en) * 2016-02-25 2017-08-31 Intel IP Corporation Device and method of using brrs configuration

Also Published As

Publication number Publication date
WO2019161733A1 (en) 2019-08-29
CN111742572A (zh) 2020-10-02
US11570628B2 (en) 2023-01-31
US20200322812A1 (en) 2020-10-08

Similar Documents

Publication Publication Date Title
CN111742572B (zh) 用于调整接收波束的方法及装置
CN111480303B (zh) 基于移动传感器的波束转向控制装置和方法
CN110892771B (zh) 波束故障恢复请求
EP3025435B1 (en) Downtilt selection in a full dimensional multiple-input multiple-output system
US9414371B2 (en) Hierarchical channel sounding and channel state information feedback in massive MIMO systems
CN111712970B (zh) 用于快速波束搜索的相控阵天线***
US9660712B2 (en) Method and apparatus for transmitting downlink data on basis of beam restricted sub-frame
KR20200008595A (ko) 무선 통신 시스템에서 채널 상태 정보를 보고하는 방법 및 이를 위한 장치
EP3718235B1 (en) Customizing transmission of a system information message
JP5249863B2 (ja) 基地局装置及び干渉低減方法
CN111344958A (zh) 用于ue请求信道状态信息参考信号(csi-rs)或探测参考信号(srs)的方法
WO2020062859A1 (en) System and method for beam management
US10382110B2 (en) Adaptive user-specific beam forming
EP4088391A1 (en) Millimeter-wave multi-beams
US20240072952A1 (en) Apparatus, method, program products for maximizing desired multi-transmission point signal to inter-layer-group-interference via ue beam control
WO2015187130A1 (en) Adaptive antenna response at the ue for lte-advanced and beyond
US20210344390A1 (en) Adaptive cell shaping in codebook based full dimension multiple input-multiple output communications
CN114128165B (zh) 用于传输同步信号的方法和装置
KR20180087148A (ko) 무선 통신 시스템에서 다중 안테나를 사용한 통신 방법 및 장치
WO2022187801A1 (en) Phase vector training for adaptive phase-changing device-enabled communication
EP3837773B1 (en) Method and system for managing interference in multi trp systems
WO2022126619A1 (en) Methods and devices for beamforming
US20220264319A1 (en) Method of measuring aas emf
CN116566445A (zh) 用于确定波束干扰的方法
WO2020231301A1 (en) Radio network node and method performed therein for handling

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant