CN111741825A - Slm设备和用于操作slm设备的方法 - Google Patents

Slm设备和用于操作slm设备的方法 Download PDF

Info

Publication number
CN111741825A
CN111741825A CN201980014578.3A CN201980014578A CN111741825A CN 111741825 A CN111741825 A CN 111741825A CN 201980014578 A CN201980014578 A CN 201980014578A CN 111741825 A CN111741825 A CN 111741825A
Authority
CN
China
Prior art keywords
radiation
component
laser radiation
build space
facing surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201980014578.3A
Other languages
English (en)
Other versions
CN111741825B (zh
Inventor
O·盖森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Energy Global GmbH and Co KG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of CN111741825A publication Critical patent/CN111741825A/zh
Application granted granted Critical
Publication of CN111741825B publication Critical patent/CN111741825B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • B29C64/268Arrangements for irradiation using laser beams; using electron beams [EB]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • B29C64/286Optical filters, e.g. masks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/366Scanning parameters, e.g. hatch distance or scanning strategy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/41Radiation means characterised by the type, e.g. laser or electron beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/44Radiation means characterised by the configuration of the radiation means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/90Means for process control, e.g. cameras or sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Automation & Control Theory (AREA)
  • Laser Beam Processing (AREA)

Abstract

本发明涉及一种用于操作SLM设备(1)的方法,包括以下步骤:a)在SLM设备(1)中提供构建空间(17),该构建空间具有构件(2)和与该构件相邻的粉末(3),其中构建空间(17)的朝上表面(18)包括由构件(2)形成的区域和由粉末(3)形成的其他区域;b)使用激光辐射来扫描该朝上表面(18),激光辐射的功率和作用持续时间被选择为使得构件(2)和粉末(3)不被熔化;c)检测由于激光辐射与构建空间(17)的相互作用而产生的辐射;d)从步骤c)中检测到的辐射推断出构件(2)的位置和尺寸。

Description

SLM设备和用于操作SLM设备的方法
背景技术
SLM设备是一种通过对粉末的选择性激光熔化(SLM)逐层地构建构件的设备。对于大型构件可以采用所谓的混合型选择性激光熔化。首先,通过另一种制造方法(例如铸造)制造部件的一个区段。然后,将该区段放入SLM设备,并且通过选择性激光熔化在该区段上施加构件的另一区段。为了使该区段和另一区段尽可能精确地彼此匹配,希望尽可能精确地确定该区段在SLM设备中的位置。
发明内容
因此,本发明的目的是提出一种SLM设备和一种用于操作SLM设备的方法,通过该SLM设备和该方法可以以尽可能高的精度来确定构件在SLM设备中的位置。
根据本发明的用于操作SLM设备的方法包括以下步骤:a)在SLM设备中提供构建空间,该构建空间具有构件和与该构件相邻的粉末,其中该构建空间的朝上表面包括由构件形成的区域和由粉末形成的其他区域;b)使用激光辐射来扫描该朝上表面,激光辐射的功率和作用持续时间被选择为使得构件和粉末不被熔化;c)检测由于激光辐射与构建空间的相互作用而产生的辐射;d)从步骤c)中检测到的辐射推断出构件的位置和尺寸。
利用根据本发明的方法,可以以特别高的精度确定构件的位置和尺寸。另外,步骤b)中可以使用与随后的选择性激光熔化相同的激光源,从而可以低成本地改造传统的SLM设备以执行根据本发明的方法。
应当选择多高的激光辐射的功率和作用持续时间取决于构件和粉末的许多特性,例如取决于表面性质、激光辐射的吸收能力、导热性、粉末的粒度分布和堆积密度。这些特性可能因材料不同而有很大差异。然而,可以容易且无需很大付出地进行实验,在实验中改变激光辐射的功率和/或激光辐射的作用持续时间,使得构件和粉末都不被熔化,同时在步骤c)中充分地检测到该辐射,从而可以确定构件的位置和尺寸。
相互作用例如可以是在构建空间的朝上表面上的反射和/或散射。这意味着在步骤c)中,测量由构建空间的朝上表面反射和/或散射的激光辐射。相互作用例如还可以是对构建空间的加热,这意味着激光辐射至少部分地被构建空间吸收,并且在步骤c)中测量由构建空间发射的热辐射。
优选地,该方法包括以下步骤:e)基于该尺寸,在包含构件的三维计算机模型中,识别构件的布置在构建空间的朝上表面中的面积。此外,该方法还包括以下步骤:f)在构建空间的朝上表面上施加至少一层粉末,并且基于该位置和在三维计算机模型中识别的面积,通过在上述层中的每个层中借助激光辐射选择性地激光熔化粉末来扩展构件。在步骤a)中提供了构件的一个区段,并且在步骤f)中通过选择性激光熔化提供了构件的另一区段。通过方法步骤e)和f)可以有利地实现:在步骤f)中制造计算机模型的未由该区段形成的那一部分,从而使两个区段特别好地彼此适配。例如,可以在制造该区段时补偿制造公差。另外可以制造没有棱角和/或毛刺的构件。
优选地,在步骤b)和f)中使用相同的激光源以产生激光辐射。由此,在推断构件的位置和尺寸时以及在选择性地激光熔化时,使用相同或至少非常相似的栅格,使得构件中的该区段和另一区段特别好地彼此适配。
优选地,辐射是热辐射。热辐射具有在各个方向均匀地发射的优点,从而使得在SLM设备中布置用于检测热辐射的检测器可以具有很大的灵活性。优选地,以不同于激光辐射的波长的检测波长来检测热辐射。由此可以有利地防止在步骤c)中检测到激光辐射,该激光辐射在步骤d)中可能使对构件的位置和尺寸的推断失真。
优选地,在步骤c)中检测辐射的以下部分,该部分从激光辐射的布置在构建空间的朝上表面上的入射点开始,逆着激光辐射的方向传播。有利地,这里涉及易于校准的结构。例如,可以借助于分束器将该辐射从激光辐射中分离。
替代并优选地,在步骤c)中检测辐射的以下部分,该部分从激光辐射的布置在构建空间的朝上表面上的入射点开始,偏离激光辐射的方向传播。由此,可以有利地减少激光辐射的量,该激光辐射在步骤c)中与该辐射一起被检测,并且在步骤d)中可能使对构件的位置和尺寸的推断失真。
优选地,在步骤d)中形成在步骤c)中检测到的辐射的强度的栅格,并且通过识别栅格中的强度梯度来确定从该区域到其他区域的过渡。根据构件和粉末的特性,以及根据如何产生辐射以及如何检测辐射,从由构件形成的区域到由粉末形成的其他区域的过渡可能伴随着检测到的强度的降低或检测到的强度的增加。优选地,在步骤c)中首先通过粗网格扫描栅格,并且在步骤d)中确定过渡之后,在过渡区域中通过细网格扫描栅格。由此可以在短时间内以特别高的精度推断出构件的位置和尺寸。
优选地,该区域和其他区域位于同一水平面中,特别是该区域和其他区域完全位于同一水平面中。
根据本发明的SLM设备被设置为执行根据本发明的方法的步骤或执行根据优选方法的步骤。
附图说明
下面参考附图更详细地解释本发明。
图1示出了SLM设备的横截面;
图2示出了构件;
图3示出了具有栅格的构件。
具体实施方式
从图1可以看出,在步骤a)中在SLM设备1中提供了构建空间17。构建空间17具有构件2和与构件2相邻的粉末3。构建空间17的朝上表面18包括由构件2形成的区域和由粉末3形成的其他区域。区域和其他区域完全位于同一水平面中。构件2可以通过不同于生成制造方法(特别是选择性激光熔化)的制造方法(例如通过铸造)来制造。粉末3可以例如是金属粉末和/或陶瓷粉末。
SLM设备1还具有被设置成发射激光辐射的激光源4。激光源4可以例如是Nd:YAG激光器。在这种情况下,激光辐射可以由Nd:YAG激光器的基本元件形成,因此具有1064nm的波长。在SLM设备1的操作中,激光辐射沿着光束路径5传播。SLM设备1具有分束器6、扫描镜7和透镜***8。从图1可以看出,SLM设备1被设置为经由分束器6将激光辐射引导到扫描镜7上。扫描镜7被可移动地安装,并且可以由SLM设备1进行控制,使得激光辐射可以经由透镜***8被引导到构建空间17的朝上表面18上的每个任意点,透镜***8被布置在扫描镜7与构建空间17的朝上表面18之间的光束路径5中。透镜***8被设置为将激光辐射聚焦在构建空间17的朝上表面18上。透镜***8例如是F-Theta透镜。
在步骤b)中,使用激光辐射来扫描朝上表面18,其中激光辐射的功率和作用持续时间被选择为使得构件2和粉末3不被熔化。另外,激光辐射的功率和作用持续时间被选择为使得构件2和粉末3变热。在激光源4是Nd:YAG激光器的情况下,可以通过改变泵浦Nd:YAG激光器的Nd:YAG晶体的光功率来改变功率。由于激光辐射与构建空间17在激光辐射的入射点9处的相互作用,所以发出热辐射10,该入射点9被布置在构建空间17的朝上表面18上。
在步骤c)中,检测热辐射。在此可以以与激光辐射的波长不同的检测波长来检测热辐射。在Nd:YAG激光器的情况下,检测波长例如可以长于1064nm。这可以例如借助于检测器13或借助于相机14来进行。在检测器13的情况下,该检测器13具有单个检测器元件(例如光电二极管)就足够了。相反,相机14具有检测器元件的二维矩阵。相机14可以例如是CMOS相机或微测辐射热计相机。相机14具有镜头15,该镜头15被设置为将构建空间17的朝上表面18成像到检测器元件上的二维矩阵上。由于扫描镜7和透镜***8,难以将相机14垂直指向构建空间17的朝上表面18。通过针对镜头15使用沙姆镜头,例如可以校正由于相机14在构建空间17的朝上表面18上倾斜指向而产生的成像误差。
图1示出了检测器13被布置为检测在分束器6反射的热辐射。还可以想到的是,检测器13被布置在SLM设备中的其他位置,只要检测器13的视野包括构建空间17的整个朝上表面18。检测由分束器6反射的热辐射具有如下优点:与检测器13布置在其他位置相比,透镜***8收集更大量的红外辐射并将其传导到检测器13上。图1示出了热辐射10的第一光束路径11,该第一光束路径11描述了从激光辐射的入射点9开始,逆着激光辐射的方向传播的那部分热辐射。另外,图1示出了热辐射10的第二光束路径12,该第二光束路径12是从激光辐射的入射点9开始,偏离激光辐射的方向传播的那部分热辐射。可以想到的是,在步骤c)中检测仅来自光束路径11、仅来自光束路径12或来自两个光束路径11和12的热辐射。第一光束路径10也可以具有激光辐射。例如,第一光束路径10中的激光辐射可以已经被透镜***8反射回去,并且在分束器6处不完全地从热辐射10中分离。这种不完全分离的激光辐射会干扰对热辐射的检测。在此,有利地仅检测第二光束路径12中的热辐射。
在步骤d)中,从步骤c)中检测到的热辐射推断出构件2的位置和尺寸。为此,形成在步骤c)中检测到的辐射强度的栅格16,并且通过识别栅格16中的强度梯度来确定从该区域到其他区域的过渡。从图1和图3可以看出,栅格16在x方向和y方向上跨越。为了比较,在图1中还示出了x方向、y方向以及另外的z方向。可以想象,在步骤c)中首先通过粗网格扫描栅格16,并且在步骤d)中确定过渡之后,在过渡区域中通过细网格扫描栅格16。
在步骤e)中,基于该尺寸,在包含构件2的三维计算机模型19中识别构件2的布置在构建空间17的朝上表面18中的面积。计算机模型19在图1中被示出,并且包括构件2的虚线区段(构件2的一个区段)以及构件2的阴影区段(构件2的另一区段)。在步骤f)中,至少一层粉末3被施加到构建空间17的朝上表面18上,并且基于位置和三维计算机模型19中识别的面积,通过在上述层中的每个层中借助激光辐射选择性地激光熔化粉末3来扩展构件2。如果构件2的横截面如图1所示在z方向上变化,则步骤f)尤其重要。在步骤b)和f)中,如图1所示,可以使用相同的激光源4来产生激光辐射。
尽管通过优选的实施例详细地说明和描述了本发明,但是本发明不限于公开的示例,并且本领域技术人员可以在不脱离本发明保护范围的情况下从中得出其他变化。

Claims (11)

1.一种用于操作SLM设备(1)的方法,包括以下步骤:
a)在所述SLM设备(1)中提供一个构建空间(17),所述构建空间具有一个构件(2)和与所述构件(2)相邻的粉末(3),其中所述构建空间(17)的朝上表面(18)包括由所述构件(2)形成的多个区域和由所述粉末(3)形成的多个其他区域;
b)使用激光辐射来扫描所述朝上表面(18),所述激光辐射的功率和作用持续时间被选择为使得所述构件(2)和所述粉末(3)不被熔化;
c)检测由于所述激光辐射与所述构建空间(17)的相互作用而产生的辐射,其中所述辐射是热辐射(10);
d)从步骤c)中检测到的所述辐射推断出所述构件(2)的位置和尺寸。
2.根据权利要求1所述的方法,包括以下步骤:
e)基于所述尺寸,在包含所述构件(2)的三维计算机模型(19)中,识别所述构件(2)的布置在所述构建空间(17)的所述朝上表面(18)中的面积。
3.根据权利要求2所述的方法,包括以下步骤:
f)在所述构建空间(17)的所述朝上表面(18)上施加至少一层所述粉末(3),并且基于所述位置和在所述三维计算机模型(19)中识别的所述面积,通过在所述层中的每个层中借助激光辐射选择性地激光熔化所述粉末(3)来扩展所述构件(2)。
4.根据权利要求3所述的方法,其中在步骤b)和步骤f)中,使用相同的激光源(4)来产生所述激光辐射。
5.根据权利要求1至4中任一项所述的方法,其中在检测波长下检测所述热辐射(10),所述检测波长不同于所述激光辐射的波长。
6.根据权利要求1至5中任一项所述的方法,其中在步骤c)中检测所述辐射的以下部分,所述部分从所述激光辐射的布置在所述构建空间(17)的所述朝上表面(18)上的一个入射点(9)开始,逆着所述激光辐射的方向传播。
7.根据权利要求1至6中任一项所述的方法,其中在步骤c)中检测所述辐射的以下部分,所述部分从所述激光辐射的布置在所述构建空间(17)的所述朝上表面(18)上的一个入射点(9)开始,偏离所述激光辐射的方向传播。
8.根据权利要求1至7中的任一项所述的方法,其中在步骤d)中形成在步骤c)中检测到的所述辐射的强度的栅格(16),并且通过识别所述栅格(16)中的强度梯度来确定从所述多个区域到所述多个其他区域的过渡。
9.根据权利要求8所述的方法,其中在步骤c)中,首先通过粗网格扫描所述栅格(16),并且在步骤d)中确定所述过渡之后,在所述过渡的区域中通过细网格扫描所述栅格(16)。
10.根据权利要求1至9中任一项所述的方法,其中所述多个区域和所述多个其他区域位于同一水平面中,特别是所述多个区域和所述多个其他区域完全位于同一水平面中。
11.一种SLM设备(1),所述SLM设备(1)被设置为执行根据权利要求1至10中任一项所述的方法的步骤。
CN201980014578.3A 2018-02-21 2019-01-22 Slm设备和用于操作slm设备的方法 Active CN111741825B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102018202600.9 2018-02-21
DE102018202600.9A DE102018202600A1 (de) 2018-02-21 2018-02-21 SLM-Anlage und Verfahren zum Betreiben der SLM-Anlage
PCT/EP2019/051486 WO2019162018A1 (de) 2018-02-21 2019-01-22 Slm-anlage und verfahren zum betreiben der slm-anlage

Publications (2)

Publication Number Publication Date
CN111741825A true CN111741825A (zh) 2020-10-02
CN111741825B CN111741825B (zh) 2023-03-10

Family

ID=65363222

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980014578.3A Active CN111741825B (zh) 2018-02-21 2019-01-22 Slm设备和用于操作slm设备的方法

Country Status (5)

Country Link
US (1) US20210039310A1 (zh)
EP (1) EP3713698B1 (zh)
CN (1) CN111741825B (zh)
DE (1) DE102018202600A1 (zh)
WO (1) WO2019162018A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007056984A1 (de) * 2007-11-27 2009-05-28 Eos Gmbh Electro Optical Systems Verfahren zum Herstellen eines dreidimensionalen Objekts mittels Lasersintern
US20090206065A1 (en) * 2006-06-20 2009-08-20 Jean-Pierre Kruth Procedure and apparatus for in-situ monitoring and feedback control of selective laser powder processing
DE102014208768A1 (de) * 2014-05-09 2015-12-17 MTU Aero Engines AG Verfahren und Vorrichtung zur Qualitätssicherung
CN105745060A (zh) * 2013-09-23 2016-07-06 瑞尼斯豪公司 增材制造设备和方法
EP3095591A1 (de) * 2015-05-19 2016-11-23 MTU Aero Engines GmbH Verfahren und vorrichtung zum zumindest bereichsweisen ermitteln einer kontur wenigstens einer generativ hergestellten bauteilschicht
CN107175329A (zh) * 2017-04-14 2017-09-19 华南理工大学 一种3d打印逐层检测反求零件模型及定位缺陷装置与方法
EP3243583A1 (en) * 2016-05-13 2017-11-15 SLM Solutions Group AG Apparatus and method for associating a position in a construction data set with a position in a building section of the apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2942130B1 (de) * 2014-05-09 2019-01-30 MTU Aero Engines GmbH Vorrichtung und Verfahren zur generativen Herstellung zumindest eines Bauteilbereichs
DE102014222159A1 (de) * 2014-10-30 2016-05-04 MTU Aero Engines AG Reparaturverfahren und Vorrichtung zum generativen Reparieren eines Bauteils
DE102017202088A1 (de) * 2017-02-09 2018-08-09 Siemens Aktiengesellschaft Verfahren zum pulverbettbasierten additiven Herstellen eines Werkstücks, Computerprogrammprodukt zum Ausführen dieses Verfahrens, vorzugsweise auf einem Datenträger, und Maschine zum pulverbettbasierten additiven Herstellen
US10821721B2 (en) * 2017-11-27 2020-11-03 Arcam Ab Method for analysing a build layer

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090206065A1 (en) * 2006-06-20 2009-08-20 Jean-Pierre Kruth Procedure and apparatus for in-situ monitoring and feedback control of selective laser powder processing
DE102007056984A1 (de) * 2007-11-27 2009-05-28 Eos Gmbh Electro Optical Systems Verfahren zum Herstellen eines dreidimensionalen Objekts mittels Lasersintern
CN101678613A (zh) * 2007-11-27 2010-03-24 Eos有限公司电镀光纤*** 借助激光烧结制造三维物体的方法
CN105745060A (zh) * 2013-09-23 2016-07-06 瑞尼斯豪公司 增材制造设备和方法
DE102014208768A1 (de) * 2014-05-09 2015-12-17 MTU Aero Engines AG Verfahren und Vorrichtung zur Qualitätssicherung
EP3095591A1 (de) * 2015-05-19 2016-11-23 MTU Aero Engines GmbH Verfahren und vorrichtung zum zumindest bereichsweisen ermitteln einer kontur wenigstens einer generativ hergestellten bauteilschicht
EP3243583A1 (en) * 2016-05-13 2017-11-15 SLM Solutions Group AG Apparatus and method for associating a position in a construction data set with a position in a building section of the apparatus
CN107175329A (zh) * 2017-04-14 2017-09-19 华南理工大学 一种3d打印逐层检测反求零件模型及定位缺陷装置与方法

Also Published As

Publication number Publication date
WO2019162018A1 (de) 2019-08-29
EP3713698B1 (de) 2024-03-20
DE102018202600A1 (de) 2019-08-22
EP3713698A1 (de) 2020-09-30
US20210039310A1 (en) 2021-02-11
CN111741825B (zh) 2023-03-10

Similar Documents

Publication Publication Date Title
KR102340573B1 (ko) 적층식 제조 작업 중 방사 열 에너지를 측정하는 시스템 및 방법
US11179806B2 (en) Device for the additive production of three-dimensional components
US20210039167A1 (en) Additive manufacturing apparatus and method
JP5905060B1 (ja) 積層造形装置および積層造形方法
US11167497B2 (en) Localising sensor data collected during additive manufacturing
JP7140829B2 (ja) 演算装置、検出システム、造形装置、演算方法、検出方法、造形方法、演算プログラム、検出プログラムおよび造形プログラム
JP7140828B2 (ja) 演算装置、検出システム、造形装置、演算方法、検出方法、造形方法、演算プログラム、検出プログラムおよび造形プログラム
US20140198365A1 (en) Multi-beam laser scanning system and method
US8243263B2 (en) Optical inspection method and optical inspection apparatus
US7422988B2 (en) Rapid detection of imminent failure in laser thermal processing of a substrate
CN112004635B (zh) 用于增材制造的***和方法
JPWO2016042810A1 (ja) 積層造形装置及び積層造形方法
US11993007B2 (en) Measuring system for a device for the generative manufacturing of a three-dimensional object
KR102220823B1 (ko) 3d 프린팅 공정 중 형성되는 용융풀 깊이를 추정하는 방법 및 장치, 그리고 이를 구비한 3d 프린팅 시스템
CN113784832A (zh) 工件的增材制造的监控和过程控制
CN105556650A (zh) 晶片检验***内的衬底表面的高速高度控制的方法及***
JP6964801B2 (ja) 積層造形装置
CN111741825B (zh) Slm设备和用于操作slm设备的方法
JP2008016778A (ja) 半導体検査装置および半導体検査方法
KR100900684B1 (ko) 라인 빔 레이저 장치 및 이를 이용한 표면 측정 장치
US9518865B2 (en) Device for measuring a power density distribution of a radiation source
Ashton Investigations into Process Monitoring for Selective Laser Melting
WO2020136800A1 (ja) 波面計測装置及び波面計測方法
JP2024033159A (ja) レーザー加工装置
JPH11170078A (ja) レーザ加工装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20211028

Address after: Munich, Germany

Applicant after: Siemens energy Global Co.,Ltd.

Address before: Munich, Germany

Applicant before: SIEMENS AG

GR01 Patent grant
GR01 Patent grant