CN111722321A - 一种光膜转换器及其制备方法 - Google Patents

一种光膜转换器及其制备方法 Download PDF

Info

Publication number
CN111722321A
CN111722321A CN202010060074.XA CN202010060074A CN111722321A CN 111722321 A CN111722321 A CN 111722321A CN 202010060074 A CN202010060074 A CN 202010060074A CN 111722321 A CN111722321 A CN 111722321A
Authority
CN
China
Prior art keywords
waveguide
layer
dielectric
optical fiber
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010060074.XA
Other languages
English (en)
Inventor
王奕琼
魏星
冯大增
梁虹
武爱民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Microsystem and Information Technology of CAS
Original Assignee
Shanghai Institute of Microsystem and Information Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Microsystem and Information Technology of CAS filed Critical Shanghai Institute of Microsystem and Information Technology of CAS
Priority to CN202010060074.XA priority Critical patent/CN111722321A/zh
Publication of CN111722321A publication Critical patent/CN111722321A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/30Optical coupling means for use between fibre and thin-film device
    • G02B6/305Optical coupling means for use between fibre and thin-film device and having an integrated mode-size expanding section, e.g. tapered waveguide

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

本申请涉及一种光膜转换器及其制备方法,该光膜转换器集成在硅波导上,并与光纤连接。光膜转换器包括衬底层、电介质层、第一波导层和第二波导层;第一波导层包括第一波导和第一电介质槽;第一波导的顶部和第二波导层接触,第一波导的底部和电介质层接触;第一波导的宽度由远离光纤至靠近光纤的一端逐渐增大;第一电介质槽围绕设置于第一波导的外侧;第一电介质槽的底部与电介质层连通;第二波导层包括第二波导;第二波导朝向光纤的端面与第一波导朝向光纤的端面互相配合,用于耦合光纤。本申请通过上述光膜转换器实现光膜尺度从硅波导到光纤的尺度转换,如此,可以降低芯片与光纤光耦合损耗,可以降低光纤成本。

Description

一种光膜转换器及其制备方法
技术领域
本申请涉及半导体技术领域,特别涉及一种光膜转换器及其制备方法。
背景技术
随着人们对信息传输、处理速度要求的不断提高和多核计算时代的来临,基于金属的电互连将会由于过热、延迟、电子干扰等缺陷成为发展瓶颈。而采用光互连来取代电互连,可以有效解决这一难题。在光互连的具体实施方案中,硅基光互连以其无可比拟的成本和技术优势成为首选。硅基光互连既能发挥光互连速度快、带宽大、抗干扰、功耗低等优点,又能充分利用微电子工艺成熟、高密度集成、高成品率、成本低廉等优势,其发展必将推动新一代高性能计算机、数据通信***的发展,有着广阔的市场应用前景。
硅基光互连的核心技术是在硅基上实现各种光电功能的器件,如光电探测器、调制器、波分复用器等。集成光电器件模块的光损耗是一个重要的技术指标,而其中芯片与光纤耦合差损亦是重要参数。为了减少硅光电集成芯片与标准光纤之间因尺寸不匹配引起的光耦合差损,透镜光纤、小芯光纤和缩芯光纤常被用做过渡的光膜转接光纤。如图1(a)所示,展示了现有技术方案通过标准光纤的光膜转接到缩芯光纤而使光膜缩小到硅波导的尺度;如图1(b)所示,展示了基于SOI(silicon on insulator)的硅基光波导截面A-A’的示意图;如图1(c)所示,展示了硅波导与缩芯光纤光膜耦合端面B-B’尺度比较。现有技术存在的缺点是,缩芯光纤与集成光电芯片波导的耦合插损对耦合对准精度容差较差,且缩芯光纤比标准光纤成本高。
发明内容
本申请实施例提供了一种光膜转换器及其制备方法,可以降低芯片与光纤光耦合损耗,可以降低光纤成本。
一方面,本申请实施例提供了一种光膜转换器,光膜转换器集成在硅波导上,光膜转换器与光纤连接;光膜转换器包括衬底层100、电介质层200、第一波导层300和第二波导层400;
第一波导层300包括第一波导301和第一电介质槽302;
第一波导301的顶部和第二波导层400接触,第一波导301的底部和电介质层200接触;第一波导301的宽度由远离光纤至靠近光纤的一端逐渐增大;第一电介质槽302围绕设置于第一波导301的外侧;第一电介质槽302的底部与电介质层200连通;
第二波导层400包括第二波导401;第二波导401朝向光纤的端面与第一波导301朝向光纤的端面互相配合,用于耦合光纤。
另一方面,本申请实施例提供了一种光膜转换器的制备方法,包括:
依次沉积绝缘层、电介质层和第一硅层;
对第一硅层进行光刻和硅干法,刻蚀深沟到电介质层;
对第一硅层的表面进行光刻和硅干法,刻蚀预设深度的槽;
对深沟和槽进行电介质填充,形成第一电介质槽和第二电介质槽;
使用氢离子注入第二硅层,形成注入层;其中,注入能量小于等于120千电子伏,注入剂量5E6至7E6每平方厘米;
对注入后的第二硅层进行表面激活处理;
键合第一硅层和第二硅层;
对键合后的第一硅层和第二硅层进行热处理;其中,处理温度小于等于700摄氏度,处理气氛为氩气或者氮气;
从注入层剥离第二硅层,得到光膜转换器;
对光膜转换器进行清洗、加固和抛光;其中,加固温度小于等于1250摄氏度,加固处理时间小于6小时。
本申请实施例提供的一种光膜转换器及其制备方法具有如下有益效果:
该光膜转换器集成在硅波导上,并与光纤连接;光膜转换器包括衬底层100、电介质层200、第一波导层300和第二波导层400;第一波导层300包括第一波导301和第一电介质槽302;第一波导301的顶部和第二波导层400接触,第一波导301的底部和电介质层200接触;第一波导301的宽度由远离光纤至靠近光纤的一端逐渐增大;第一电介质槽302围绕设置于第一波导301的外侧;第一电介质槽302的底部与电介质层200连通;第二波导层400包括第二波导401;第二波导401朝向光纤的端面与第一波导301朝向光纤的端面互相配合,用于耦合光纤。本申请通过上述光膜转换器实现光膜尺度从硅波导到光纤的尺度转换,如此,可以降低芯片与光纤光耦合损耗,可以降低光纤成本。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种现有技术中硅波导和光纤进行光膜转接的示意图;
图2是本申请实施例提供的一种光膜转换器的结构示意图;
图3是本申请实施例提供的一种光膜转换器的俯视图;
图4是本申请实施例提供的一种光膜转换器与光纤耦合端面的结构示意图;
图5是本申请实施例提供的一种俯视角度下第一波导层的结构示意图;
图6是本申请实施例提供的一种图3中截面C-C’的结构示意图;
图7是本申请实施例提供的一种图3中截面D-D’的结构示意图;
图8是本申请实施例提供的一种图3中截面E-E’的结构示意图;
图9是本申请实施例提供的一种光膜转化器的制备过程示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、***、产品或服务器不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
请参阅图2,图2是本申请实施例提供的一种光膜转换器的结构示意图,该光膜转换器集成在硅波导上,光膜转换器与光纤连接;光膜转换器包括衬底层100、电介质层200、第一波导层300和第二波导层400;
第一波导层300包括第一波导301和第一电介质槽302;
第一波导301的顶部和第二波导层400接触,第一波导301的底部和电介质层200接触;第一波导301的宽度由远离光纤至靠近光纤的一端逐渐增大;第一电介质槽302围绕设置于第一波导301的外侧;第一电介质槽302的底部与电介质层200连通;
第二波导层400包括第二波导401;第二波导401朝向光纤的端面与第一波导301朝向光纤的端面互相配合,用于耦合光纤。
本申请实施例通过在芯片中集成上述光膜转换器,可以实现光膜尺度从硅波导到标准光纤的尺度转换,优点在于可以大幅降低硅光电集成芯片与光纤耦合对准容差对耦合插损的影响,从而大幅降低器件光插损;并且可以用标准光纤代替透镜光纤、小芯光纤或缩芯光纤,从而大幅降低光纤成本。
本申请实施例中,如图2所示,第一波导层300靠近第二波导层400的端面刻蚀有第二电介质槽303。
可选的,第二电介质槽303与第一电介质槽302连通。
可选的,电介质层200的电介质材料包括氧化硅和氮化硅中的至少一种。
请参阅图3,图3是本申请实施例提供的一种光膜转换器的俯视图,为了便于理解与说明,该俯视图中去掉了光膜转换器上方的部分第二波导层400。该光膜转换器集成于硅波导的一端,光膜转换器的另一端用于与光纤耦合,请参阅图4,图4是本申请实施例提供的一种光膜转换器与光纤耦合端面的结构示意图。
请参阅图5,图5是本申请实施例提供的一种俯视角度下第一波导层的结构示意图。可选的,结合图2、图4和图5,第一波导301的截面呈梯形,第一电介质槽302呈V形,该V形底部具有一定宽度。需要说明的是,第一波导301的截面边缘可以是线性,也可以是非线性的。
请参阅图6,图6是本申请实施例提供的一种图3中截面C-C’的结构示意图,该截面C-C’是光膜转换器与光纤耦合端面。第一波导301朝向光纤的端面的宽度W1的范围为6.0微米至15.0微米;第二波导401朝向光纤的端面的宽度W2的范围为6.0微米至15.0微米;第一波导301的高度与第二波导401的高度之和H1的范围为6.0微米至15.0微米。
可选的,标准光纤的直径范围为6.0微米至15.0微米。
请参阅图7,图7是本申请实施例提供的一种图3中截面D-D’的结构示意图,第一波导301背离光纤的端面的宽度W3范围为0.5微米至1.5微米;第一电介质槽302的宽度W4范围为0.1微米至3.0微米;第二电介质槽303的深度H2范围为0.1微米至3.0微米。
请参阅图8,图8是本申请实施例提供的一种图3中截面E-E’的结构示意图,该截面E-E’为光膜转换器和硅波导的集成端面。第二波导401背离光纤的端面的宽度W5范围为0.2微米至4.0微米;第二波导401的高度H3的范围为0.1微米至5.0微米。
本申请实施例还提供了一种光膜转化器的制备方法,请参阅图9,图9是本申请实施例提供的一种光膜转化器的制备过程示意图。如图9(a)所示,包括依次沉积绝缘层100、电介质层200和第一硅层300;如图9(b)所示,对第一硅层300进行光刻和硅干法,刻蚀深沟到电介质层200;如图9(c)所示,对第一硅层300的表面进行光刻和硅干法,刻蚀预设深度为y的槽;如图9(d)所示,对深沟和槽进行电介质填充,形成第一电介质槽302和第二电介质槽303;如图9(e)所示,使用氢离子注入第二硅层400,形成注入层;其中,注入能量小于等于120千电子伏,注入剂量5E6至7E6每平方厘米;对注入后的第二硅层400进行表面激活处理;如图9(f)所示,键合第一硅层300和第二硅层400;对键合后的第一硅层300和第二硅层400进行热处理;其中,处理温度小于等于700摄氏度,处理气氛为氩气或者氮气;如图9(g)所示,从注入层剥离第二硅层400,得到光膜转换器;对光膜转换器进行清洗、加固和抛光;其中,加固温度小于等于1250摄氏度,加固处理时间小于6小时。
可选的,如图9(h)所示,可以通过在第二硅层400上硅外延(epitaxy)得到更厚的光膜转换器。
可选的,使用氢离子注入第二硅层400,形成注入层之后,对注入后的第二硅层400进行表面激活处理之前,还包括:使用氢氟酸去除注入后的第二硅层400表面的氧化层。
一种可选的对注入后的第二硅层400进行表面激活处理的实施方式中,使用低温等离子体对注入后的第二硅层400进行表面激活处理;其中,低温等离子体包括氧等离子体、氮等离子体和氩等离子体中的任一种。
另一种可选的对注入后的第二硅层400进行表面激活处理的实施方式中,使用氨水对注入后的第二硅层400进行表面激活处理。
另一种可选的对注入后的第二硅层400进行表面激活处理的实施方式中,使用软刷接触注入后的第二硅层400的表面,进行表面激活处理。
一种可选的对光膜转换器进行清洗、加固和抛光的实施方式中,包括:对光膜转换器进行清洗、加固之后,使用氢氟酸去除光膜转换器表面氧化层;通过化学机械抛光(Chemical Mechanical Polishing,CMP)使光膜转换器表面平整光滑。
由上述本申请提供的一种光膜转换器及其制备方法的实施例可见,本申请中,光膜转换器集成在硅波导上,并与光纤连接;光膜转换器包括衬底层100、电介质层200、第一波导层300和第二波导层400;第一波导层300包括第一波导301和第一电介质槽302;第一波导301的顶部和第二波导层400接触,第一波导301的底部和电介质层200接触;第一波导301的宽度由远离光纤至靠近光纤的一端逐渐增大;第一电介质槽302围绕设置于第一波导301的外侧;第一电介质槽302的底部与电介质层200连通;第二波导层400包括第二波导401;第二波导401朝向光纤的端面与第一波导301朝向光纤的端面互相配合,用于耦合光纤。本申请通过上述光膜转换器实现光膜尺度从硅波导到光纤的尺度转换,如此,可以降低芯片与光纤光耦合损耗,可以降低光纤成本。
需要说明的是,本说明书提供了如实施例的方法操作步骤,但基于常规或者无创造性的劳动可以包括更多或者更少的操作步骤。实施例中列举的步骤顺序仅仅为众多步骤执行顺序中的一种方式,不代表唯一的执行顺序。
以上所述仅为本申请的较佳实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (12)

1.一种光膜转换器,其特征在于,所述光膜转换器集成在硅波导上,所述光膜转换器与光纤连接;所述光膜转换器包括衬底层(100)、电介质层(200)、第一波导层(300)和第二波导层(400);
所述第一波导层(300)包括第一波导(301)和第一电介质槽(302);
所述第一波导(301)的顶部和所述第二波导层(400)接触,所述第一波导(301)的底部和所述电介质层(200)接触;所述第一波导(301)的宽度由远离所述光纤至靠近所述光纤的一端逐渐增大;所述第一电介质槽(302)围绕设置于所述第一波导(301)的外侧;所述第一电介质槽(302)的底部与所述电介质层(200)连通;
所述第二波导层(400)包括第二波导(401);所述第二波导(401)朝向所述光纤的端面与所述第一波导(301)朝向所述光纤的端面互相配合,用于耦合所述光纤。
2.根据权利要求1所述的光膜转换器,其特征在于,所述第一波导层(300)靠近所述第二波导层(400)的端面刻蚀有第二电介质槽(303);
所述第二电介质槽(303)与所述第一电介质槽(302)连通。
3.根据权利要求1所述的光膜转换器,其特征在于,所述第一波导(301)的截面呈梯形;
所述第一电介质槽(302)呈V形。
4.根据权利要求1所述的光膜转换器,其特征在于,所述第一波导(301)朝向所述光纤的端面的宽度范围为6.0微米至15.0微米;
所述第二波导(401)朝向所述光纤的端面的宽度范围为6.0微米至15.0微米;
所述光纤的直径范围为6.0微米至15.0微米。
5.根据权利要求1所述的光膜转换器,其特征在于,
所述第二波导(401)的高度的范围为0.1微米至5.0微米;
所述第一波导(301)的高度与所述第二波导(401)的高度之和的范围为6.0微米至15.0微米。
6.根据权利要求1所述的光膜转换器,其特征在于,所述第一波导(301)背离所述光纤的端面的宽度范围为0.01微米至1.5微米;
所述第二波导(401)背离所述光纤的端面的宽度范围为0.2微米至4.0微米。
7.根据权利要求2所述的光膜转换器,其特征在于,所述第一电介质槽(302)的宽度范围为0.1微米至3.0微米;
所述第二电介质槽(303)的深度范围为0.1微米至3.0微米。
8.根据权利要求1所述的光膜转换器,其特征在于,所述电介质层(200)的电介质材料包括氧化硅和氮化硅中的至少一种。
9.一种光膜转换器的制备方法,其特征在于,包括:
依次沉积绝缘层、电介质层和第一硅层;
对所述第一硅层进行光刻和硅干法,刻蚀深沟到所述电介质层;
对所述第一硅层的表面进行光刻和硅干法,刻蚀预设深度的槽;
对所述深沟和所述槽进行电介质填充,形成第一电介质槽和第二电介质槽;
使用氢离子注入第二硅层,形成注入层;其中,注入能量小于等于120千电子伏,注入剂量5E6至7E6每平方厘米;
对所述注入后的第二硅层进行表面激活处理;
键合所述第一硅层和所述第二硅层;
对所述键合后的第一硅层和所述第二硅层进行热处理;其中,处理温度小于等于700摄氏度,处理气氛为氩气或者氮气;
从所述注入层剥离所述第二硅层,得到光膜转换器;
对所述光膜转换器进行清洗、加固和抛光;其中,加固温度小于等于1250摄氏度,加固处理时间小于6小时。
10.根据权利要求9所述的制备方法,其特征在于,所述使用氢离子注入第二硅层,形成注入层之后,所述对所述注入后的第二硅层进行表面激活处理之前,还包括:
使用氢氟酸去除所述注入后的第二硅层表面的氧化层。
11.根据权利要求9所述的制备方法,其特征在于,所述对所述注入后的第二硅层进行表面激活处理,包括:
使用低温等离子体对所述注入后的第二硅层进行表面激活处理;其中,所述低温等离子体包括氧等离子体、氮等离子体和氩等离子体中的任一种;
或者;使用氨水对所述注入后的第二硅层进行表面激活处理;
或者;使用软刷接触所述注入后的第二硅层的表面,进行表面激活处理。
12.根据权利要求9所述的制备方法,其特征在于,所述对所述光膜转换器进行清洗、加固和抛光,包括:
对所述光膜转换器进行清洗、加固之后,使用氢氟酸去除所述光膜转换器表面氧化层;
通过化学机械抛光使所述光膜转换器表面平整光滑。
CN202010060074.XA 2020-01-19 2020-01-19 一种光膜转换器及其制备方法 Pending CN111722321A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010060074.XA CN111722321A (zh) 2020-01-19 2020-01-19 一种光膜转换器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010060074.XA CN111722321A (zh) 2020-01-19 2020-01-19 一种光膜转换器及其制备方法

Publications (1)

Publication Number Publication Date
CN111722321A true CN111722321A (zh) 2020-09-29

Family

ID=72564048

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010060074.XA Pending CN111722321A (zh) 2020-01-19 2020-01-19 一种光膜转换器及其制备方法

Country Status (1)

Country Link
CN (1) CN111722321A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4789642A (en) * 1987-03-26 1988-12-06 The United States Of America As Represented By The Secretary Of The Air Force Method for fabricating low loss crystalline silicon waveguides by dielectric implantation
CN1261675A (zh) * 1999-01-21 2000-08-02 三星电子株式会社 模式形状转换器、其制造方法和利用该部件的集成光学器件
CN1930674A (zh) * 2004-03-05 2007-03-14 S.O.I.Tec绝缘体上硅技术公司 用于改进所剥离薄层质量的热处理
CN105826815A (zh) * 2016-05-30 2016-08-03 中国科学院半导体研究所 980nm半导体激光器结构及制备方法
CN109642985A (zh) * 2016-07-13 2019-04-16 洛克利光子有限公司 模式转换器及其制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4789642A (en) * 1987-03-26 1988-12-06 The United States Of America As Represented By The Secretary Of The Air Force Method for fabricating low loss crystalline silicon waveguides by dielectric implantation
CN1261675A (zh) * 1999-01-21 2000-08-02 三星电子株式会社 模式形状转换器、其制造方法和利用该部件的集成光学器件
CN1930674A (zh) * 2004-03-05 2007-03-14 S.O.I.Tec绝缘体上硅技术公司 用于改进所剥离薄层质量的热处理
CN105826815A (zh) * 2016-05-30 2016-08-03 中国科学院半导体研究所 980nm半导体激光器结构及制备方法
CN109642985A (zh) * 2016-07-13 2019-04-16 洛克利光子有限公司 模式转换器及其制造方法

Similar Documents

Publication Publication Date Title
US7738753B2 (en) CMOS compatible integrated dielectric optical waveguide coupler and fabrication
CN105359014B (zh) 光子集成平台
US6380551B2 (en) Optical function device with photonic band gap and/or filtering characteristics
CN102323646B (zh) 光栅耦合器及其制作方法
US11586000B2 (en) High-density FAUs and optical interconnection devices and related methods
CN112285826B (zh) 一种硅基多模光接收器件及其制备方法
CN114400236B (zh) 集成硅光调制器和锗硅探测器的硅光集成芯片及制备方法
CN111244227A (zh) 一种硅基光子集成模块及其制备方法
CN111722321A (zh) 一种光膜转换器及其制备方法
CN111239900B (zh) 基于晶圆键合形成SiO2波导实现模斑转换的方法及模斑转换器
WO2018065776A1 (en) Frontend integration of electronics and photonics
CN112379479B (zh) 一种硅基光收发器件及其制备方法
CN112379489B (zh) 一种硅基wdm接收器件及其制备方法
CN113437162A (zh) 一种混合集成光电芯片衬底结构的制备方法及衬底结构
KR100953561B1 (ko) 금속선 광도파로 및 그 제작 방법
CN112558333A (zh) 一种电光器件及其制造方法
CN110192134B (zh) 光设备及其制造方法
JP3808804B2 (ja) 光導波路構造及びその製造方法
US20240111107A1 (en) Methods for fabrication of optical structures on photonic glass layer substrates
CN112748504A (zh) 硅光芯片与平面光波导芯片耦合的方法
CN117410377A (zh) 集成波导型utc-pd的硅基芯片及其制备方法、光纤信号处理器
TW202422156A (zh) 在光子玻璃層基板上製造光學結構的方法
Baltuch et al. Efficient coupling of optical fiber to silicon photodiode
CN117908186A (zh) 一种单片集成高速调制硅基光芯片及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200929