CN111693498A - 一种基于飞秒激光诱导荧光测量气态氨的装置及方法 - Google Patents

一种基于飞秒激光诱导荧光测量气态氨的装置及方法 Download PDF

Info

Publication number
CN111693498A
CN111693498A CN202010434269.6A CN202010434269A CN111693498A CN 111693498 A CN111693498 A CN 111693498A CN 202010434269 A CN202010434269 A CN 202010434269A CN 111693498 A CN111693498 A CN 111693498A
Authority
CN
China
Prior art keywords
femtosecond laser
flow field
spectrometer
laser
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010434269.6A
Other languages
English (en)
Inventor
李博
刘吉绪
张大源
高强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN202010434269.6A priority Critical patent/CN111693498A/zh
Publication of CN111693498A publication Critical patent/CN111693498A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6402Atomic fluorescence; Laser induced fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/10Arrangements of light sources specially adapted for spectrometry or colorimetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/44Raman spectrometry; Scattering spectrometry ; Fluorescence spectrometry
    • G01J3/4406Fluorescence spectrometry

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明公开一种基于飞秒激光诱导荧光测量气态氨的装置及方法,装置包括含有氨气(NH3)的待测流场、飞秒激光器、光学参量放大器、聚焦透镜、光束截止器、成像透镜、光谱仪、ICCD相机和计算机,所述光谱仪设置于待测流场的一侧,所述光谱仪与所述ICCD相机相连,光谱仪和ICCD相机均与计算机相连,所述飞秒激光器出射的激光经所述Topas调整得到波长为305nm的激光,波长为305nm的激光依次经过聚焦透镜、待测流场和光束截止器,所述待测流场和所述光谱仪之间设有所述成像透镜。

Description

一种基于飞秒激光诱导荧光测量气态氨的装置及方法
技术领域
本发明涉及飞秒激光光谱技术领域,等离子体领域和气体诊断领域,具体是基于飞秒激光诱导荧光技术实现流场中气态氨(NH3)的测量。
背景技术
实现对大气或流场中气态氨(NH3)的测量在诸多领域具有重要意义。首先,作为化工行业常用的化学品,NH3广泛应用在化肥、制冷等产业,它具有刺激性气味、有毒,若长期暴露在NH3的环境中,会对身体造成一定的伤害,在大气环境中进行NH3的检测一定程度上可以降低由于NH3泄露带来的危害[1]。其次,柴油机等燃烧设备的脱硝过程也离不开NH3。柴油机后处理装置中的尿素分解出NH3,能够有效降低尾气中的氮氧化物,但是尿素若分解过量,则会使过量的NH3排放到大气中造成二次污染,因此在这一过程中需要对NH3进行精确测量与控制[2]。第三,在燃烧领域,NH3可作为一种不含碳元素的清洁燃料,对其燃烧特性的研究与分析有助于促进相关燃烧机理的研究与燃烧模型的建立,因此实现对燃烧场中NH3的测量极为关键[3]
目前已知的关于气态氨(NH3)的测量方法主要分为取样测量和实时测量。取样测量主要有电流检测法、荧光比率法和比色法等[4-6]。取样测量需从待测环境中提取部分气体或溶液,利用氨传感器对样品进行检测,或者是将氨传感器直接置于待测环境中进行检测。虽然取样法测量操作简便,***简单,检测极限也可低至几ppm,但取样测量破坏了待测流场的初始条件,具有干扰性,通常对NH3的存在形式(溶液)也有要求,且测量***的响应时间比较长(约20s),因此不能实现气态氨(NH3)的实时在线测量,很难将其应用到燃烧流场或封闭流场[7,8]
基于激光的光学测量在这一方面具有较大的优势,可实现氨的实时在线测量,且对待测流场具有非干扰性,近年来在流场组分测量方面逐渐受到重视。关于气态氨(NH3)的激光诊断技术主要是基于纳秒激光(1ns=10-9s)开发的[9,10],利用纳秒激光共振激发流场中的NH3,使其发生电子能级跃迁,向外释放出荧光,通过探测荧光信号可实现NH3的测量。目前该方法已获得较高的时间空间分辨率,但仅能实现高浓度NH3的测量(800ppm),而且在燃烧场中NH3的成像质量较差。
随着激光技术的发展,飞秒激光在流场组分测量方面应用越来越广泛,相比于纳秒激光,飞秒激光的脉冲宽度低于纳秒激光5个数量级,激光峰值能量极高,可大幅提高诱导产生的荧光信号强度;而且脉冲积分能量低,解决了测量过程中的干扰问题。目前尚无相关工作基于飞秒激光诱导荧光实现流场中气态氨(NH3)的测量,本发明拟提出一种基于飞秒激光诱导荧光测量气态氨(NH3)的方法。
参考文献:
[1]胡逸.工业氨气泄漏报警***[D].哈尔滨理工大学,2016.
[2]张涛,贺蕾,张彦.燃煤锅炉烟气氨法脱硝实时监测***[J].轻工学报,2014(3):97-99.
[3]Duynslaegher C,Contino F,Vandooren J,et al.Modeling of ammoniacombustion at low pressure[J].Combustion and Flame,2012,159(9):2799-2805.
[4]Cui S,Mao S,Wen Z,et al.Controllable synthesis ofsilvernanoparticle-decorated reduced graphene oxide hybrids for ammonia detection[J].Analyst,2013,138(10):2877-2882.
[5]Duong H D,Rhee J I.A ratiometric fluorescence sensor for thedetection of ammonia in water[J].Sensors andActuators B:Chemical,2014,190:768-774.
[6]Takagai Y,Nojiri Y,Takase T,et al.“Turn-on”fluorescent polymericmicroparticle sensors for the determination of ammonia and amines in thevapor state[J].Analyst,2010,135(6):1417-1425.
[7]孙墨杰,姚杰,王冬.氨气传感器的研究[J].硅酸盐通报,2015,v.34(s1):136-139.
[8]ChengY,Feng Q,Yin M,et al.A fluorescence and colorimetric ammoniasensorbased on a Cu(II)-2,7-bis(1-imidazole)fluorene metal-organic gel[J].Tetrahedron Letters,2016,57(34):3814-3818.
[9]Brackmann C,Hole O,Zhou B,et al.Characterization of ammonia two-photon laser-induced fluorescence for gas-phase diagnostics[J].AppliedPhysics B,2014,115(1):25-33.
[10]Westblom U,Aldén M.Laser-induced fluorescence detection of NH3inflames with the use oftwo-photon excitation[J].Applied Spectroscopy,1990,44(5):881-886.
发明内容
本发明的目的是为了克服现有技术中的不足,提供一种基于飞秒激光诱导荧光测量气态氨的装置及方法,可用于实现低浓度NH3的测量。
本发明的目的是通过以下技术方案实现的:
一种基于飞秒激光诱导荧光测量气态氨的装置,包括含有氨气(NH3)的待测流场,还包括飞秒激光器、光学参量放大器(Topas)、聚焦透镜、光束截止器、成像透镜、光谱仪、ICCD相机和计算机,所述光谱仪设置于待测流场的一侧,所述光谱仪与所述ICCD相机相连,光谱仪和ICCD相机均与计算机相连,所述飞秒激光器出射的激光经所述光学参量放大器调整得到波长为305nm的激光,波长为305nm的激光依次经过聚焦透镜、待测流场和光束截止器,所述待测流场和所述光谱仪之间设有所述成像透镜。
还提供一种基于飞秒激光诱导荧光测量气态氨的方法,包括以下步骤:
飞秒激光器产生飞秒激光,飞秒激光入射到光学参量放大器中经调整产生波长为305nm的飞秒激光;
305nm的飞秒激光经反射镜反射引导至聚焦透镜处进行聚焦,调整聚焦焦点位于流场待测流场处;
待测流场中的气态氨经波长为305nm的飞秒激光诱导产生相应的荧光信号;
荧光信号经成像透镜聚集后聚焦至光谱仪的狭缝处,光谱仪对荧光信号进行分光处理后将荧光信号输送给ICCD相机;
ICCD相机将接收到的光谱信号输送给计算机进行数据处理与分析,最终实现气态氨的瞬态测量。
与现有技术相比,本发明的技术方案所带来的有益效果是:
1.本发明属于光学测量法,对待测流场无干扰,能够实现在封闭、开放流场以及在燃烧场环境中测量气态氨(NH3);
2.本发明的气态氨(NH3)的测量方法响应时间极短(约为几纳秒),能够实现流场中NH3的实时在线测量;
3.飞秒激光的脉冲宽度极短,峰值能量高,会提高多光子过程的效率,提高荧光信号的强度,降低测量NH3的极限值;
4.本发明的气态氨(NH3)的测量方法能够实现NH3燃烧场等复杂燃烧场的NH3测量;
5.本发明的气态氨(NH3)的测量方法能够实现NH3具有空间分辨的一维测量,空间分辨率约为几十微米。
附图说明
图1是本发明的结构示意图。
图2为NH3能级图
附图标记:1-飞秒激光器,2-光学参量放大器,3-聚焦透镜,4-待测流场,5-光束截止器,6-成像透镜,7-光谱仪,8-ICCD相机,9-计算机
具体实施方式
以下结合附图和具体实施例对本发明作进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明主要基于飞秒激光诱导荧光技术实现流场中气态氨(NH3)的测量,如图1所示为本实施例的基于飞秒激光诱导荧光测量气态氨的装置,包括含有氨气(NH3)的待测流场4,还包括飞秒激光器1、光学参量放大器2、聚焦透镜3、光束截止器5、成像透镜6、光谱仪7、ICCD相机8和计算机9,光谱仪7设置于待测流场4的一侧,光谱仪7与ICCD相机8相连,光谱仪7和ICCD相机8均与计算机9相连,飞秒激光器1出射的激光经光学参量放大器调整得到波长为305nm的激光,波长为305nm的激光依次经过聚焦透镜3、待测流场4和光束截止器5,待测流场4和光谱仪7之间设有成像透镜6。
飞秒激光器用于产生脉冲宽度为飞秒(1fs=10-19s)级别的激光;Topas用于将来自飞秒激光器的激光调整为所需波长为305nm的飞秒激光;聚焦透镜用于聚焦飞秒激光束,使激光聚焦焦点位于流场待测流场;本实施例中待测流场为一燃烧器,用于输出含NH3的混合气体,可通过控制***调整气体流量、流速等参数;光束截止器用于收集聚焦透镜散焦后的激光光束,避免入射到人体或其他物体上造成危害;成像透镜用于聚集NH3产生的荧光信号,并将其聚焦至光谱仪狭缝处;光谱仪用于分辨待测气体中NH3的荧光光谱,本发明中NH3的荧光信号位于波长565nm处;ICCD相机用于NH3产生的荧光光谱的收集与分析;计算机用于调整光谱仪和ICCD(Intensified charge-coupled device)相机等设备的运行参数,分析光谱仪和ICCD相机等设备采集的数据。
本发明测量气态氨的装置的技术原理如下:见图2所示,NH3通过吸收2个波长为305nm的飞秒激光光子,由X能级跃迁至C’能级,NH3在C’能级由于不稳定,会自发跃迁至A能级,在由C’能级跃迁回A能级的这一过程中会向外释放出波长为565nm的荧光,通过探测荧光信号,可实现对NH3的测量。将所需波长为305nm的飞秒激光经反射镜引导和聚焦透镜聚焦后入射到待测流场,共振激发流场中的NH3,使其发生由X能级向C’能级的跃迁,处于C’能级的NH3由于不稳定会自发向A能级跃迁,在由C’能级向A能级跃迁的这一过程中会释放出波长为565nm的荧光,通过光谱仪和ICCD相机采集相应的荧光信号,可实现NH3的瞬态测量。
具体的,气态氨(NH3)的测量方法的最佳实施方式如下:
首先由飞秒激光器1产生飞秒激光,飞秒激光入射到Topas2中经调整产生所需的波长为305nm的飞秒激光,305nm的飞秒激光经两个反射镜反射引导至聚焦透镜3处,经聚焦透镜3聚焦后,调整聚焦焦点位于流场待测流场4处,待测气体中的气态氨(NH3)经波长为305nm的飞秒激光诱导产生相应的荧光信号,荧光信号经成像透镜6聚集后聚焦至光谱仪7狭缝处,光谱仪7对信号进行分光处理后将荧光信号输送给ICCD相机8,ICCD相机再将光谱信号输送给计算机9进行数据处理与分析,最终实现气态氨(NH3)的瞬态测量。
本发明并不限于上文描述的实施方式。以上对具体实施方式的描述旨在描述和说明本发明的技术方案,上述的具体实施方式仅仅是示意性的,并不是限制性的。在不脱离本发明宗旨和权利要求所保护的范围情况下,本领域的普通技术人员在本发明的启示下还可做出很多形式的具体变换,这些均属于本发明的保护范围之内。

Claims (2)

1.一种基于飞秒激光诱导荧光测量气态氨的装置,包括含有氨气(NH3)的待测流场,其特征在于,还包括飞秒激光器、光学参量放大器、聚焦透镜、光束截止器、成像透镜、光谱仪、ICCD相机和计算机,所述光谱仪设置于待测流场的一侧,所述光谱仪与所述ICCD相机相连,光谱仪和ICCD相机均与计算机相连,所述飞秒激光器出射的激光经所述光学参量放大器调整得到波长为305nm的激光,波长为305nm的激光依次经过聚焦透镜、待测流场和光束截止器,所述待测流场和所述光谱仪之间设有所述成像透镜。
2.一种基于飞秒激光诱导荧光测量气态氨的方法,基于权利要求1所述测量气态氨的装置,其特征在于,包括以下步骤:
飞秒激光器产生飞秒激光,飞秒激光入射到光学参量放大器中经调整产生波长为305nm的飞秒激光;
305nm的飞秒激光经反射镜反射引导至聚焦透镜处进行聚焦,调整聚焦焦点位于流场待测流场处;
待测流场中的气态氨经波长为305nm的飞秒激光诱导产生相应的荧光信号;
荧光信号经成像透镜聚集后聚焦至光谱仪的狭缝处,光谱仪对荧光信号进行分光处理后将荧光信号输送给ICCD相机;
ICCD相机将接收到的光谱信号输送给计算机进行数据处理与分析,最终实现气态氨的瞬态测量。
CN202010434269.6A 2020-05-21 2020-05-21 一种基于飞秒激光诱导荧光测量气态氨的装置及方法 Pending CN111693498A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010434269.6A CN111693498A (zh) 2020-05-21 2020-05-21 一种基于飞秒激光诱导荧光测量气态氨的装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010434269.6A CN111693498A (zh) 2020-05-21 2020-05-21 一种基于飞秒激光诱导荧光测量气态氨的装置及方法

Publications (1)

Publication Number Publication Date
CN111693498A true CN111693498A (zh) 2020-09-22

Family

ID=72478044

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010434269.6A Pending CN111693498A (zh) 2020-05-21 2020-05-21 一种基于飞秒激光诱导荧光测量气态氨的装置及方法

Country Status (1)

Country Link
CN (1) CN111693498A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115855904A (zh) * 2022-12-07 2023-03-28 西安交通大学 一种氨燃烧反应双自由基场激光测量装置及方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109443588A (zh) * 2018-11-29 2019-03-08 天津大学 基于飞秒激光诱导化学发光的流场温度测量装置及方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109443588A (zh) * 2018-11-29 2019-03-08 天津大学 基于飞秒激光诱导化学发光的流场温度测量装置及方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DAYUAN ZHANG 等: "Instantaneous one-dimensional ammonia measurements with femtosecond two-photon laser-induced fluorescence (fs-TPLIF)", <INTERNATIONAL JOURNAL OF HYDROGEN ENERGY> *
JIXU LIU 等: "Ammonia Measurements with Femtosecond Two-Photon Laser-Induced Fluorescence in Premixed NH3/Air Flames", <ENERGY & FUELS> *
张大源等: "飞秒激光光谱技术在燃烧领域的应用", 《实验流体力学》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115855904A (zh) * 2022-12-07 2023-03-28 西安交通大学 一种氨燃烧反应双自由基场激光测量装置及方法
CN115855904B (zh) * 2022-12-07 2023-11-21 西安交通大学 一种氨燃烧反应双自由基场激光测量装置及方法

Similar Documents

Publication Publication Date Title
CN103076310B (zh) 用于物质成份分析的光谱探测***及其探测方法
Rai et al. Parametric study of a fiber-optic laser-induced breakdown spectroscopy probe for analysis of aluminum alloys
US6181419B1 (en) Method and apparatus for applying laser induced incandescence for the determination of particulate measurements
JP5886435B2 (ja) テラヘルツ時間領域分光法を用いた水銀ガスの感知
CN101819064A (zh) 常温常压飞秒cars时间分辨光谱测量***
CN109443588B (zh) 基于飞秒激光诱导化学发光的流场温度测量装置及方法
CN109884034B (zh) 一种飞秒等离子体光栅诱导击穿光谱检测的方法及装置
CN111060516A (zh) 光学元件亚表面缺陷的多通道原位检测装置及检测方法
CN112730383B (zh) 一种用于在线检测的光纤阵列libs探测***
CN108195825A (zh) 一种基于激光诱导击穿光谱的危险废物检测***
CN111693498A (zh) 一种基于飞秒激光诱导荧光测量气态氨的装置及方法
CN217484253U (zh) 一种基于激光二极管的光声光谱二氧化氮分析仪
CN108318459A (zh) 脉冲强激光诱导光致发光谱的测量装置及测量方法
KR100820776B1 (ko) 레이저 유도 충격파의 탐침 빔 검지를 이용한 수용액 내나노입자 측정장치 및 그에 따른 측정방법
Flower et al. A laser-based technique to continuously monitor metal aerosol emissions
CN101281124A (zh) 宽带腔增强吸收光谱大气环境光电监测***
CN106290310A (zh) 一种低成本高灵敏激光探针元素分析仪
CN111272736B (zh) 一种击穿光谱与吸收光谱组合测量***及方法
CN112525842B (zh) 基于平顶激光束的汽车尾气中氨气浓度分布实时检测装置
CN211741079U (zh) 一种击穿光谱与吸收光谱组合测量***
CN111551539A (zh) 一种基于飞秒激光诱导等离子体测量氨气的装置及方法
Gounder et al. Development of a laser-induced plasma probe to measure gas phase plasma signals at high pressures and temperatures
CN206161532U (zh) 一种低成本高灵敏激光探针元素分析仪
CN202916195U (zh) 一种测定火电厂scr催化剂活性组分含量的装置
JPH112604A (ja) 元素分析方法および装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200922