CN111719128B - 一种硫代钼酸铵复合多孔非晶碳超滑薄膜的制备方法 - Google Patents

一种硫代钼酸铵复合多孔非晶碳超滑薄膜的制备方法 Download PDF

Info

Publication number
CN111719128B
CN111719128B CN202010773228.XA CN202010773228A CN111719128B CN 111719128 B CN111719128 B CN 111719128B CN 202010773228 A CN202010773228 A CN 202010773228A CN 111719128 B CN111719128 B CN 111719128B
Authority
CN
China
Prior art keywords
ammonium thiomolybdate
ammonium
film
ultra
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010773228.XA
Other languages
English (en)
Other versions
CN111719128A (zh
Inventor
张斌
贾倩
张俊彦
于元烈
高凯雄
张兴凯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanzhou Institute of Chemical Physics LICP of CAS
Original Assignee
Lanzhou Institute of Chemical Physics LICP of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanzhou Institute of Chemical Physics LICP of CAS filed Critical Lanzhou Institute of Chemical Physics LICP of CAS
Priority to CN202010773228.XA priority Critical patent/CN111719128B/zh
Publication of CN111719128A publication Critical patent/CN111719128A/zh
Application granted granted Critical
Publication of CN111719128B publication Critical patent/CN111719128B/zh
Priority to US17/375,030 priority patent/US11613806B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • C23C14/0057Reactive sputtering using reactive gases other than O2, H2O, N2, NH3 or CH4
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0605Carbon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3485Sputtering using pulsed power to the target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/46Sputtering by ion beam produced by an external ion source
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/584Non-reactive treatment

Abstract

本发明公开了一种硫代钼酸铵复合多孔非晶碳超滑薄膜的制备方法,先采用阳极层离子源辅助等离子体化学气相沉积方法和反应磁控溅射法在基体上制备非晶多孔碳薄膜,再将非晶多孔碳薄膜浸渍在硫代钼酸铵溶液中,使硫代钼酸铵被吸附非晶多孔碳薄膜上,自然风干即得。本发明制备的复合多孔非晶碳超滑薄膜在摩擦过程中,利用磨合初期摩擦热的作用,促使硫代钼酸铵原位分解形成二硫化钼,并进一步催化形成类石墨烯结构,然后通过石墨烯和二硫化钼的异质非公度接触,最终实现宏观超滑。另外,硫代钼酸铵通过液相浸渍到非晶多孔碳薄膜上,自然风干后形成的薄膜具有良好的均匀性,具有很好的结合力,因此制备的复合多孔非晶碳超滑薄膜具有较长的使用寿命。

Description

一种硫代钼酸铵复合多孔非晶碳超滑薄膜的制备方法
技术领域
本发明涉及一种复合超滑薄膜,尤其涉及一种硫代钼酸铵复合多孔非晶碳超滑薄膜的制备方法,属于真空镀膜和摩擦学技术领域。
背景技术
摩擦是机械***的共性问题,摩擦消耗30%以上的一次性能源,磨损消耗60%机械部件的失效。随着我国产业升级的发展,汽车、飞机、装备制造、航空航天等装备的节能、减排、高可靠性、长寿命等与高性能固体润滑材料密切相关。其中,汽车、重型机械、航空、航天对高性能润滑材料技术的需求尤为迫切。比如发动机活塞环、气门、挺柱、凸轮轴、活塞销等关键部件,燃油喷射***柱塞、针阀等部件,飞机液压助力转向***、涡轮压缩***、航天***轴承、飞轮、力矩陀螺等***关键部件等基础零部件,摩擦学机理及材料和技术的研究匮乏,严重制约了我国高端装备的升级换代与性能提升。
通常,润滑油的摩擦系数处于0.05左右,而超滑特指摩擦系数处于0.001数量级或者更低的状态。超滑的实际应用,将极大地降低摩擦功耗,降低磨损,不仅提高能源利用效率,而且能延长运动部件的使用寿命和提高可靠性。CN201910688409.X提供了一种实现锥形针尖的AFM探针与石墨表面之间超滑的方法,可以实现微米尺寸的超滑,摩擦系数低至0.001。CN201510582261.3提供了一种磁控溅射含银超低摩擦系数类石墨碳膜的制备方法,但是其实际摩擦系数大于0.01,并未实现真正意义上的超滑(超低摩擦)。CN201710403632.6提供了一种摩擦表面生长石墨烯的宏观超滑方法,摩擦系数稳定在0.003-0.008,但是其只能在镍铁等催化金属表面生长,限制了其工程应用。CN201110277261.4提供了类金刚石复合二硫化钼纳米多层薄膜及其制备方法,声称在大气环境下实现了超低的摩擦系数(0.02~0.03),但是离超滑定义的摩擦系数范围还差1个数量级。因此,亟需一种摩擦系数更低、能耗更小的固体润滑薄膜材料。
发明内容
本发明的目的是提供一种硫代钼酸铵复合多孔非晶碳超滑薄膜的制备方法。
一、硫代钼酸铵复合多孔非晶碳超滑薄膜的制备
本发明硫代钼酸铵复合多孔非晶碳超滑薄膜的制备方法,包括以下步骤:
(1)高结合力过渡层的制备:将基体经超声清洗后,放入真空室,将真空室抽至1×10-3Pa,磁控溅射Ti0.7Ni0.3靶:磁控溅射电流5A,离子源电压1300-1500V、脉冲宽度100-400微秒,氩气1Pa,偏压200V,沉积时间20分钟;然后通入氩气13%的氮气,保持上述条件不变,沉积时间40分钟,在基体上获得过渡层。上述基体为不锈钢、齿轮钢、轴承钢中的一种。
(2)非晶多孔碳薄膜的制备:采用反应磁控溅射制备非晶多孔碳薄膜,采用含铝10%的铝碳复合靶,反应气体为氩气、四氟化碳、氢气和氧气,流量比2:1:1:0.2,气压保持在1~3 Pa;磁控溅射电流4A;沉积时间40~60分钟,获得多孔碳薄膜,微孔直径20~40nm。
(3)四硫代钼酸铵溶液的制备:将硫代钼酸铵固体粉末溶于去离子水中,并经超声磁力搅拌,得到浓度为1~3%的硫代钼酸铵溶液;超声功率500W,频率200Hz,旋转速度10圈/分钟。所述硫代钼酸铵为三硫代钼酸铵、四硫代钼酸铵、五硫代钼酸铵中的一种。
(4)硫代钼酸铵复合多孔非晶碳超滑薄膜的制备:将步骤(1)制备的非晶多孔碳薄膜浸渍在浓度为1~3%的硫代钼酸铵溶液中,保持4~5小时,取出自然风干后,即得硫代钼酸铵复合多孔非晶碳超滑薄膜。硫代钼酸铵复合多孔非晶碳超滑薄膜中,硫代钼酸铵沉积在纳米孔洞和表面上。
二、硫代钼酸铵复合多孔非晶碳超滑薄膜的摩擦性能
以四硫代钼酸铵复合多孔非晶碳超滑薄膜为例,在载荷为5N、频率为5Hz、对偶球直径为6mm、时间为30min、往复距离为5mm的条件下进行摩擦实验。结果见图2,其平均摩擦系数为0.0057,完全实现了超滑。
实验表明,用三、五硫代钼酸铵取代四硫代钼酸铵,获得的硫代钼酸铵复合多孔非晶碳超滑薄膜,同样实现了超滑。
本发明实现超滑的原理:本发明制备的复合多孔非晶碳超滑薄膜在摩擦过程中,利用磨合初期摩擦热的作用,促使硫代钼酸铵原位分解形成二硫化钼,并进一步催化形成类石墨烯结构,然后通过石墨烯和二硫化钼的异质非公度接触,最终实现宏观超滑。另外,硫代钼酸铵通过液相浸渍到非晶多孔碳薄膜上,自然风干后形成的薄膜具有良好的均匀性,具有很好的结合力,因此制备的复合多孔非晶碳超滑薄膜具有较长的使用寿命。
附图说明
图1为本发明制备的四硫代钼酸铵复合多孔非晶碳超滑薄膜的表面结构图。
图2为本发明制备的四硫代钼酸铵复合多孔非晶碳超滑薄膜的摩擦曲线。
具体实施方式
下面通过具体实施例对本发明四硫代钼酸铵复合多孔非晶碳超滑薄膜的制备及性能作进一步说明。
实施例1
(1)非晶多孔碳薄膜的制备:采用阳极层离子源辅助等离子体化学气相沉积方法和反应磁控溅射法在基体上制备非晶多孔碳薄膜。具体过程如下:
ⅰ. 基体的清洗:将不锈钢基体经超声清洗后,放入真空室,将真空室抽至1×10- 3Pa,开始镀膜;
ⅱ.沉积粘结层:磁控溅射Ti0.7Ni0.3靶,电流5A,沉积偏压200V,氩气气氛,压力1Pa;离子源电压1300V、脉冲宽度400微秒;
ⅲ.沉积承载层:保持上述条件不变,通入13%的氮气,偏压200V,时间40分钟;
ⅳ. 多孔碳薄膜的制备:磁控溅射含铝10%的铝碳复合靶,反应气体为氩气、四氟化碳、氢气和氧气,流量比为2:1:1:0.2,气压保持在1Pa;磁控溅射电流4A;沉积时间60分钟,获得多孔碳薄膜,微孔直径20~40nm。
(2)将0.1 g四硫代钼酸铵固体粉末溶于10mL去离子水中,超声功率500W,频率200Hz,旋转速度10圈每分钟,得到浓度为1%的四硫代钼酸铵溶液。
(3)将获得的非晶多孔碳薄膜浸渍在1%的四硫代钼酸铵溶液中,保持5小时,自然风干,即得四硫代钼酸铵复合多孔非晶碳超滑薄膜。
(4)四硫代钼酸铵薄膜在载荷为5N、频率为5Hz、对偶球直径为6mm、时间为30min、往复距离为5mm的条件下进行摩擦实验,其平均摩擦系数为0.0057。
实施例2
(1)非晶多孔碳薄膜的制备:采用阳极层离子源辅助等离子体化学气相沉积方法和反应磁控溅射法在基体上制备非晶多孔碳薄膜。具体过程如下:
ⅰ. 基体的清洗:将齿轮钢基体经超声清洗后,放入真空室,将真空室抽至1×10- 3Pa,开始镀膜;
ⅱ.沉积粘结层:磁控溅射Ti0.7Ni0.3靶,电流5A,沉积偏压200V,氩气气氛,压力1Pa;离子源电压1300V、脉冲宽度400微秒;
ⅲ.沉积承载层:保持上述条件不变,通入13%的氮气,偏压200V,时间40分钟;
ⅳ. 多孔碳薄膜的制备:磁控溅射含铝10%的铝碳复合靶,反应气体为氩气、四氟化碳、氢气和氧气,流量比为2:1:1:0.2,气压保持在1Pa;磁控溅射电流4A;沉积时间60分钟,获得多孔碳薄膜,微孔直径20~40nm。
(2)将0.2g四硫代钼酸铵固体粉末溶于10mL去离子水中,超声功率500W,频率200Hz,旋转速度10圈每分钟,得到浓度为1%的四硫代钼酸铵溶液。
(3)将获得的非晶多孔碳薄膜浸渍在1%的四硫代钼酸铵溶液中,保持5小时,自然风干,即得四硫代钼酸铵复合多孔非晶碳超滑薄膜。
(4)四硫代钼酸铵薄膜在载荷为5N、频率为5Hz、对偶球直径为6mm、时间为30min、往复距离为5mm的条件下进行摩擦实验,其平均摩擦系数为其平均摩擦系数为0.0053。
实施例3
(1)非晶多孔碳薄膜的制备:采用阳极层离子源辅助等离子体化学气相沉积方法和反应磁控溅射法在基体上制备非晶多孔碳薄膜。具体过程如下:
ⅰ.基体的清洗:将轴承钢基体经超声清洗后,放入真空室,将真空室抽至1×10- 3Pa,开始镀膜;
ⅱ.沉积粘结层:磁控溅射Ti0.7Ni0.3靶,电流5A,沉积偏压200V,氩气气氛,压力1Pa;离子源电压1300V、脉冲宽度400微秒;
ⅲ.沉积承载层:保持上述条件不变,通入13%的氮气,偏压200V,时间40分钟;
ⅳ. 多孔碳薄膜的制备:磁控溅射含铝10%的铝碳复合靶,反应气体为氩气、四氟化碳、氢气和氧气,流量比2:1:1:0.2,气压保持在1Pa;磁控溅射电流4A;沉积时间60分钟,获得多孔碳薄膜,微孔直径20-40nm。
(2)将0.3g四硫代钼酸铵固体粉末溶于10mL去离子水中,超声功率500W,频率200Hz,旋转速度10圈每分钟,得到浓度为1%的四硫代钼酸铵溶液。
(3)将获得的非晶多孔碳薄膜浸渍在1%的四硫代钼酸铵溶液中,保持5小时,自然风干,即得四硫代钼酸铵复合多孔非晶碳超滑薄膜。
(4)四硫代钼酸铵薄膜在载荷为5N、频率为5Hz、对偶球直径为6mm、时间为30min、往复距离为5mm的条件下进行摩擦实验,其平均摩擦系数为0.0052。

Claims (4)

1.一种硫代钼酸铵复合多孔非晶碳超滑薄膜的制备方法,包括以下步骤:
(1)高结合力过渡层的制备:将基体经超声清洗后,放入真空室,将真空室抽至1×10- 3Pa,磁控溅射Ti0.7Ni0.3靶:磁控溅射电流5A,离子源电压1300-1500V、脉冲宽度100-400微秒,氩气1Pa,偏压200V,沉积时间20分钟;然后通入氩气13%的氮气,保持上述条件不变,沉积时间40分钟,在基体上获得过渡层;
(2)非晶多孔碳薄膜的制备:采用反应磁控溅射制备非晶多孔碳薄膜,采用含铝10%的铝碳复合靶,反应气体为氩气、四氟化碳、氢气和氧气,流量比2:1:1:0.2,气压保持在1~3Pa;磁控溅射电流4A;沉积时间为40~60分钟,获得非晶多孔碳薄膜;
(3)硫代钼酸铵溶液的制备:将硫代钼酸铵固体粉末溶于去离子水中,并经超声磁力搅拌,得到浓度为1~3%的硫代钼酸铵溶液;
(4)硫代钼酸铵复合多孔非晶碳超滑薄膜的制备:将步骤(2)制备的非晶多孔碳薄膜浸渍在硫代钼酸铵溶液中,保持4~5小时,取出自然风干后,即得硫代钼酸铵复合多孔非晶碳超滑薄膜。
2.如权利要求1所述一种硫代钼酸铵复合多孔非晶碳超滑薄膜的制备方法, 其特征在于:步骤(1)中,基体为不锈钢、齿轮钢、轴承钢中的一种。
3.如权利要求1所述一种硫代钼酸铵复合多孔非晶碳超滑薄膜的制备方法, 其特征在于:步骤(3)中,所述硫代钼酸铵为三硫代钼酸铵、四硫代钼酸铵、五硫代钼酸铵中的一种。
4.如权利要求1所述一种硫代钼酸铵复合多孔非晶碳超滑薄膜的制备方法, 其特征在于:步骤(3)中,超声功率500W,频率200Hz,旋转速度10圈/分钟。
CN202010773228.XA 2020-08-04 2020-08-04 一种硫代钼酸铵复合多孔非晶碳超滑薄膜的制备方法 Active CN111719128B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202010773228.XA CN111719128B (zh) 2020-08-04 2020-08-04 一种硫代钼酸铵复合多孔非晶碳超滑薄膜的制备方法
US17/375,030 US11613806B2 (en) 2020-08-04 2021-07-14 Method for preparing ammonium thiomolybdate-porous amorphous carbon composite superlubricity film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010773228.XA CN111719128B (zh) 2020-08-04 2020-08-04 一种硫代钼酸铵复合多孔非晶碳超滑薄膜的制备方法

Publications (2)

Publication Number Publication Date
CN111719128A CN111719128A (zh) 2020-09-29
CN111719128B true CN111719128B (zh) 2021-06-01

Family

ID=72574139

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010773228.XA Active CN111719128B (zh) 2020-08-04 2020-08-04 一种硫代钼酸铵复合多孔非晶碳超滑薄膜的制备方法

Country Status (2)

Country Link
US (1) US11613806B2 (zh)
CN (1) CN111719128B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101848980A (zh) * 2007-11-06 2010-09-29 丰田自动车株式会社 滑动结构
WO2018148518A1 (en) * 2017-02-10 2018-08-16 University Of North Texas Passivation of lithium metal by two-dimensional materials for rechargeable batteries
EP3388544A1 (en) * 2012-11-16 2018-10-17 The Boeing Company Thermal spray coated reinforced polymer composites
CN109167037A (zh) * 2018-08-23 2019-01-08 成都新柯力化工科技有限公司 一种锂硫电池的非晶相三硫化钼正极材料及制备方法
CN109534329A (zh) * 2018-12-24 2019-03-29 西北大学 一种石墨烯薄膜的制备方法及制备得到的石墨烯薄膜
CN111424250A (zh) * 2020-05-19 2020-07-17 中国科学院兰州化学物理研究所 一种超滑性能复合纳米滑石粉含氢碳薄膜的制备方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4230539A (en) * 1979-07-09 1980-10-28 Fujikura Cable Works, Ltd. Method for surface treatment of anodic oxide film
US6146135A (en) * 1991-08-19 2000-11-14 Tadahiro Ohmi Oxide film forming method
JP3864637B2 (ja) * 1999-10-05 2007-01-10 富士通株式会社 磁気記録媒体
US20100196500A1 (en) * 2007-09-20 2010-08-05 Kazuo Kitakado Anhydrous dicalcium phosphate particles and production method thereof
CN101665904A (zh) * 2008-09-04 2010-03-10 中国科学院兰州化学物理研究所 一种含铝类金刚石碳膜及其制备方法
EP2392362B1 (en) * 2009-01-28 2015-07-01 Terumo Kabushiki Kaisha Medical device which has lubricating surface when wet
US9520600B2 (en) * 2009-09-22 2016-12-13 GM Global Technology Operations LLC Conductive and hydrophilic bipolar plate coatings and method of making the same
CN102994947B (zh) 2011-09-17 2014-12-10 中国科学院兰州化学物理研究所 类金刚石复合二硫化钼纳米多层薄膜及其制备方法
CN104707629A (zh) * 2015-04-08 2015-06-17 兰州理工大学 负载型过渡金属硫化物加氢催化剂的制备方法
CN105644059B (zh) 2015-09-14 2018-06-12 中国船舶重工集团公司第十二研究所 一种磁控溅射含银超低摩擦系数类石墨碳膜的制备方法
CN107032330B (zh) 2017-06-02 2019-04-05 大连理工大学 一种摩擦表面生长石墨烯的宏观超滑方法
CN110488044B (zh) 2019-07-29 2020-09-22 清华大学 一种实现锥形针尖的afm探针与石墨表面之间超滑的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101848980A (zh) * 2007-11-06 2010-09-29 丰田自动车株式会社 滑动结构
EP3388544A1 (en) * 2012-11-16 2018-10-17 The Boeing Company Thermal spray coated reinforced polymer composites
WO2018148518A1 (en) * 2017-02-10 2018-08-16 University Of North Texas Passivation of lithium metal by two-dimensional materials for rechargeable batteries
CN109167037A (zh) * 2018-08-23 2019-01-08 成都新柯力化工科技有限公司 一种锂硫电池的非晶相三硫化钼正极材料及制备方法
CN109534329A (zh) * 2018-12-24 2019-03-29 西北大学 一种石墨烯薄膜的制备方法及制备得到的石墨烯薄膜
CN111424250A (zh) * 2020-05-19 2020-07-17 中国科学院兰州化学物理研究所 一种超滑性能复合纳米滑石粉含氢碳薄膜的制备方法

Also Published As

Publication number Publication date
US20220042167A1 (en) 2022-02-10
CN111719128A (zh) 2020-09-29
US11613806B2 (en) 2023-03-28

Similar Documents

Publication Publication Date Title
CN101444985B (zh) 一种非晶碳涂层及其制备方法和用途
WO1995012693A2 (en) Method for producing diamond-like carbon layers
WO1995012693A9 (en) Method for producing diamond-like carbon layers
CN104278241B (zh) 一种具有多环境适应性的薄膜材料的制备技术
CN111455315B (zh) 一种富勒烯/非晶碳氢复合薄膜的制备及在真空低温环境中的应用
EP2361881A1 (en) Sliding member and process for producing same
CN111455386A (zh) 一种超滑二硫化钨/含氢碳薄膜及其制备方法
CN111455325B (zh) 一种通过自组装黑磷纳米片制备超滑含氢碳薄膜的方法
CN111304616A (zh) 一种掺杂Ti、C的二硫化钼基纳米复合薄膜的制备方法
CN111719128B (zh) 一种硫代钼酸铵复合多孔非晶碳超滑薄膜的制备方法
Gao et al. Structural, mechanical, and tribological properties of WS 2-Al nanocomposite film for space application
CN105220120A (zh) 一种多层复合类富勒烯薄膜在汽车发动机上产业化的方法
CN113621912A (zh) 一种梯度自润滑复合涂层及其制备方法
CN114836715A (zh) 一种金属表面Cr/CrN/CrCN/Cr-DLC多层复合自润滑薄膜及其制备方法
CN112376017A (zh) 一种具有耐磨涂层的纺织钢领及其制备方法
CN113278939A (zh) 一种类富勒烯纳米结构含氢碳膜及其制备方法
CN101397666B (zh) 一种Zn/ZnS复合固体润滑薄膜及其制备方法
Zia New generation carbon particles embedded diamond-like carbon coatings for transportation industry
CN114351088B (zh) 一种固体自润滑涂层及其制备方法
CN216192674U (zh) 一种两级翻转粉体表面磁控溅射沉积涂层装置
CN111962043B (zh) 一种轴承表面自润滑薄膜的制备装置及方法
CN111575665B (zh) 一种纳米羰基金属复合超滑含氢碳薄膜的制备方法
CN111286707B (zh) 一种贵金属@洋葱碳杂化的TMC/a-C纳米复合涂层及其制备方法和应用
CN114686794A (zh) 一种TiAl合金表面的纳米YSZ/NiCoCrAlYTa复合涂层的制备方法
CN111424249B (zh) 一种超滑纳米硫复合含氢碳膜制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant