CN111711359A - 适用于直流微电网的双级Boost变换器的新型MPC控制方法 - Google Patents

适用于直流微电网的双级Boost变换器的新型MPC控制方法 Download PDF

Info

Publication number
CN111711359A
CN111711359A CN202010609332.5A CN202010609332A CN111711359A CN 111711359 A CN111711359 A CN 111711359A CN 202010609332 A CN202010609332 A CN 202010609332A CN 111711359 A CN111711359 A CN 111711359A
Authority
CN
China
Prior art keywords
circuit
stage boost
stage
voltage
boost converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010609332.5A
Other languages
English (en)
Other versions
CN111711359B (zh
Inventor
陆玲霞
刘海涛
陈庆
杨鹏程
雷叶爽
熊雄
于淼
季宇
司鑫尧
肖小龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
China Electric Power Research Institute Co Ltd CEPRI
State Grid Jiangsu Electric Power Co Ltd
Original Assignee
Zhejiang University ZJU
China Electric Power Research Institute Co Ltd CEPRI
State Grid Jiangsu Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU, China Electric Power Research Institute Co Ltd CEPRI, State Grid Jiangsu Electric Power Co Ltd filed Critical Zhejiang University ZJU
Priority to CN202010609332.5A priority Critical patent/CN111711359B/zh
Publication of CN111711359A publication Critical patent/CN111711359A/zh
Application granted granted Critical
Publication of CN111711359B publication Critical patent/CN111711359B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/1566Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with means for compensating against rapid load changes, e.g. with auxiliary current source, with dual mode control or with inductance variation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明公开了一种适用于直流微电网的双级Boost变换器的新型MPC控制方法,该双级Boost变换器为主电路为两个Boost电路级联构成,该控制方法首先实时采样双级Boost变换器中的输入电压、电流,中间级电容电压,后级电感电流,输出电压、电流。然后实时计算电路负载、后级Boost电路开关管的占空比和前级Boost电路开关管的占空比;最后将计算得到的开关函数发送给PWM波调制模块,所述调制模块再根据开关函数调制出相应的开关管PWM波开关信号完成对该双级Boost变换器的控制。本发明电路结构简单,有效提高了电路升压变比,控制算法简便,使得电路在发生负载突变时,出口电压能快速恢复,显著提升变换器出口电压质量。

Description

适用于直流微电网的双级Boost变换器的新型MPC控制方法
技术领域
本发明涉及电力电子技术领域,尤其涉及一种适用于直流微电网的双级Boost的新型MPC(Model Predictive Control,MPC)控制方法。
背景技术
近年来,随着“微电网”概念的提出和光伏发电,风力发电等清洁能源发电技术的发展,直流微电网得到大力发展。目前国内外对直流微电网的研究重点主要集中在***的电压控制、保护和分布式电源管理等方面,对微电网电能质量问题的研究较少。随着工业技术的发展,电能质量的要求变得越来越高。为了给用户提供高质量的直流电能以及发展直流供电技术、推广实际工程,研究直流变换电路及其控制技术意义重大。
模型预测控制(Model Predictive Control,MPC)是产生于20世纪70年代后期的一种计算机控制算法,它的概念直观、易于建模、无需精确模型和复杂控制参数设计,对克服工业控制过程中的非线性及不确定性等问题有非常好的效果。随着微处理器的发展和应用,模型预测控制逐渐地被应用到电力电子***中,其中离散状态的有限控制集模型预测控制(Finite Control Set-MPC,FCS-MPC)直接利用了变换器的离散特性和开关状态有限的特性,这些显著的优点让其成为电力电子***模型预测控制研究的热点。
Boost变换器是直流微电网中最为基本且常见的变换器,目前大多数Boost变换器的MPC控制策略由于代价函数和电路参数相关,当电路参数发生改变时,控制效果随即受到影响。为解决此问题,有学者们将具有自适应能力的PI模块,PID模块同MPC结合,提出新的级联算法。但同样的,这类算法也存在控制结构复杂,动态过程缓慢,参数整定耗时长的问题。
发明内容
针对上述现有控制方法存在的问题,本发明提供一种适用于直流微电网的双级Boost变换器的新型MPC控制方法,该控制算法简化了控制结构和计算量,优化了动态过程,设计的双级Boost变换器通过此控制算法能快速实现负载投切时的动态电压恢复。
为了实现上述目的,本发明提供了一种适用于直流微电网的双级Boost变换器,由两个Boost电路级联构成,用以突破单级电路限制,在负载突变时能加快动态恢复过程,极大程度的减小出口电压跌落。
本发明还提供了根据电路模型和控制目标设计的双级Boost变换器的新型MPC控制方法,包括以下步骤:
(1)对双级Boost变换器中的输入电压us(k),输入电流is(k),中间级电容电压u2(k),后级电感电流iL2(k),输出电压udc(k),输出电流idc(k)进行实时采样,其中,k表示采样时刻。
(2)实时计算电路负载R、后级Boost电路开关管的占空比n2和前级Boost电路开关管的占空比n1
R=udc(k)/idc(k)
Figure BDA0002560372940000021
Figure BDA0002560372940000022
其中,C2为后级Boost电路出口侧电容,udc_ref表示k时刻出口电压udc的参考值,Ts表示控制周期,L1为前级Boost电路电感,is_ref表示k时刻输入电流is的参考值。
其中:
is_ref=Pref/us(k)
us(k)为k时刻输入电压在。Pref为保持出口电压稳定所需功率:
Pref=Pout+α·Po
Figure BDA0002560372940000023
Figure BDA0002560372940000024
α为比例系数,取值为(1,100)。
(3)将计算得到的开关函数n1,n2发送给PWM波调制模块,所述调制模块再根据开关函数调制出相应的开关管PWM波开关信号完成对该双级Boost变换器的控制。
本发明在采用两级Boost电路级联,用以突破单级电路限制,设计的控制方法舍去复杂的代价函数选取与计算,将开关管占空比拓展为电路离散化模型中的开关函数,根据控制目标直接计算开关函数值。该控制方法实现了双级Boost变换器在负载突变时能加快动态恢复过程,极大程度地减小出口电压跌落,以及固定电路开关频率。
附图说明
图1为双级Boost变换器控制结构图;
图2为单级Boost电路拓扑图;
图3为Boost电路开关管导通时等效电路图;
图4为Boost电路开关管关断时等效电路图;
图5为直流侧出口电压仿真结果图;
图6为负载骤升时出口电压动态恢复过程仿真结果图;
图7为负载骤降时出口电压动态恢复过程仿真结果图。
具体实施方式
本发明提供了一种适用于直流微电网的单相级联整流器的新型MPC控制方法,所述控制方法包括如下步骤:
(1)对双级Boost变换器中的输入电压us(k),输入电流is(k),中间级电容电压u2(k),后级电感电流iL2(k),输出电压udc(k),输出电流idc(k)进行实时采样,其中,k表示采样时刻。
(2)实时计算电路负载R、后级Boost电路开关管的占空比n2和前级Boost电路开关管的占空比n1
R=udc(k)/idc(k)
Figure BDA0002560372940000031
Figure BDA0002560372940000032
其中,C2为后级Boost电路出口侧电容,udc_ref表示k时刻出口电压udc的参考值,Ts表示控制周期,L1为前级Boost电路电感,is_ref表示k时刻输入电流is的参考值。
其中:
is_ref=Pref/us(k)
us(k)为k时刻输入电压。Pref为保持出口电压稳定所需功率:
Pref=Pout+α·Po
Figure BDA0002560372940000041
Figure BDA0002560372940000042
α为比例系数,取值为(1,100)。
Figure BDA0002560372940000043
为中间级电容电压参考值。
(3)将计算得到的开关函数n1,n2发送给PWM波调制模块,所述调制模块再根据开关函数调制出相应的开关管PWM波开关信号完成对该双级Boost变换器的控制。
下面结合附图对本发明方法作进一步说明。
如图1所示为本发明的双级Boost变换器控制结构图。其中两个IGBT开关管分别为V1、V2,VD1、VD2为两个二极管,L1为前级Boost电路电感,C1为中间级电容(即前级Boost变换器电容),U2为中间级电容电压,L2为后级Boost电路电感,C2为输出侧电容(即后级Boost变换器电容),R直流负载。us,is分别为输入电压、电流,udc,idc分别为输出电压、电流。
双级Boost变换器的开关管采用PWM调制,根据基尔霍夫定律与相应电路结构,可以建立双级Boost变换器离散预测模型,具体包括以下步骤:
(1)单管非隔离型Boost电路是一个升压斩波电路,电路拓扑如图2所示。根据电路工作时,电感电流是否存在为0的情形,将变换器分为两种工作模型。若在工作期间内,电感中的电流以及存储电能降为零,则称为电感电流不连续工作模式;否则称为电感电流连续工作模式。在直流微电网中,大部分Boost电路稳定运行时均处于电感电流连续工作模式。
当开关管V开通时,电路等效为图3,此时电源us向电感L充电,同时电容C上的电压向负载R供电,电感L上电流的变化率为
Figure BDA0002560372940000044
电容C上电压的变化率为
Figure BDA0002560372940000045
is为输入电流,us为输入电压,uout为输出电压,i0为输出电流。
当开关管V关断时,电路等效为图4,此时us和L共同向电容C充电并向负载R提供能量,电感L上电流的变化率为
Figure BDA0002560372940000051
电容C上电压的变化率为
Figure BDA0002560372940000052
如果将m记为开关管开通关断状态函数,开通为1,关断为0,那么上述两种运行状态的式子可以整合为同一个数学模型
Figure BDA0002560372940000053
(2)为了便于建立双级Boost离散预测模型,记m1为开关管V1的开关状态,m2为开关管V2的开关状态。将各级Boost电路对应的输入输出代入上式,可以得到双级Boost电路的数学模型如下:
Figure BDA0002560372940000054
Figure BDA0002560372940000055
(3)根据双级Boost变换器的数学模型,将其离散化
Figure BDA0002560372940000056
Figure BDA0002560372940000057
Figure BDA0002560372940000058
Figure BDA0002560372940000059
其中Ts表示控制器的控制周期,并假设控制周期Ts极短;
本发明设计的新型MPC控制算法,在算法中重新定义开关函数,将开关管的PWM调制波占空比设为开关函数,使得原本只能取定值的m1、m2拓展为占空比n1、n2。然后取消相应电路参数预测值以及后续代价函数的计算,而是直接根据电路控制目标得出电压电流参考值,将参考值作为k+1时刻电路需达到的相应电路参数预测值,从而计算出在k时刻,控制器为使k+1时刻的相应电路参数值与参考值相等而给出的受控开关管占空比n。将占空比n1、n2设为开关函数后,离散化的双级Boost电路的数学模型表示为
Figure BDA0002560372940000061
Figure BDA0002560372940000062
Figure BDA0002560372940000063
Figure BDA0002560372940000064
(4)根据设计的预测直接目标控制算法,当电路出口侧负载骤升时,为保持出口电压稳定,将出口电压的参考值作为k+1时刻的预测值代入上述式子得
Figure BDA0002560372940000065
由上式即可计算出k时刻为使k+1时刻的出口电压实际值与参考值相等的开关管占空比。
Figure BDA0002560372940000066
(5)电路为保持出口电压稳定所需功率Pref分为两部分,一部分为负载所需功率
Figure BDA0002560372940000067
Figure BDA0002560372940000068
其中当电路负载R发生投切时,可通过Rdc(k)/dc(k)计算得到。另一部分为电路储能元件上需提供的功率Po。电路储能元件所需功率与设置的电路稳态工作变比有关,通过给定中间级电容电压的参考值U2_ref,可以计算k时刻所需Po大致为
Figure BDA0002560372940000069
由于电路存在储能元件,所以功率的传递会有一定的延时,在仿真实验中发现增加一个与Po相关的比例系数α,控制效果会更好。即Pref=Pout+α·Po,α通常可以取值为(1,100)。得到参考功率后,就可以直接得出计算直流稳压源需提供的参考电流,
is_ref=Pref/us(k) (33)
同样的,将is_ref作为k+1时刻的电流预测值代入式(26)即可计算出k时刻为使k+1时刻的输入电流实际值与参考值相等的开关管占空比。
Figure BDA0002560372940000071
由此,推倒得到了本发明双级Boost变换器的控制方法。本方法实现了负载投切时,动态电压快速恢复的控制效果。
为体现该双级Boost变换器在新型MPC控制算法下的动态恢复效果,在仿真中设置了0.2秒时直流负载由10Ω骤升为7.5Ω,用以模拟负载投切的情况。图5给出了出口电压的仿真结果,其中***在0.1秒时介入控制算法,图6、7为出口电压动态恢复过程的细节放大图。可以看出,再经过0.1秒,在0.3秒时负载恢复至10Ω,本方法实现了双级Boost变换器在负载突变时快速动态恢复过程。

Claims (1)

1.适用于直流微电网的双级Boost变换器的新型MPC控制方法,其特征在于,所述双级Boost变换器由两级Boost电路级联构成。所述控制方法包括如下步骤:
(1)对双级Boost变换器中的输入电压us(k),输入电流is(k),中间级电容电压u2(k),后级电感电流iL2(k),输出电压udc(k),输出电流idc(k)进行实时采样,其中,k表示采样时刻。
(2)实时计算电路负载R、后级Boost电路开关管的占空比n2和前级Boost电路开关管的占空比n1
R=udc(k)/idc(k)
Figure FDA0002560372930000011
Figure FDA0002560372930000012
其中,C2为后级Boost电路出口侧电容,udc_ref表示k时刻出口电压udc的参考值,Ts表示控制周期,L1为前级Boost电路电感,is_ref表示k时刻输入电流is的参考值。
其中:
is_ref=Pref/us(k)
us(k)为k时刻输入电压。Pref为保持出口电压稳定所需功率:
Pref=Pout+α·Po
Figure FDA0002560372930000013
Figure FDA0002560372930000014
α为比例系数,取值为(1,100)。
Figure FDA0002560372930000015
为中间级电容电压参考值。
(3)将计算得到的开关函数n1,n2发送给PWM波调制模块,所述调制模块再根据开关函数调制出相应的开关管PWM波开关信号完成对该双级Boost变换器的控制。
CN202010609332.5A 2020-06-29 2020-06-29 适用于直流微电网的双级Boost变换器的MPC控制方法 Active CN111711359B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010609332.5A CN111711359B (zh) 2020-06-29 2020-06-29 适用于直流微电网的双级Boost变换器的MPC控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010609332.5A CN111711359B (zh) 2020-06-29 2020-06-29 适用于直流微电网的双级Boost变换器的MPC控制方法

Publications (2)

Publication Number Publication Date
CN111711359A true CN111711359A (zh) 2020-09-25
CN111711359B CN111711359B (zh) 2021-08-10

Family

ID=72544942

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010609332.5A Active CN111711359B (zh) 2020-06-29 2020-06-29 适用于直流微电网的双级Boost变换器的MPC控制方法

Country Status (1)

Country Link
CN (1) CN111711359B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114625204A (zh) * 2022-03-25 2022-06-14 大航有能电气有限公司 实时电容辨识的模型预测控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN200976546Y (zh) * 2006-11-24 2007-11-14 北京新雷能有限责任公司 串联组合的两级boost电路
CN203660880U (zh) * 2013-12-30 2014-06-18 东莞市金河田实业有限公司 一种两级boost升压拓扑电路
CN104104112A (zh) * 2014-08-08 2014-10-15 深圳市创皓科技有限公司 用于两级拓扑结构的光伏并网逆变器的mppt控制方法
CN109831094A (zh) * 2019-04-04 2019-05-31 合肥工业大学 一种Boost PFC变换器的无模型预测电流控制***及其控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN200976546Y (zh) * 2006-11-24 2007-11-14 北京新雷能有限责任公司 串联组合的两级boost电路
CN203660880U (zh) * 2013-12-30 2014-06-18 东莞市金河田实业有限公司 一种两级boost升压拓扑电路
CN104104112A (zh) * 2014-08-08 2014-10-15 深圳市创皓科技有限公司 用于两级拓扑结构的光伏并网逆变器的mppt控制方法
CN109831094A (zh) * 2019-04-04 2019-05-31 合肥工业大学 一种Boost PFC变换器的无模型预测电流控制***及其控制方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114625204A (zh) * 2022-03-25 2022-06-14 大航有能电气有限公司 实时电容辨识的模型预测控制方法
CN114625204B (zh) * 2022-03-25 2024-03-29 大航有能电气有限公司 实时电容辨识的模型预测控制方法

Also Published As

Publication number Publication date
CN111711359B (zh) 2021-08-10

Similar Documents

Publication Publication Date Title
CN108631591B (zh) 一种双向dc-dc变换器预测电流的控制方法
CN108512452B (zh) 一种直流微电网并网变换器电流的控制***及控制方法
Durgadevi et al. Analysis and design of single phase power factor correction with DC–DC SEPIC Converter for fast dynamic response using genetic algorithm optimised PI controller
CN104753350B (zh) 一种用于升压电路中电感电流预测收敛控制方法
CN104184396A (zh) 光伏供电***及其控制方法
Zhou et al. Digital valley V 2 control for boost converter with fast load-transient performance
CN111711359B (zh) 适用于直流微电网的双级Boost变换器的MPC控制方法
CN112311222A (zh) 一种基于复合预测电流控制的改进型无桥dbpfc变换器及控制方法
Liu et al. A two-stage bidirectional DC-DC converter system and its control strategy
Liu et al. A Multi-Frequency PCCM ZVS Modulation Scheme for Optimizing Overall Efficiency of Four-Switch Buck–Boost Converter With Wide Input and Output Voltage Ranges
CN111697857B (zh) 适用于直流微电网的单相级联整流器的mpc控制方法
CN114050722A (zh) 基于dab的直接功率模型预测与pi复合控制方法
Kumar et al. Analysis and Implementation of bidirectional DC to DC Converter by using Fuzzy logic Controller
CN110994986B (zh) 一种电源控制方法
Waghmare et al. Sliding mode controller for multiphase bidirectional flyback converter topology in hybrid electric vehicle applications
CN116566201A (zh) 一种四管Buck-Boost变换器电流预测控制方法
CN104753351B (zh) 一种用于非隔离充电Buck电路中电感电流预测控制方法
CN115664169A (zh) 一种针对双向四开关Buck-Boost的准峰值电流控制方法
CN109599880B (zh) 基于三相buck-boost电路的光储***模型预测控制方法
Arthi et al. Fuzzy controlled three port DC-DC converter fed DC drive for PV system
Xue et al. An Open-Loop Start-up Method for LLC Resonant Converter with Fixed Frequency and Variable Duty Cycle
Yan et al. Dynamic response analysis based on multiple-phase-shift in dual-active-bridge
CN117118227B (zh) 一种基于梯形波的三电平dcdc变换器软开关控制方法
Tabbat et al. Analysis of a high-efficient step-up converter with ZVS operation
Subhani et al. Bidirectional Resonant DC–DC Converter using Fuzzy Logic Controller for Hybrid Power Generators

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant