CN111690740B - 肝细胞癌早筛试剂盒及其制备方法和用途 - Google Patents

肝细胞癌早筛试剂盒及其制备方法和用途 Download PDF

Info

Publication number
CN111690740B
CN111690740B CN201910179499.XA CN201910179499A CN111690740B CN 111690740 B CN111690740 B CN 111690740B CN 201910179499 A CN201910179499 A CN 201910179499A CN 111690740 B CN111690740 B CN 111690740B
Authority
CN
China
Prior art keywords
detection agent
gene
cfdna
mutation
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910179499.XA
Other languages
English (en)
Other versions
CN111690740A (zh
Inventor
焦宇辰
曲春枫
王宇婷
王沛
陈坤
宋欠欠
刘慧�
王思振
阎海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Genetron Health Beijing Co ltd
Cancer Hospital and Institute of CAMS and PUMC
Original Assignee
Genetron Health Beijing Co ltd
Cancer Hospital and Institute of CAMS and PUMC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Genetron Health Beijing Co ltd, Cancer Hospital and Institute of CAMS and PUMC filed Critical Genetron Health Beijing Co ltd
Priority to CN201910179499.XA priority Critical patent/CN111690740B/zh
Priority to EP19918650.3A priority patent/EP3940086A4/en
Priority to KR1020217028609A priority patent/KR20210133232A/ko
Priority to US17/438,050 priority patent/US20220145399A1/en
Priority to JP2021547820A priority patent/JP2022524304A/ja
Priority to PCT/CN2019/106064 priority patent/WO2020181752A1/zh
Publication of CN111690740A publication Critical patent/CN111690740A/zh
Application granted granted Critical
Publication of CN111690740B publication Critical patent/CN111690740B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57438Specifically defined cancers of liver, pancreas or kidney
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B15/00ICT specially adapted for analysing two-dimensional or three-dimensional molecular structures, e.g. structural or functional relations or structure alignment
    • G16B15/30Drug targeting using structural data; Docking or binding prediction
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B20/00ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
    • G16B20/20Allele or variant detection, e.g. single nucleotide polymorphism [SNP] detection
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B40/00ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B40/00ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
    • G16B40/20Supervised data analysis
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B5/00ICT specially adapted for modelling or simulations in systems biology, e.g. gene-regulatory networks, protein interaction networks or metabolic networks
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B5/00ICT specially adapted for modelling or simulations in systems biology, e.g. gene-regulatory networks, protein interaction networks or metabolic networks
    • G16B5/20Probabilistic models
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/118Prognosis of disease development
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/60Complex ways of combining multiple protein biomarkers for diagnosis

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Medical Informatics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Hospice & Palliative Care (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Hematology (AREA)
  • Zoology (AREA)
  • Oncology (AREA)
  • Public Health (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Databases & Information Systems (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Cell Biology (AREA)
  • Gastroenterology & Hepatology (AREA)

Abstract

本发明提供了用于肝细胞癌早筛的试剂盒,其包括基因标志物检测剂和蛋白标志物检测剂。本发明还提供了所述试剂盒的制备方法和用途。本发明包含特定基因标志物与蛋白标志物的试剂盒已证实在社区群体中有效实现HCC早筛,特别是在前瞻性研究中得到了验证。

Description

肝细胞癌早筛试剂盒及其制备方法和用途
技术领域
本发明涉及肝细胞癌早筛试剂盒,更具体涉及用于AFP阴性受试者的肝细胞癌早筛的试剂盒,及其制备方法和用途。
背景技术
2018年世界范围内肝癌的发病为841,080,这是世界上癌症死亡的第三大原因。肝细胞癌(HCC)代表了肝癌的主要组织学类型,占案例的约85-90%。而且,对于晚期HCC没有有效的治疗方法。具有发生HCC的高风险的肝硬化患者被推荐进行筛查(Omata M,et al.(2017)Asia-Pacific clinical practice guidelines on the management ofhepatocellular carcinoma:a 2017update.Hepatol Int 11(4):317-370;Marrero JA,etal.(2018)Diagnosis,Staging and Management of Hepatocellular Carcinoma:2018Practice Guidance by the American Association for the Study of LiverDiseases.Hepatology.)。在中国,HCC早期筛查已经在多个队列中按照亚太肝病研究学会的指南进行,其推荐应当对肝硬化个体和乙肝病毒表面抗原(HBsAg)阳性个体,每6个月使用超声检查法(US)和血清甲胎蛋白(AFP)测试,进行HCC监测(Omata M,et al.(2017),同上)。尽管在以前的研究中这些方式已经证明总体存活由于早期检测和接受有疗效的疗法而显著改善(Singal AG,Pillai A,&Tiro J(2014)Early detection,curativetreatment,and survival rates for hepatocellular carcinoma surveillance inpatients with cirrhosis:a meta-analysis.PLoS medicine 11(4):e1001624.),但是HCC的精确检测需要有经验的专家,限制其在全部HBsAg阳性个体中的广泛应用。而且,一年两次的筛查也与随访预约和产生焦虑的程序相关联。目前,中国的大多数HCC案例是基于临床症状而不是通过HCC筛查而检测,而且在医院诊断出时已处于晚期。
在最近的研究中,基于无细胞DNA(ctDNA)的基因改变的液体活检已经在癌症早期检测中表现出有希望的结果(Bettegowda C,et al.(2014)Detection of circulatingtumor DNA in early-and late-stage human malignancies.Science translationalmedicine 6(224):224ra224;Chaudhuri AA,et al.(2017)Early Detection ofMolecular Residual Disease in Localized Lung Cancer by Circulating Tumor DNAProfiling.Cancer discovery 7(12):1394-1403.)。与蛋白质标志物组合,可能进一步改善灵敏度和特异性,并且可能在一个测试中筛查多种肿瘤类型(Springer S,et al.(2015)A Combination of Molecular Markers and Clinical Features Improve theClassification of Pancreatic Cysts.Gastroenterology;Cohen JD,et al.(2018)Detection and localization of surgically resectable cancers with a multi-analyte blood test.Science 359(6378):926-930;Cohen JD,et al.(2017)Combinedcirculating tumor DNA and protein biomarker-based liquid biopsy for theearlier detection of pancreatic cancers.Proceedings of the National Academyof Sciences of the United States of America 114(38):10202-10207.)。然而,这些研究主要是在HCC住院患者和没有HBV感染的健康个体中进行(Cohen JD,et al.(2018),同上)。液体活检测定法的性能可以受累于具有慢性HBV感染的高风险群体,因为一些癌前损伤,如肝硬化,可能也具有HCC中普遍存在的驱动突变。谱分析肝炎、肝硬化和非癌肝结节可能是绘制基线以精确鉴定可通过成像或组织学临床验证的HCC所必要的。
引起肝功能损害的常见原因有感染(如乙型肝炎病毒感染)、肥胖、酗酒、黄曲霉素暴露、血脂异常等等,且肝病患者患肝癌的风险更高。甲胎蛋白(AFP)、异凝血酶原(DCP)和鳞状上皮细胞癌抗原(SCCA)均为肝癌的蛋白标志物。研究表明,AFP和DCP的联合测量可提高预测肝癌的灵敏度,有效区分早期肝癌和失代偿性肝硬化。然而,很多早期肝癌中,AFP、DCP和SCCA检测结果均为阴性。
肿瘤或其它细胞会释放DNA分子进入血液,经过降解,形成游离的DNA片段(Cellfree DNA,cfDNA)。cfDNA的检测在指导肿瘤靶向用药、疗效监测以及癌症的早期筛查等方面表现出极大潜力。我国肝癌患者中约90%有乙型肝炎病毒感染背景,且乙型肝炎病毒相关性肝癌几乎没有KRAS、BRAF等热点突变。
如前所述,过往使用单独的蛋白标志物如AFP作为HCC早筛指标。Chun等,2015(Chun S,Rhie SY,Ki CS,Kim JE,&Park HD(2015)Evaluation of alpha-fetoprotein asa screening marker for hepatocellular carcinoma in hepatitis prevalentareas.Annals of hepatology 14(6):882-888.)报告了使用单独的甲胎蛋白作为筛查标志物,但效果欠佳,阳性预测值约为1-2%。
近期也有尝试用基因变化结合蛋白标志物的方式进行HCC早筛。Joshua D.Cohen等,2018(Cohen J D,Li L,Wang Y,et al.Detection and localization of surgicallyresectable cancers with a multi-analyte blood test[J].Science,2018,359(6378):eaar3247.)报告了采用基因突变结合蛋白标志物的方式进行包括HCC的泛癌种的早筛,但其在涉及HCC时未采用例如TERT及其多种形式和/或HBV融合的基因变化。但这项研究只是针对已诊断为HCC的住院患者与健康人群的回顾性研究,未有通过对无HCC症状人群进行前瞻性研究而对HCC发生进行预测并给出阳性预测值。
在此,本发明报告了一种新型的肝细胞癌筛查(HCC筛查)方法,该方法是基于血清蛋白标志物和cfDNA改变两者的检测,并且证实了其在应用于具有慢性HBV感染的多中心社区群体的早期HCC检测时的效用。
发明内容
传统上,基因变化或蛋白标志物被各自单独用于癌症早筛。也曾有人尝试过用基因变化与蛋白标志物的组合进行癌症早筛。结合基于无细胞DNA(cfDNA)和蛋白质的液体活检已经显示出检测多种多样的组织类型的早期癌症的潜力。然而,这些研究中的大多数是回顾性的,使用先前诊断为癌症的个体作为案例而健康个体作为对照。而即是对于极少数前瞻性研究,就肝细胞癌而言,现有技术中采用的标志物的预测效果也很差。在此,本发明开发了名为肝细胞癌筛查(HCC筛查)的液体活检测定法,采用特定基因标志物与蛋白标志物的组合,以从社区群体中的乙型肝炎病毒表面抗原(HBsAg)阳性无症状个体识别肝细胞癌(HCC)。通过验证可以看到,该测定法稳健地将HCC个体与非HCC个体区分开来,具有85%的灵敏度和93%的特异性。发明人进一步进行了前瞻性的研究,将这种测定法应用至肝脏超声检查和血清AFP水平正常的331位个体。识别了24例阳性案例,6-8个月后的临床随访确认4例发展为HCC。在同一时间范围的随访中,从307位测试阴性个体没有诊断出HCC案例。因此,该测定法在验证集中显示100%灵敏度,94%特异性和17%阳性预测值。该阳性预测值(PPV)17%显著高于以前用单独的AFP水平筛查所获得的(Chun S,Rhie SY,Ki CS,KimJE,&Park HD(2015)Evaluation of alpha-fetoprotein as a screening marker forhepatocellular carcinoma in hepatitis prevalent areas.Annals of hepatology 14(6):882-888.),并且高于通过分别采用本发明中的特定基因标志物和特定蛋白标志物而各自获得的。
本发明包含特定基因标志物与蛋白标志物的试剂盒已证实在无特定限定的人群中有效实现HCC早筛,因此可用于非特定人群的HCC早筛,更优选用于AFP阴性受试者的HCC早筛。
值得注意的是,本发明的试剂盒是用于前瞻性的早期HCC预测,4例HCC各自在诊断时都是早期(<3cm),为后续治疗提供了良好的基础。发明人的研究提供证据表明,cfDNA改变和蛋白质标志物联合检测的使用是从无症状且HCC状态未知的社区群体识别早期HCC的可行方法。
因此,在一个方面,本发明提供了一种用于肝细胞癌早筛的试剂盒,其包括基因标志物检测剂和蛋白标志物检测剂。
在另一个方面,本发明提供了用于肝细胞癌早筛的方法,其包括:
(1)检测受试者的基因标志物和蛋白标志物;和
(2)采用所述基因标志物和蛋白标志物的检测结果计算肝细胞癌筛查分数并与阈值相比较。
在又一个方面,本发明提供了基因标志物检测剂和蛋白标志物检测剂用于肝细胞癌早筛的用途。
在又一个方面,本发明提供了基因标志物检测剂和蛋白标志物检测剂在制备用于肝细胞癌早筛的试剂盒中的用途。
本发明的目的为进行肝癌早期筛查。
本发明首先保护一种肝癌早期筛查试剂盒,可包括肝癌突变基因的检测试剂、DCP检测试剂和AFP检测试剂。
所述“肝癌突变基因的检测试剂”可用于检测cfDNA中肝癌突变基因的突变类型和/或突变reads和/或基因拷贝数变异。
所述“肝癌突变基因”可为TP53基因和/或TERT基因和/或AXIN1基因和/或CTNNB1基因。
所述DCP检测试剂可用于检测血浆中的DCP含量。
所述AFP检测试剂可用于检测血浆中的AFP含量。
所述试剂盒还可包括HBV是否与基因整合的检测试剂和/或cfDNA检测试剂。
所述“HBV是否与基因整合的检测试剂”可用于检测cfDNA中是否有HBV序列与人类基因组的整合位点。
所述“cfDNA检测试剂”可用于检测cfDNA浓度和/或cfDNA中不同***片段长度的cfDNA含量所占百分比。
所述试剂盒还可包括数据处理***;所述数据处理***用于将待测者的肝癌突变基因的信息(即13个基因突变特征的信息)、DCP含量(血浆中的DCP含量)、AFP含量(血浆中的AFP含量)、HBV是否与基因整合、cfDNA信息和临床信息转换为所述待测者的HCCscreen评分值,根据所述待测者的HCCscreen评分值预测待测者是否为肝癌患者。
本发明还保护上述任一所述肝癌突变基因的检测试剂、DCP检测试剂、AFP检测试剂、HBV是否与基因整合的检测试剂和cfDNA检测试剂的应用,可为A1)-A4)中的至少一种:
A1)预测待测者是否为肝癌患者;
A2)制备用于预测待测者是否为肝癌患者的试剂盒;
A3)预测肝癌;
A4)制备用于预测肝癌的试剂盒。
本发明还保护上述任一所述肝癌突变基因的检测试剂、DCP检测试剂、AFP检测试剂、HBV是否与基因整合的检测试剂、cfDNA检测试剂和数据处理***的应用,可为A1)-A4)中的至少一种:
A1)预测待测者是否为肝癌患者;
A2)制备用于预测待测者是否为肝癌患者的试剂盒;
A3)预测肝癌;
A4)制备用于预测肝癌的试剂盒。
本发明还保护待测者的年龄,待测者的性别,待测者血浆中DCP含量,待测者血浆中AFP含量和待测者cfDNA中肝癌突变基因的突变类型、突变reads、基因拷贝数变异、HBV是否与基因整合的检测试剂、cfDNA浓度、不同***片段长度的cfDNA含量所占百分比,作为标志物的应用,可为A1)-A4)中的至少一种:
A1)预测待测者是否为肝癌患者;
A2)制备用于预测待测者是否为肝癌患者的试剂盒;
A3)预测肝癌;
A4)制备用于预测肝癌的试剂盒。
本发明还保护预测肝癌的方法,可包括如下步骤:
(1)检测待测者血浆中DCP含量和AFP含量;
(2)检测待测者cfDNA中肝癌突变基因的突变类型、突变reads、基因拷贝数变异、HBV是否与基因整合、cfDNA浓度和不同***片段长度的cfDNA含量所占百分比;
(3)记录待测者的年龄和性别;
(4)将步骤(1)至(3)待测者的信息转换为HCCscreen评分值,根据HCCscreen评分值预测待测者是否为肝癌患者。
所述“根据HCCscreen评分值预测待测者是否为肝癌患者”包括通过受试者工作特征曲线(ROC曲线)确定诊断阈值,比较待测者的HCCscreen评分值和所述诊断阈值的大小,完成待测者的肝癌预测。
待测者的HCCscreen评分值可以通过肝癌预测模型计算获得。所述肝癌预测模型为根据训练集中各个患者的特征分值和分组信息,开发的逻辑回归模型。训练集由若干位肝癌患者(组成肝癌组)和若干位肝癌高危者(组成肝癌高危组)组成。在本发明的一个实施例中,训练集由30位肝癌患者和30位肝癌高危者组成。
上述任一所述HBV是否与基因整合可为HBV是否与TERT基因整合和/或HBV是否与非TERT基因(如APOBEC4、FBX010、FUT8、WDR7、SLC7A10、GUSBP4)整合。
上述任一所述肝癌突变基因的信息包括肝癌突变基因的突变类型和/或突变reads和/或基因拷贝数变异的信息。
上述任一所述cfDNA信息可包括cfDNA浓度和/或cfDNA中不同***片段长度的cfDNA含量所占百分比。所述cfDNA中不同***片段长度的cfDNA含量所占百分比具体可为游离DNA片段长度小于90bp区间百分比、游离DNA片段90-140bp区间百分比、游离DNA片段141-200bp区间百分比和游离DNA片段大于200bp区间百分比。
上述任一所述临床信息可包括年龄和/或性别。
上述任一所述肝癌突变基因的检测试剂包括提取cfDNA的试剂(如MagMAXTMCell-Free DNA Isolation Kit)、构建cfDNA文库的试剂(如KAPA Hyper Prep试剂盒)和进行目标区域杂交捕获的试剂(如sureselect XT靶向捕获试剂盒)。
所述DCP检测试剂可为检测血浆中DCP含量的试剂。具体为:分离血浆,采用美国雅培ARCHITECT i2000SR化学发光免疫分析仪检测DCP的含量。
所述AFP检测试剂可为检测血浆中AFP含量的试剂。具体为:分离血浆,采用美国雅培IMx分析仪检测AFP的含量。
上述任一所述HBV是否与基因整合的检测试剂可包括提取cfDNA的试剂(如MagMAXTMCell-Free DNA Isolation Kit)。
所述cfDNA检测试剂包括提取cfDNA的试剂(如MagMAXTMCell-Free DNA IsolationKit)。
上文中,检测(试剂盒检测)的特征具体可为实施例中的20个特征,具体如下:
一、所述“肝癌突变基因的检测试剂”用于检测的特征具体可为实施例中的11个特征,分别为TP53基因非R249S突变、TERT基因突变、AXIN1基因突变、CTNNB1基因突变、TP53R249S热点位置区域、CNV降维特征1、CNV降维特征2、CNV降维特征3、CNV降维特征4、CNV降维特征5、CNV降维特征6(即11个基因突变特征)。具体步骤如下:
1、提取待测血液样本cfDNA。
2、取所述待测血液样本cfDNA,采用KAPA Hyper Prep试剂盒构建文库,得到待测血液样本的cfDNA文库。
3、取所述待测血液样本的cfDNA文库,采用sureselect XT靶向捕获试剂盒进行目标区域杂交捕获,然后在Illumina平台进行测序。获得待测血液样本cfDNA中的肝癌突变基因的检测结果(包括突变基因和突变频率)。
4、基因突变结果注释及打分
对cfDNA中肝癌突变基因的检测结果进行注释:突变reads支持频率的注释分数。
5、取待测血液样本的cfDNA文库,进行低深度全基因组测序,然后将测序数据进行CNV检测和cfDNA片段长度检测。
6、基因拷贝数变异检测结果特征提取
对CNV检测结果进行如下处理:对各个臂水平上的CNV信号(性染色体被删除以排除性别对CNV信号造成的影响)分数进行了PCA降维处理,通过R2值选择前6个主成份(即CNV降维特征1、CNV降维特征2、CNV降维特征3、CNV降维特征4、CNV降维特征5、CNV降维特征6)作为CNV相关的特征,CNV降维特征1、CNV降维特征2、CNV降维特征3、CNV降维特征4、CNV降维特征5、CNV降维特征6的R2值即为特征分值。
7、cfDNA片段长度检测
低深度全基因组测序数据可用于分析实施例中的4个特征,分别为游离DNA片段长度小于90bp区间百分比、游离DNA片段90-140bp区间百分比、游离DNA片段141-200bp区间百分比、游离DNA片段大于200bp区间百分比。
二、所述“cfDNA检测试剂”用于检测的特征具体可为cfDNA浓度。cfDNA浓度值取log2转换之后的数值作为特征分值。
三、所述“DCP检测试剂”用于检测的特征具体可为实施例中的1个特征,即血浆中的DCP含量。
四、所述“AFP检测试剂”用于检测的特征具体可为实施例中的1个特征,即血浆中的AFP含量。
五、所述“HBV是否与基因整合的检测试剂”用于检测的特征具体可为实施例中的2个特征,分别为HBV与TERT整合变异、和、HBV与非TERT整合变异(即2个基因突变特征)。
上文中,突变位点整合和打分:对于每个基因突变,根据突变reads支持频率给出注释分数;然后突变位点打分值被累加到不同的ROI(Region Of Interest)区间(即获得特征分值)。该区间包括4个基因(TP53,CTNNB1,TERT以及AXIN1)及一个TP53R249S热点突变位置区域。计算公式如下:
Figure BDA0001990790830000041
其中n为ROI区间内的突变个数,adj_score为上述突变reads支持频率的注释分数。
上文中,结构性变异结果特征提取步骤如下:
(1)检测每个样品TERT整合变异特征的分值:发生TERT整合,TERT整合变异的特征分值为1;不发生TERT整合,TERT整合变异的特征分值为0。
(2)检测每个样品HBV整合变异的特征分值:对于检测到的每个整合突变,根据reads支持可信度分为A、B和C三个等级(整合reads数≥10,A级;10>整合reads数>6,B级;其余的为C级,见表4中第3列),分别对应的分值为1、0.8和0.3分,然后求和,即获得HBV整合变异的特征分值。
上文中,游离DNA长度相关特征提取步骤如下:计算cfDNA片段长度在四个区间(<90bp,90-140bp、141-200bp和>200bp)所占百分比,并将这些特征作为预测变量,cfDNA片段长度在四个区间所占百分比即为特征分值。
上文中,蛋白标志物相关特征提取的步骤如下:
将AFP的实际测量值按照阈值(13、20、200、400)由低到高划分为5个数值等级:0、5、8、20、30,将DCP的实际测量值按照阈值(40、60)由低到高划分为3个数值等级:0、2、5,作为两个蛋白标志物的特征分值。
此外,还可以根据临床及实验相关特征提取2个特征,临床特征包括病人的年龄、性别也与病例表型呈一定的相关性。其中年龄的特征分值为样本的实际年龄数值;性别为男的特征分值为1,性别为女的特征分值为0。
特征可以包括如下22个特征:13个基因突变特征、2个蛋白标志物、5个cfDNA物理特征和2个血液样本的基本信息组成。13个基因突变特征分别为TP53基因非R249S突变、TERT基因突变、AXIN1基因突变、CTNNB1基因突变、TP53R249S热点位置区域、CNV降维特征1、CNV降维特征2、CNV降维特征3、CNV降维特征4、CNV降维特征5、CNV降维特征6、HBV与TERT整合变异、HBV与非TERT整合变异。2个蛋白标志物分别为AFP和DCP。5个cfDNA物理特征分别为游离DNA片段长度小于90bp区间百分比、游离DNA片段90-140bp区间百分比、游离DNA片段141-200bp区间百分比、游离DNA片段大于200bp区间百分比和cfDNA浓度。2个血液样本的基本信息分别为性别和年龄
早期肝癌筛查标志物多为蛋白类或基因甲基化信息。本发明的发明人通过大量实验首次证实血浆中cfDNA的基因突变信息可用于早期HCC预测。发明人通过采用肝癌预测模型对待测者进行评分,通过评分值预测待测者是否为肝癌患者,而验证了本发明的基因标志物与蛋白标志物的组合的有效HCC早筛效果。由此可见,通过cfDNA检测对肝癌进行早期筛查、病情追踪、疗效评估、预后预测等具有重要临床意义。
附图说明
图1:研究设计。招募、HCC筛查模型的训练,以及在抽样的AFP/US阴性个体中的验证。
图2:详细研究设计。
图3:HCC筛查测定法中cfDNA的基因谱分析的设计。
图4:HCC筛查在训练集和验证集中的表现。(A)在训练集中,在诊断模型中,HCC筛查分数以及cfDNA和蛋白生物标志物的贡献。(B)训练集中诊断模型的二元结果。(C)训练集中HCC筛查的诊断模型的ROC。(D)验证集中诊断模型的HCC筛查表现。(E)验证集中HCC筛查阳性案例的随访和诊断。(F)验证集中诊断模型的二元结果。(G)在AFP/US阴性个体中,HCC筛查检测到的4个HCC案例的动态CT成像。
图5:不同训练集的表现。(A)在用没有HBV感染的健康个体作为对照的训练集中,HCC筛查测定法的诊断模型的ROC。(B)以HCC和非HCC个体进行训练(左)和以HCC和健康个体进行训练(右)。
图6:肝癌预测模型的ROC曲线。
图7:为不同组群模型评分比较图。
具体实施方式
癌症早期检测是减少癌症导致的死亡的最有效方式。在最近的研究中,基于cfDNA和/或蛋白质的液体活检测定法显示检测多种多样的组织类型的早期癌症的希望(CohenJD,et al.(2018),同上),但没有证明对HCC有良好的预测结果,也没有证明在鉴别早期肝癌和高危人群时的效果。在本研究中,发明人开发和测试了液体活检测定法。在生物标志物的选择中,聚焦于经常改变的、具有明确致癌机制的基因生物标志物,例如TERT启动子突变,以及具有明确诊断价值的蛋白质标志物,例如DCP(Lok AS,et al.(2010)Des-gamma-carboxy prothrombin and alpha-fetoprotein as biomarkers for the earlydetection of hepatocellular carcinoma.Gastroenterology 138(2):493-502.)。本发明将有限数量的与HCC明确相关的候选生物标志物包括进来以避免在对有限数量的肿瘤/正常案例研究众多候选生物标志物时的过度拟合效应。通过采用用于回顾性和/或前瞻性研究的研究工具对本发明选择的基因标志物和蛋白标志物的特定组合进行验证,发现该特定组合在回顾性和前瞻性验证中都获得了优异的效果。
因此,在一个方面,本发明提供了一种用于肝细胞癌早筛的试剂盒,其包括基因标志物检测剂和蛋白标志物检测剂。所述基因标志物检测剂可以包括选自以下中的一种或多种,优选三种或四种:TP53检测剂、CTNNB1检测剂、AXIN1检测剂、TERT检测剂。所述蛋白标志物检测剂可以包括选自以下中的一种或多种:AFP检测剂和DCP检测剂。
本发明的试剂盒可用于非特定人群的HCC早筛,也可用于特定人群如AFP阴性受试者的HCC早筛。由于AFP是日常体检如血液检测中的常见测试指标,很可能受试者的AFP状态(阴性或阳性)是已知的。因此,在一些实施方式中,本发明的试剂盒是用于特定人群如AFP阴性受试者的HCC早筛,其中所述试剂盒不包括AFP检测剂。类似地,在一些实施方式中,本发明的试剂盒是用于特定人群如DCP阴性受试者的HCC早筛,其中所述试剂盒不包括DCP检测剂。类似地,在一些实施方式中,本发明的试剂盒是用于特定人群如AFP和DCP阴性受试者的HCC早筛,其中所述试剂盒不包括AFP检测剂和DCP检测剂。因此在一些实施方式中,本发明提供了用于AFP阴性受试者的肝细胞癌早筛的试剂盒,其包括基因标志物检测剂和蛋白标志物检测剂,优选其中所述蛋白标志物检测剂包括DCP检测剂。在一些实施方式中,本发明提供了用于DCP阴性受试者的肝细胞癌早筛的试剂盒,其包括基因标志物检测剂和蛋白标志物检测剂,优选其中所述蛋白标志物检测剂包括AFP检测剂。在一些实施方式中,本发明提供了用于AFP和DCP阴性受试者的肝细胞癌早筛的试剂盒,其包括基因标志物检测剂。根据本发明的基因标志物检测剂可以检测基因标志物的存在和/或类型,包括突变类型和突变reads。
根据本发明的基因标志物检测剂在一些实施方式中还包括CNV检测剂。CNV检测剂通常是用于检测全基因组水平的CNV,但在一些实施方式中,也可用于检测局部水平例如基因的CNV。在一些实施方式中,本发明的试剂盒包含用于检测全局CNV水平的CNV检测剂。在一些实施方式中,本发明的试剂盒包含用于检测局部CNV水平的CNV检测剂。在一些实施方式中,本发明的试剂盒包含用于检测TERT基因的CNV水平的CNV检测剂。CNV检测剂的使用可以进一步提高HCC筛查的灵敏度和特异性。在一些实施方式中,CNV检测结果可以被转换为CNV降维特征1、CNV降维特征2、CNV降维特征3、CNV降维特征4、CNV降维特征5和/或CNV降维特征6。
如本文所用,术语“基因标志物检测剂”是用于检测基因标志物的检测剂,包括本领域技术人员所熟知的和本文所描述的。相应地,术语“TP53检测剂”、“CTNNB1检测剂”、“AXIN1检测剂”和“TERT检测剂”是用于检测各自指明的基因标志物的检测剂,包括本领域技术人员所熟知的和本文所描述的。TP53、CTNNB1、AXIN1和TERT作为本领域常见的基因标志物是本领域技术人员所熟知的,例如TERT启动子突变。在一些实施方式中,TP53的全长被检测。在一些实施方式中,TP53的一个或多个外显子被检测。本发明在一些方面的特征在于检测TP53的全长,而不仅是检测TP53的一个或多个外显子。
本领域技术人员容易认识到,本发明所指的基因在充当基因标志物时是利用其通过测序所得的全部或部分序列与其相应野生型序列之间的至少一个或多个核苷酸的差异,而不一定局限于特定位点。TP53、CTNNB1、AXIN1和TERT基因作为基因标志物时可以在全长上与其相应野生型序列之间存在至少一个或多个核苷酸的差异。TP53基因作为基因标志物时还可以在其特定热点区(例如R249S)与其相应野生型序列之间存在至少一个或多个核苷酸的差异。TERT基因作为基因标志物时还可以在其特定热点区(例如chr5:1295228C>T或chr5:1295250C>T)与其相应野生型序列之间存在至少一个或多个核苷酸的差异。
根据本发明的基因标志物检测剂在一些实施方式中还包括HBV整合检测剂。如本文所用,术语“HBV整合检测剂”是用于检测HBV是否整合在基因组中的试剂。在一些实施方式中,HBV整合在基因组中可以包括HBV整合到基因组中TERT附近,例如整合到TERT上游1.5kb内,和HBV整合到基因组中的其他地方。
在一些实施方式中,受试者的基因标志物是从受试者的cfDNA检测。一般而言,在使用本文所述的基因标志物检测剂检测基因标志物时,使用过程或检测过程包括cfDNA提取和检测,由此获知与cfDNA相关的信息,包括例如cfDNA浓度和cfDNA中不同***片段长度占cfDNA含量的百分比。因此,在一些实施方式中,本文所述的“基因标志物检测剂”及其下位概念可以同样起到cfDNA检测剂的作用,因而可与“cfDNA检测剂”互换使用。在另一些实施方式中,本发明的试剂盒还包括cfDNA检测剂。
如本文所用,术语“蛋白标志物检测剂”是用于检测蛋白标志物的检测剂,包括本领域技术人员所熟知的和本文所描述的。相应地,术语“AFP检测剂”和“DCP检测剂”是用于检测各自指明的蛋白标志物的检测剂,包括本领域技术人员所熟知的和本文所描述的。AFP和DCP作为本领域常见的蛋白标志物是本领域技术人员所熟知的。
在一些实施方式中,受试者的蛋白标志物是从受试者的血液或其组分如血清或血浆检测。在一些实施方式中,试剂盒还包括抽血用具。
本发明的试剂盒还可包括数据处理***,或者与数据处理***一并使用,例如数据处理***可以包括在计算机中。所述数据处理***用于处理根据本发明的基因标志物检测剂和/或蛋白标志物检测剂的检测结果。在一些实施方式中,数据处理***采用所述基因标志物和蛋白标志物的检测结果计算肝细胞癌筛查分数。在一些实施方式中,数据处理***将肝细胞癌筛查分数与阈值相比较。在一些实施方式中,数据处理***用于估计和/或验证和/或预测HCC,优选通过将肝细胞癌筛查分数与阈值相比较。
采用该HCC筛查,本发明发现识别早期HCC个体,并将他们与患有慢性肝病包括肝硬化的非HCC个体区别开来是可能的。该测定法在具有超声检测的肝结节和/或升高的血清AFP的个体的HCC诊断中产生85%的灵敏度和93%的特异性。更重要的是,性能也在AFP/US阴性验证集中得以保持,灵敏度和特异性分别为100%和94%。当前灵敏度是基于有限数量的HCC案例。如果额外的HCC案例被识别,这可能随着对所有个体的长期随访或动态CT/MRI而变化。在这种情况下,前瞻性且大规模的临床试验会是根据随访时间确定灵敏度和特异性所必要的。然而,验证集目前的阳性预测值(PPV)17%显著高于以前用单独的AFP水平筛查所获得的(Chun S,Rhie SY,Ki CS,Kim JE,&Park HD(2015)Evaluation of alpha-fetoprotein as a screening marker for hepatocellular carcinoma in hepatitisprevalent areas.Annals of hepatology 14(6):882-888.)。
因此,在另一个方面,本发明提供了用于肝细胞癌早筛的方法,其包括:
(1)检测受试者的基因标志物和蛋白标志物;和
(2)采用所述基因标志物和蛋白标志物的检测结果计算肝细胞癌筛查分数并与阈值相比较。
如果对在第一次测试中为阳性的案例提供第二次HCC筛查,PPV可以进一步改善。高PPV对临床常规应用非常有帮助,因为它会减少非HCC个体的不必要的焦虑和随访检查。
因此,在另一个方面,本发明提供了用于肝细胞癌早筛的方法,其包括:
(1)检测受试者的基因标志物和蛋白标志物;
(2)采用所述基因标志物和蛋白标志物的检测结果计算肝细胞癌筛查分数并与阈值相比较;和
(3)如果肝细胞癌筛查分数高于阈值,则在一段时间后对所述受试者重复步骤(1)和(2)一次或多次。
在一个实施方式中,受试者的基因标志物是从受试者的cfDNA检测。即,方法包括提取受试者的cfDNA。
在一个实施方式中,受试者的蛋白标志物是从受试者的血液检测。即,方法包括抽取受试者的血液,优选血清或血浆。
如本文所用,术语“一段时间”可以是1天、2天、3天、4天、5天、6天、一周、两周、三周、一个月、两个月、三个月、四个月、五个月、六个月、七个月、八个月、九个月、十个月、十一个月、一年,且不限于此。
在一些实施方式中,用于与计算的肝细胞癌筛查分数相比较的阈值为0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9或1.0。在一个优选实施方式中,阈值是0.4。在一个优选实施方式中,阈值是0.5。
在又一个方面,本发明提供了基因标志物检测剂和蛋白标志物检测剂用于肝细胞癌早筛的用途。
在又一个方面,本发明提供了基因标志物检测剂和蛋白标志物检测剂在制备用于肝细胞癌早筛的试剂盒中的用途。
本领域技术人员理解,本文描述试剂盒时描述的特征、参数和效果等全部限定均可以适当地结合本发明涉及方法或用途的任何其他方面。
肿瘤大小在诊断时是重要的临床参数,影响HCC患者的存活。与基于蛋白质或RNA的生物标志物不同,肿瘤细胞在大多数情况下通常仅包含一个拷贝的突变体DNA。基于cfDNA的早期检测筛查的一个基本问题是,早期肿瘤是否释放足够拷贝的突变DNA以在循环中检测。在本研究中通过HCC筛查的所有识别的HCC中,85%和68%的案例分别为<5cm和<3cm。<5cm的HCC肿瘤是早期阶段,适合于有疗效的手术。肿瘤<3cm的患者可以具有甚至更好的结果,从而强调了HCC筛查降低HCC发病率和死亡率的价值。在验证集中,本发明从AFP/US阴性群体识别4例HCC,其为2-3cm大小。这些结果清楚地显示,HCC筛查的灵敏度对于早期HCC检测具有很好的前景。
理想的肿瘤筛查方法应具有高灵敏度和特异性。它也应该易于在临床实践中执行。本HCC筛查测定法检测编码区中的突变和具有未知断点的易位/HBV整合,成本<150美元。此外,该液体活检测定法使得能够进行集中和标准处理,并且在当地医院/诊所中需要最少的专业知识和设备。总的来说,该测定法非常适合于作为高风险个体的常规测试的HCC筛查。
本发明的研究提供的证据表明,在高风险人群中基于cfDNA突变和蛋白质标记物筛查在鉴定HCC患者方面具有效力。它是非侵入性的,可以检测早期以及晚期肿瘤。更重要的是,由于驱动基因中的体突变在大多数癌症的发展中是常见的,因此可以修改该策略以用于从单管血液早期筛查其他肿瘤类型或多种肿瘤类型。
本发明的试剂盒还可以包含另外的治疗剂。本发明的方法还可以包括施用另外的治疗剂。在一个实施方式中,所述另外的治疗剂是本领域已知的癌症(如肝细胞癌)治疗剂。
在本申请中出现一系列列举数值的所有地方,应理解任意所列举的数值可以是数值范围的上限或下限。还应理解本发明涵盖所有这样的数值范围,即具有数值上限和数值下限的组合的一个范围,其中上限和下限各自的数值都可以是本发明中列举的任意数值。本发明提供的范围应理解为包括该范围内的所有值。例如,1-10应理解为包括值1、2、3、4、5、6、7、8、9和10中的全部,并视情况包括分数值。表达为“至多(up to)”某个值(例如至多5)的范围应理解为所有值(包括该范围的上限),例如0、1、2、3、4和5,并视情况包括分数值。至多一周或在一周内应理解为包括0.5、1、2、3、4、5、6或7天。类似地,由“至少”限定的范围应理解为包括所提供的较低值和所有更高的值。
除非另有指出,所有百分比形式是重量/重量。
如本发明所用,“约”应理解为包括在平均值的三个标准偏差内或特定领域中的标准公差范围内。在某些实施方式中,约应理解为不超过0.5的变异。“约”修饰其后所有列举的值。例如,“约1、2、3”表示“约1”、“约2”、“约3”。
冠词“一(a)”和“一个(an)”在本发明中用以指一个或超过一个(即,至少一个)该冠词的语法客体。举例来说,“一个要素”指一个要素或超过一个要素。
术语“包括”在本发明中用以指短语“包括但不限于”并可与其互换地使用。
除非上下文另有明确指出,术语“或”在本发明中包含性地用以指术语“和/或”并可与其互换地使用。
术语“例如”在本发明中用以指短语“例如但不限于”并可与其互换地使用。
本领域技术人员应理解,上文在各个实施方式中记载的技术特征可以单独或组合地与本发明的各个方面的技术方案组合使用。
本发明的一些实施方式通过下文的非限制性实施例说明。
实施例
以下的实施例便于更好地理解本发明,但并不限定本发明。
下述实施例中的实验方法,如无特殊说明,均为常规方法。
下述实施例中所用的试验材料,如无特殊说明,均为自常规生化试剂商店购买得到的。
以下实施例中的定量试验,均设置三次重复实验,结果取平均值。
下述实施例中,各个肝癌患者、各个肝癌高危者和健康志愿者均对本研究的内容均知情同意。
MagMAXTMCell-Free DNA Isolation Kit为Thermo Fisher公司的产品。KAPAHyper Prep试剂盒为KAPA公司的产品。sureselect XT靶向捕获试剂盒为安捷伦公司的产品。
下述实施例中,部分肝癌患者、肝癌高危者和健康志愿者的基本信息详见表1。
表1
Figure BDA0001990790830000091
Figure BDA0001990790830000101
注:“-”表示没有记录或没有检测到肿瘤;肿瘤大小为肿瘤体积、肿瘤最大直径或肿瘤最大横截面积。
材料与方法
伦理声明
基于社区群体中进行的早期HCC筛查项目,发明人于2017年对肝癌高风险群体建立了基于社区的队列研究(CCOP-LC队列;中国临床注册,ChiCTR-EOC-17012835)。该研究方案(NCC201709011)由位于中国北京的国家癌症中心/国家肿瘤临床医学研究中心/中国医学科学院肿瘤医院的机构审查委员会批准。
社区群体中的早期HCC筛查项目的概况
早期HCC筛查是根据***疾病预防控制中心的中国癌症早期检测和早期治疗专家委员会发布的“癌症早期诊断和早期治疗技术方案”进行(Shia YC,Beever JE,LewinHA,&Schook LB(1991)Restriction fragment length polymorphisms at the porcine tcomplex polypeptide 1(TCP1)locus.Anim Genet 22(2):194.)。在所有筛查中心都建立了基于群体的癌症登记处和人口动态统计部门(Chen W,et al.(2018)Cancer incidenceand mortality in China,2014.Chinese journal of cancer research=Chung-kuo yencheng yen chiu 30(1):1-12.)。简而言之,35-69岁的HBsAg阳性“健康”个体被邀请参加早期HCC筛查。所有参与者都进行测试测定血清AFP浓度和超声检查(US;Aloka ProSoundSSD-4000;中国上海),以及其他标准生物化学测试(表2)。基于AFP血清水平和肝结节检测,将个体指定为AFP/US阳性、疑似或阴性。“AFP/US阳性”个体具有以下中的任一种:1)不考虑超声检测的结节,血清APF水平>400ng/mL;2)不考虑血清AFP浓度,超声检测到的结节≥2cm大小;3)超声检测到的结节≥1cm大小,且血清AFP≥200ng/ml。“AFP/US疑似”个体具有以下中的任一种:1)不考虑超声检测的肝结节,血清AFP水平≥20ng/ml;2)超声检测到的结节≥1cm大小。“AFP/US阴性”个体定义为血清AFP水平<20ng/mL,且没有超声检测到的肝脏结节。AFP/US阳性个体被转诊至高级医院(中国三级医院)进行确诊,如通过动态CT或动态MRI确定的,并且他们接受基于临床实践指南的相关治疗(图1)(Omata M,et al.(2017)Asia-Pacific clinical practice guidelines on the management of hepatocellularcarcinoma:a 2017update.Hepatol Int 11(4):317-370.)。无确诊的个体被邀请在2个月内返回进行动态CT/MRI。AFP/US疑似个体被推荐在2-3个月内接受第二轮血清AFP定量检查和超声检查。
参与者和研究设计
当前研究中的参与者是从基于在中国江苏和安徽省的四个筛查中心评估的个体的CCOP-LC队列获得(图1)。在AFP/US筛查期间(考虑基线,在2017年10月7日至2018年1月31日之间进行),发明人收集了外周血(在EDTA涂布的管中5mL),其在收集后2小时内以4000×g离心10分钟以分离血浆和血细胞。所有样品均储存在-80℃。在大多数情况下,0.5mL血浆用于测定蛋白质标志物,2mL血浆用于cfDNA提取。
在HCC筛查测定法中进一步分析176个AFP/US阳性/疑似案例。根据随访检查中的诊断,选择具有可靠诊断的参与者作为本研究中的训练集。为了验证发明人的发现,本发明对来自AFP/US阴性个体的331位参与者进行抽样,这些参与者的年龄与HCC筛查测定法中AFP/US阳性/疑似的人相似。从2018年5月20日到7月17日(基线抽血6-8个月后),通过提供动态CT/MRI、AFP/超声或电话采访的检查而对331位个体进行随访。CT/MRI图像由北京中国医学科学院国家癌症中心的两名放射科医师独立评估。在此期间,本发明为在基线为AFP/US阴性并且没有进行过HCC筛查测试的个体提供额外的AFP/US测试。他们中的一些没有选择额外的AFP/US检查,他们在2018年6月30日之前的肝癌结果(ICD-10代码C22)是从筛查中心的基于群体的癌症登记处获得(图1)。在3617位AFP/US阴性个体中,1612(44.6%)位参与者能够在2018年5月20日至7月17日期间即基线筛查6-8个月后随访。其中,87位参与者接受了动态CT/MRI检查,1120位接受了AFP/US,68位通过电话采访。337位参与者的肝癌结果获自当地基于群体的癌症登记处(图2)。其他2005位参与者的HCC状态在2018年6月30日之前无法获得(图2)。
从进行年度体检并且没有报告任何HBV感染的那些人获得70位健康对照者。当献血时,所有人都被确认为HBsAg阴性。
血清DCP浓度的测定
根据生产商的说明书(Abbott Laboratories;Chicago,IL,USA),使用商业化试剂盒在Abbott ARCHITECT i2000SR化学发光免疫分析仪(CLIA)中测定血清DCP水平。
cfDNA改变的谱分析
发明人设计了试验来测序cfDNA以谱分析:1)TP53、CTNNB1、AXIN1的编码区和TERT的启动子区(表6);2)HBV整合。简而言之,首先将cfDNA片段连接至具有随机DNA条形码的接头(adaptor)(图3)。连接的构建体通过10个反应循环扩增以产生全基因组文库,含有数百个冗余构建体,其具有识别每个原始cfDNA片段的独特DNA条形码。扩增的文库足以进行5-10次独立的测序分析。靶区域是在使用靶特异性引物(TS引物1)和匹配接合体序列的引物(Perera BP&Kim J(2016)Next-generation sequencing-based 5'rapid amplificationof cDNA ends for alternative promoters.Analytical biochemistry 494:82-84;Zheng Z,et al.(2014)Anchored multiplex PCR for targeted next-generationsequencing.Nature medicine 20(12):1479-1484.)(图3)的PCR的9个循环中与DNA条形码一起扩增。使用匹配接头和靶区域的一对巢式引物(TS引物2)进行第二轮15个循环的PCR,以进一步富集靶区域并加上Illumina测序接头(图3)。在该基于PCR的测定法中观察到有效富集,>80%的reads映射到<10Kb的小靶区域。采用该测定法,本发明可以覆盖靶区域>100,000次,3Gb测序数据,使得5,000拷贝的原始cfDNA的20×冗余测序成为可能。在DNA条形码连接到原始cfDNA分子的情况下,可以跟踪来自原始cfDNA分子的冗余reads,以最小化在PCR扩增和平行突变测序中固有的调用错误(calling error)(Kinde I,Wu J,Papadopoulos N,Kinzler KW,&Vogelstein B(2011)Detection and quantification ofrare mutations with massively parallel sequencing.Proceedings of the NationalAcademy of Sciences of the United States of America 108(23):9530-9535;Chaudhuri AA,et al.(2017)Early Detection of Molecular Residual Disease inLocalized Lung Cancer by Circulating Tumor DNA Profiling.Cancer discovery 7(12):1394-1403.)。本发明用数字PCR检查了这次测定法检测到的11个突变,并用0.03-0.16%的突变分数验证了所有这些突变。
数据处理和变异检测
测序reads主要使用发明人自己的程序处理,以提取标签并移除序列接头。随后使用Trimmomatic(v0.36)去除残留接头和低质量区域。使用具有默认参数的‘bwa(v0.7.10)mem’(Li H&Durbin R(2010)Fast and accurate long-read alignment with Burrows-Wheeler transform.Bioinformatics 26(5):589-595.)将清洁的reads映射到hg19和HBV基因组。使用samtools mpileup(Li H,et al.(2009)The Sequence Alignment/Mapformat and SAMtools.Bioinformatics 25(16):2078-2079.)在感兴趣的靶区域中鉴定由SNP和INDEL组成的候选体突变。为了确保准确性,具有相同标签以及开始和结束坐标的reads被分组至唯一标识符(Unique Identifier)家族(UID家族)。含有至少两个reads且其中至少80%的reads的类型相同的UID家族被定义为有效唯一标识符(Effective UniqueIdentifier)家族(EUID家族)。通过将替代性EUID家族的数量除以替代性和参比者的总和来计算每个突变频率。在IGV中进一步手动检查突变。用Ensembl Variant EffectPredictor(VEP)注释候选变体(Wang J,et al.(2011)CREST maps somatic structuralvariation in cancer genomes with base-pair resolution.Nat Methods 8(8):652-654)。使用Crest鉴定HBV整合(McLaren W,et al.(2016)The Ensembl Variant EffectPredictor.Genome biology 17(1):122.),并且需要至少4个软截断序列支持(soft-clipreads supports)。
预测性模型构建
1.特征映射和数据预处理
1)突变注释和评分:
考虑到多个因素可以在功能上与突变的渗透相关,并且反过来又与表型相关,本发明用两个相关因子对每个突变进行加权,并用校准的线性因子组合对每个突变进行评分。
PAPI得分注释
PAPI是用于评估人类DNA突变的功能渗透的机器学习集成算法(Limongelli I,Marini S,&Bellazzi R(2015)PaPI:pseudo amino acid composition to score humanprotein-coding variants.BMC bioinformatics 16:123.)。它由两种流行的注释算法VEP和POLYPGEN组成,并提供了突变的有害性的准确得分。
突变频率的注释
突变频率(支持候选突变的reads的分数)与血液中循环肿瘤DNA的总量以及肿瘤大小高度地成比例。因此,本发明用其reads支持频率注释所有输入突变。
作为特征的结构变体
另外两个结构变化特征已被用于构建模型,包括TERT融合和HBV融合事件计数。
2)突变的分解
通过将突变分解成基因水平或聚焦区域来提取多种基因特征。对于每个感兴趣的区域(ROI),ROI得分通过计算得出。
Figure BDA0001990790830000131
其中n是与ROI重叠的突变的数量,adj_score是上述突变因子、PAPI和reads频率支持得分的加权和。调整加权向量使得模型性能最大化。
3)蛋白质和实验标志物
在本发明的模型中使用两种蛋白质标志物DCP和AFP,因为它们已经在之前的研究中显示为HCC诊断的非常强的指标(Chen H,et al.(2018)Direct comparison of fiveserum biomarkers in early diagnosis of hepatocellular carcinoma.Cancermanagement and research 10:1947-1958.)。这些值被分等级到多个数值分类中。ctDNA浓度也包括在本发明的模型特征列表中。
4)作为特征的临床信息
给定患者的年龄和性别也构成本发明的预测器的一部分,因为已经证明HCC诊断的可能性在某种程度上与个体的年龄和性别有关。
2.特征选择
RandomForest用于筛选候选者的有用变量;发明人通过使无偏包外误差估计(unbiased out-of-bag error estimation)最小化来应用后向变量减法(backwardvariables subtraction),每次运行消除一个特征。然后将包括蛋白质、基因变体的标志物以及临床信息优化为构建二元分类器的最终特征。在HCC相比于健康个体的训练中,仅使用ctDNA SNP/indel突变和蛋白质标志物。不包括HBV-TERT融合或其他HBV整合,因为健康组没有HBV感染。
3.模型和参数优化
逻辑回归模型通过从包括65个HCC和70个非HCC的135个样品的训练集构建。通过曲线下面积(AUC)统计,在训练和验证数据集两者上评估模型性能。模型的灵敏度和特异性还使用优化的截断值0.4来确定。使用Youden指数应用该截断值优化。为了分别对基因、蛋白质和CNV水平进行聚类分析,还给出了使用逻辑回归的每个特征的交叉验证系数。该模型在R包‘glmnet’(R版本3.5.1)中启动,惩罚参数α在训练数据集内通过10倍交叉验证进行优化,优化的值为0。
统计分析
本发明使用以ctDNA突变、蛋白质生物标志物水平以及临床特征作为变量的逻辑回归模型。发明人在AFP/US阳性和AFP/US疑似个体中定义了具有动态CT/MRI和/或组织学的HCC案例和非HCC案例(图1)。通过对65例HCC和70例非HCC的训练数据集进行100次迭代的LOOCV(Leave-One-Out Cross Validation,留一交叉验证),计算了HCC筛查测定法的灵敏度和特异性。
实施例1四个筛查中心中在基线的参与者的临床参数以及肝细胞癌(HCC)结果的随访
在四个筛查中心通过血液乙肝病毒表面抗原(HBsAg)测试对社区个体(n=72,720)进行筛查,并随后进行问卷调查。邀请HBsAg阳性个体(n=3,793)参加AFP/US筛查。在这些HBsAg阳性个体中,176位具有有关的AFP/US结果(命名为AFP/US阳性/疑似组),而其余HBsAg阳性患者组成AFP/US阴性组(n=3,617)(图1和表6)。为了确定他们的HCC状态,推荐所有AFP/US阳性/疑似个体在首次筛查的2个月内进行动态CT/MRI。将具有HCC状态的可靠诊断的那些列为本研究的训练集,并且对从这些个体获得的基线AFP/US筛查血液样本进行HCC筛查测试(图1)。
在这3,617位AFP/US阴性个体中,约60%曾在这项研究的基线筛查前进行了AFP/US筛查(图2和表6)。为减少随访程序中的焦虑和不依从性,本发明主要选择在过去的1-3年中已经进行过AFP/US筛查的个体用于验证集(n=331)。基于性别、US检测到的肝硬化的比例和血清白蛋白水平,抽样的AFP/US阴性参与者的分布与所有HBsAg阳性参与者类似(图2和表6)。本发明对在基线AFP/US筛查从验证集收集的血样进行HCC液体活检测试(HCC筛查),并且在基线筛查6-8个月后对HCC状态进行随访。本发明还对没有HBV感染的70位健康个体进行了HCC筛查。
实施例2采用HCC筛查的HCC标志物的选择和检测
本发明用两类生物标志物开发HCC筛查测定法:1)在HCC中非常普遍,并且可以在cfDNA中检测的基因改变;和2)血清蛋白标志物AFP和desγ羧基凝血酶原(DCP)。在以前的癌症基因组研究中,大多数HBV相关HCC携带至少以下基因/位置的一个突变:TP53,CTNNB1,AXIN1或TERT启动子(Totoki Y,et al.(2014)Trans-ancestry mutational landscape ofhepatocellular carcinoma genomes.Nature genetics 46(12):1267-1273;Zhang W,etal.(2017)Genetic Features of Aflatoxin-associated HepatocellularCarcinomas.Gastroenterology.)。本发明还考虑HBV整合断点作为HCC的潜在生物标志物。由于HBV整合位点应该在每个个体细胞中是独一无二的,从血浆(2-3ml)检测到多个拷贝(>2)的特定整合位点可以指示携带HBV整合的单个细胞的克隆扩增。只有在这种情况下,才有作为结果发生的肿瘤释放多个拷贝的相同基因组DNA到血液中。本发明设计了可以平行谱分析(profile)基因变化的测定法。所提取的cfDNA被连接到具有DNA条形码的定制接头,然后被扩增以生成全基因组文库。发明人用与cDNA末端快速扩增(RACE)类似的方法,使用覆盖TP53、CTNNB1和AXIN1的编码区、TERT的启动子区和HBV序列的多个引物,富集具有点突变和HBV整合的靶标(图3)(Chaudhuri AA,et al.(2017)Early Detection of MolecularResidual Disease in Localized Lung Cancer by Circulating Tumor DNAProfiling.Cancer discovery 7(12):1394-1403;Waltari E,et al.(2018)5'RapidAmplification of cDNA Ends and Illumina MiSeq Reveals B Cell ReceptorFeatures in Healthy Adults,Adults With Chronic HIV-1Infection,Cord Blood,andHumanized Mice.Frontiers in immunology 9:628.)。二代测序的reads可以被追踪到具有DNA条形码的原始cfDNA分子以从测序/扩增错误中过滤假阳性单核苷酸变体(SNV)(Kinde I,Wu J,Papadopoulos N,Kinzler KW,&Vogelstein B(2011)Detection andquantification of rare mutations with massively parallelsequencing.Proceedings of the National Academy of Sciences of the UnitedStates of America 108(23):9530-9535.)。
基于发明人之前的发现和对受HCC、肝硬化和慢性肝炎影响的住院患者进行的其他报告,AFP和DCP的血清蛋白水平的组合在区别早期HCC和失代偿性肝硬化方面表现出显著的灵敏性和特异性(Chen H,et al.(2018)Direct comparison of five serumbiomarkers in early diagnosis of hepatocellular carcinoma.Cancer managementand research 10:1947-1958.)。因此,本发明纳入这两种血清蛋白标志物,与cfDNA改变进行组合,以研究包括AFP、DCP和cfDNA的基于液体活检的测定法的这种组合是否是筛查早期HCC的有效测定法。
实施例3用HCC筛查测定法进行的临床诊断的一致性
为了确定其在HCC检测中的效用,本发明在已知诊断为HCC或已经排除(非HCC)的个体中评估HCC筛查测定法。从AFP/US阳性/疑似个体中获得了65例HCC和70例非HCC。该HCC阳性或HCC阴性状态是基于动态CT/MRI成像和组织学确认。将这135例案例用作训练集,并将HCC筛查结果与临床诊断进行比较。为了在测定法中建立整合不同类型的生物标志物的分类器,本发明首先针对每个基因或基因座将不同类型的cfDNA突变分解(collapse)成感兴趣区域(region of interest,ROI)分数。ROI分数是ROI内每个点突变的破坏效应和频率的加权和。除了基因中SNV/indel突变的ROI分数外,本发明还增加了两个结构变体特征(在TERT启动子区域中的HBV整合和其他HBV整合)、一个实验特征(cfDNA浓度)、两个蛋白标志物(AFP和DCP)以及两个临床特征(年龄和性别)作为构建诊断分类器以预测HCC状态的最终特征(表2)。用这些标志物使用惩罚逻辑回归算法,HCC筛查模型稳健地区分HCC案例和非HCC案例(图4A)。通过对65例HCC和70例非HCC的训练数据集进行100次迭代的留一交叉验证(leave-one-out cross validation),发现该测定法在HCC诊断方面产生85%的灵敏度和93%的特异性(曲线下区域=0.928)(图4B和4C)。HCC筛查分数截断值对于最高Youden指数得分为0.4(图5B和表7)。cfDNA和蛋白标志物两者显示对HCC识别的显著贡献(图4C和表8)。
表2 HCC筛查特征及其系数的特性
Figure BDA0001990790830000141
Figure BDA0001990790830000151
惩罚逻辑回归:λ=0.14;α=0。
实施例4HCC筛查测定法对AFP/US阴性个体中早期HCC的预测值
本发明进一步测试了HCC筛查是否可以从AFP/US阴性并且无临床症状表现的HBsAg阳性个体检测HCC。用HCC筛查测试了331位AFP/US阴性个体,并基于从训练集得到的算法识别24例阳性案例(称为HCC筛查阳性)(图4D)。
在6-8个月对24位HCC筛查阳性个体进行了随访程序以获得HCC临床结果。在这些个体中,对17位通过动态CT进行检查,对4位通过AFP/US进行检查,对3位通过电话采访进行随访。24位HCC筛查阳性个体中4位被最终诊断为HCC,HCC检测的阳性预测值为17%(图4E)。另外,一组HCC筛查阴性参与者(n=70)同意在6-8个月进行动态CT检查,没有人被诊断为HCC。本发明还在基线AFP/US筛查6-8个月后通过AFP/US追踪了172位HCC筛查阴性参与者,没有诊断到HCC案例。在通过电话采访进行随访的65位参与者中,没有发现HCC(图2)。总的来说,在这些HCC筛查阴性案例中没有发现HCC案例。综合起来,HCC筛查测定法在AFP/US阴性个体中产生了17%的阳性预测值,100%(4/4)的灵敏度,和94%的特异性(307/327)(图4F)。在通过动态CT诊断时,识别的所有4个HCC肿瘤均<3cm(图4G),并且根据基线时的US结果,这4位患者没有肝硬化。
本发明在基线6-8个月后向在基线时为AFP/US-阴性并且没有进行HCC筛查测试的944位参与者提供AFP/US检查。检测到并进一步确认四例HCC案例(0.4%,4/944)。癌症登记记录显示在2018年6月30日之前在这337位参与者中没有识别到肝癌结果(ICD-10代码C22),这些参与者在基线筛查中为AFP/US阴性并且没有进行HCC筛查或任何进一步的AFP/US筛查(图2)。
在基线时第一次抽血6-8个月后,对这24位HCC筛查阳性案例中的13位进行第二次抽血以进行重复HCC筛查测定法。可进行第二次HCC筛查测试的一个HCC案例继续为阳性,并且分数比6个月前获得的更高。另一个HCC案例在第二次抽血的时间之前已经手术切除肿瘤,HCC筛查显示阴性,与该状态一致。11个HCC筛查阳性的非HCC案例中有7个(64%)在第二次HCC筛查测试中为阴性,尽管他们中的两个接近阈值(0.40)。其余4个非HCC案例在第二次HCC筛查中仍为阳性(图4E)。这些结果表明,阳性预测值可以通过在第二个时间点重复测试而进一步改进。目前对他们都进行随访以进一步验证该测定法。
实施例5用健康个体训练液体活检测定法
HCC筛查测定法显示出在高风险群体中识别HCC的稳健能力。以前的研究预测,在这样的高风险群中的灵敏度和特异性会低于在比较癌症患者与无HBV感染或其他风险因素的健康个体时的。为了测试这个假设,本发明对70位没有HBV感染的健康个体(HBsAg阴性)进行了HCC筛查测定法,并使用这些数据代替训练集中的70个HBsAg阳性非HCC案例案例。通过谱分析cfDNA和蛋白标志物,HCC筛查测定法稳健地识别HCC案例与健康个体,获得98%的灵敏度和100%的特异性(图5A)。然而,从这个训练集(HCC和健康个体)得到的算法在HBsAg阳性非HCC案例中表现不佳。根据该算法,大多数非HCC案例被归类为阳性,而HCC和非HCC案例高度重叠(图5B)。此外,对验证集的表现不佳。虽然在测试中所有四个HCC案例为阳性,但HBsAg(+)个体中的许多被归类为阳性,产生的特异性和阳性预测值分别只有58%和2.8%(图5B)。另一方面,除了其在HBsAg阳性验证集中的表现以外,从HCC对非HCC的案例得到的算法正确地将所有健康个体(100%)归类为阴性(图5B)。
实施例6进一步包括CNV的液体活检测定法
一、血液样本的获得
肝癌患者血液样本由已通过临床鉴定为肝癌的65位肝癌患者提供。
肝癌高危者血液样本由采用文献(Omata,M.,et al.,Asia-Pacific clinicalpractice guidelines on the management of hepatocellular carcinoma:a2017update.Hepatol Int,2017.11(4):p.317-370.)中提供的方法鉴定为肝癌高危的70位肝癌高危者提供。
健康人血液样本由100位健康志愿者提供。
二、待测血液样本cfDNA中肝癌突变基因的检测和CNV检测
待测血液样本为65个肝癌患者血液样本、70个肝癌高危者血液样本和100个健康人血液样本。
1、采用MagMAXTMCell-Free DNA Isolation Kit分别提取待测血液样本cfDNA。
2、完成步骤1后,采用液相杂交捕获技术检测待测血液样本cfDNA中的肝癌突变基因信息,例如TP53基因、AXIN1基因、CTNNB1基因、TERT基因的启动子、B型HBV和C型HBV的突变信息。具体步骤为:
(1)取所述待测血液样本cfDNA,采用KAPA Hyper Prep试剂盒构建文库,得到待测血液样本的cfDNA文库。
(2)完成步骤(1)后,取所述待测血液样本的cfDNA文库,采用sureselect XT靶向捕获试剂盒进行目标区域杂交捕获,然后在Illumina平台进行测序,测序深度20000*。检测的基因或病毒的版本、染色体、起始位置、终止位置和覆盖区域详见表3。
表3
Figure BDA0001990790830000161
部分待测血液样本cfDNA中的肝癌突变基因的检测结果见表4中第2列和第4列。
表4
Figure BDA0001990790830000162
Figure BDA0001990790830000171
Figure BDA0001990790830000181
注:“-”表示没有检测到突变,“--”表示没有检测到整合。
3、取步骤2中(1)制备的待测血液样本的cfDNA文库,进行低深度全基因组测序,然后将测序数据(约3G)进行CNV检测。
三、检测血浆中AFP含量
待测血液样本为65个肝癌患者血液样本、70个肝癌高危者血液样本和100个健康人血液样本。
1、取待测血液样本,在采血管中上下颠倒混匀10次,4℃、2000g离心10min,然后将上层血浆转移至离心管(规格为1.5mL),4℃、16000g离心10min,收集上清(即血浆)。
2、完成步骤1后,取所述血浆,采用美国雅培IMx分析仪检测AFP的含量。
部分待测血液样本血浆中的AFP含量的检测结果见表5中第2列。
表5
Figure BDA0001990790830000191
Figure BDA0001990790830000201
四、检测血浆中DCP含量
待测血液样本为65个肝癌患者血液样本、70个肝癌高危者血液样本和100个健康人血液样本。
1、取待测血液样本,在采血管中上下颠倒混匀10次,4℃、2000g离心10min,然后将上层血浆转移至离心管(规格为1.5mL),4℃、16000g离心10min,收集上清(即血浆)。
2、完成步骤1后,取所述血浆,采用美国雅培ARCHITECT i2000SR化学发光免疫分析仪检测DCP的含量。
部分待测血液样本血浆中的DCP含量的检测结果见表5中第3列。
五、数据处理和22个特征分值的获得
1、基因突变结果注释及打分
对步骤二cfDNA中肝癌突变基因的检测结果进行注释:突变reads支持频率的注释分数。突变reads支持在很大程度上反映了组织中变异细胞的百分比,因此它是一个很重要的表型相关因素。
2、突变位点整合和打分
对于每个基因突变,根据突变reads支持频率给出注释分数;然后突变位点打分值被累加到不同的ROI(Region Of Interest)区间(即获得特征分值)。该区间包括4个基因(TP53,CTNNB1,TERT以及AXIN1)及一个TP53R249S热点突变位置区域。计算公式如下:
Figure BDA0001990790830000211
其中n为ROI区间内的突变个数,adj_score为上述突变reads支持频率的注释分数。
3、结构性变异结果特征提取
(1)检测每个样品TERT整合变异特征的分值:发生TERT整合,TERT整合变异的特征分值为1;不发生TERT整合,TERT整合变异的特征分值为0。
(2)检测每个样品HBV整合变异的特征分值:对于检测到的每个整合突变,根据reads支持可信度分为A、B和C三个等级(整合reads数≥10,A级;10>整合reads数>6,B级;其余的为C级,见表4中第3列),分别对应的分值为1、0.8和0.3分,然后求和,即获得HBV整合变异的特征分值。
4、基因拷贝数变异检测结果特征提取
对步骤二中CNV检测结果进行如下处理:对各个臂水平上的共44个CNV信号(性染色体被删除以排除性别对CNV信号造成的影响)分数进行了PCA降维处理,通过R2值选择前6个主成份(即CNV降维特征1、CNV降维特征2、CNV降维特征3、CNV降维特征4、CNV降维特征5、CNV降维特征6)作为CNV相关的特征,CNV降维特征1、CNV降维特征2、CNV降维特征3、CNV降维特征4、CNV降维特征5、CNV降维特征6的R2值即为特征分值。
5、游离DNA长度相关特征提取
本发明的发明人计算了cfDNA片段长度在四个区间(<90bp,90-140bp、141-200bp和>200bp)所占百分比,并将这些特征作为预测变量,cfDNA片段长度在四个区间所占百分比即为特征分值。
6、蛋白标志物相关特征提取
将AFP的实际测量值按照阈值(13、20、200、400)由低到高划分为5个数值等级:0、5、8、20、30,将DCP的实际测量值按照阈值(40、60)由低到高划分为3个数值等级:0、2、5,作为两个蛋白标志物的特征分值。
7、临床及实验相关特征提取
临床特征包括病人的年龄、性别,以及cfDNA浓度(cfDNA含量/血浆体积)也与病例表型呈一定的相关性,被纳入模型。其中cfDNA浓度值取log2转换之后的数值作为特征分值;年龄的特征分值为样本的实际年龄数值;性别为男的特征分值为1,性别为女的特征分值为0。
综上所述,22个特征由13个基因突变特征、2个蛋白标志物、5个cfDNA物理特征和2个血液样本的基本信息组成。13个基因突变特征分别为TP53基因突变、TERT基因突变、AXIN1基因突变、CTNNB1基因突变、TP53R249S热点位置区域、CNV降维特征1、CNV降维特征2、CNV降维特征3、CNV降维特征4、CNV降维特征5、CNV降维特征6、HBV与TERT整合变异、HBV与非TERT整合变异。2个蛋白标志物分别为AFP和DCP。5个cfDNA物理特征分别为游离DNA片段长度小于90bp区间百分比、游离DNA片段90-140bp区间百分比、游离DNA片段141-200bp区间百分比、游离DNA片段大于200bp区间百分比和cfDNA浓度。2个血液样本的基本信息分别为性别和年龄。
六、肝癌预测模型和待测者肝癌预测
1、肝癌预测模型的建立
根据训练集(由30位肝癌患者和30位肝癌高危者组成)中步骤五所示的22个特征的特征分值和分组信息,使用R3.5.1版本的逻辑回归模型包{glmnet}开发逻辑回归模型,该模型即为肝癌预测模型。
采用肝癌预测模型计算待测者的HCCscreen评分值(即模型预测值);HCCscreen评分值代表了待测者采用肝癌预测模型计算22个特征的综合信息。
2、待测者肝癌预测
(1)阈值的获得
采用肝癌预测模型计算健康志愿者的HCCscreen评分值并以其作为对照,根据训练集每个患者的HCCscreen评分值和患者的分组信息(肝癌患者组成肝癌组,肝癌高危者组成肝癌高危组)进行ROC曲线分析。训练集ROC曲线下的面积是0.955(95%置信区间为0.918-0.992),表明肝癌预测模型可以预测待测者是否为肝癌患者(见图6)。
以增强CT为金标准,确定阈值为0.5。训练集在这一节点上,肝癌预测模型的灵敏度为86%,特异度达到97%。
(2)待测者肝癌预测
比较步骤1得到的待测者的HCCscreen评分值和阈值,如果待测者的HCCscreen评分值小于阈值(即HCCscreen评分值小于0.5),则该待测者不为或疑似不为肝癌患者;如果待测者的HCCscreen评分值大于等于阈值(即HCCscreen评分值为0.5以上),则该待测者为或疑似为肝癌患者。
七、肝癌预测模型预后方法
1、按照步骤一至五的方法,获得待测者22个特征的特征分值;
2、根据步骤1获得的特征分值,采用步骤六中1的肝癌预测模型计算待测者的HCCscreen评分值;
3、将步骤2得到的待测者的HCCscreen评分值按照步骤六中2的方法,预测待测者是否为肝癌患者。
八、肝癌预测模型预后方法有效性的验证
分别以肝癌组(由65位肝癌患者组成)、肝癌高危组(由70位肝癌高危者组成)和健康组(由100位健康志愿者组成)为样本,对步骤七中肝癌预测模型预后方法有效性进行验证。
结果见图7。结果表明,肝癌预测模型可以预测待测者是否为肝癌患者。
表6 AFP/US筛查和液体活检分析的参与者的一般信息
Figure BDA0001990790830000231
*总共对3255位参与者评估HBV-DNA浓度。
Figure BDA0001990790830000232
对于所有HCC筛查参与者,除了标记
Figure BDA0001990790830000233
的P-值外,采用Chi-square tests。
Figure BDA0001990790830000234
进行Fisher's exact tests,并与所有HCC筛查参与者比较。
表7特征和HCC筛查分数
Figure BDA0001990790830000241
Figure BDA0001990790830000251
Figure BDA0001990790830000261
Figure BDA0001990790830000271
Figure BDA0001990790830000281
Figure BDA0001990790830000291
Figure BDA0001990790830000301
Figure BDA0001990790830000311
Figure BDA0001990790830000321
Figure BDA0001990790830000331
Figure BDA0001990790830000341
Figure BDA0001990790830000351
表8突变信息
Figure BDA0001990790830000361
Figure BDA0001990790830000371
Figure BDA0001990790830000381
Figure BDA0001990790830000391
Figure BDA0001990790830000401
Figure BDA0001990790830000411
Figure BDA0001990790830000421
Figure BDA0001990790830000431
Figure BDA0001990790830000441
Figure BDA0001990790830000451
Figure BDA0001990790830000461
Figure BDA0001990790830000471
*:T代表真实突变;S代表疑似突变。

Claims (11)

1.一种用于肝细胞癌早筛的试剂盒,其包括基因标志物检测剂和蛋白标志物检测剂;
所述基因标志物检测剂包括TP53检测剂、CTNNB1检测剂、AXIN1检测剂和TERT检测剂;
所述TP53检测剂用于检测cfDNA中TP53基因的突变类型、突变reads和/或基因拷贝数变异;
所述CTNNB1检测剂用于检测cfDNA中TERT基因的突变类型、突变reads和/或基因拷贝数变异;
所述AXIN1检测剂用于检测cfDNA中AXIN1基因的突变类型、突变reads和/或基因拷贝数变异;
所述TERT检测剂用于检测cfDNA中CTNNB1基因的突变类型、突变reads和/或基因拷贝数变异;
所述蛋白标志物检测剂包括AFP检测剂和DCP检测剂;
所述AFP检测剂用于检测血浆中的AFP含量;
所述DCP检测剂用于检测血浆中的DCP含量。
2.根据权利要求1所述的试剂盒,其中所述基因标志物检测剂还包括HBV整合检测剂;所述HBV整合检测剂用于检测HBV是否与基因整合。
3.根据权利要求2所述的试剂盒,其中所述基因标志物检测剂还包括CNV检测剂;
所述CNV检测剂用于检测cfDNA浓度和不同***片段长度的cfDNA含量所占百分比。
4.根据权利要求1至3任一所述的试剂盒,其特征在于:所述试剂盒还包括判断载体;所述判断载体记载如下内容:采用所述基因标志物检测剂和所述蛋白标志物检测剂的检测结果计算肝细胞癌筛查分数,之后与阈值相比较,确定是否患有肝细胞癌。
5.一种用于AFP阴性受试者的肝细胞癌早筛的试剂盒,其包括基因标志物检测剂和DCP检测剂;
所述基因标志物检测剂包括TP53检测剂、CTNNB1检测剂、AXIN1检测剂和TERT检测剂;
所述TP53检测剂用于检测cfDNA中TP53基因的突变类型、突变reads和/或基因拷贝数变异;
所述CTNNB1检测剂用于检测cfDNA中TERT基因的突变类型、突变reads和/或基因拷贝数变异;
所述AXIN1检测剂用于检测cfDNA中AXIN1基因的突变类型、突变reads和/或基因拷贝数变异;
所述TERT检测剂用于检测cfDNA中CTNNB1基因的突变类型、突变reads和/或基因拷贝数变异;
所述DCP检测剂用于检测血浆中的DCP含量。
6.根据权利要求5所述的试剂盒,其中所述基因标志物检测剂还包括HBV整合检测剂;所述HBV整合检测剂用于检测HBV是否与基因整合。
7.根据权利要求6所述的试剂盒,其中所述基因标志物检测剂还包括CNV检测剂;
所述CNV检测剂用于检测cfDNA浓度和不同***片段长度的cfDNA含量所占百分比。
8.根据权利要求5至7任一所述的试剂盒,其特征在于:所述试剂盒还包括判断载体;所述判断载体记载如下内容:采用所述基因标志物检测剂和所述DCP检测剂的检测结果计算肝细胞癌筛查分数,之后与阈值相比较,确定是否患有肝细胞癌。
9.基因标志物检测剂和蛋白标志物检测剂在制备用于肝细胞癌早筛的试剂盒中的用途;
所述基因标志物检测剂包括TP53检测剂、CTNNB1检测剂、AXIN1检测剂和TERT检测剂;
所述TP53检测剂用于检测cfDNA中TP53基因的突变类型、突变reads和/或基因拷贝数变异;
所述CTNNB1检测剂用于检测cfDNA中TERT基因的突变类型、突变reads和/或基因拷贝数变异;
所述AXIN1检测剂用于检测cfDNA中AXIN1基因的突变类型、突变reads和/或基因拷贝数变异;
所述TERT检测剂用于检测cfDNA中CTNNB1基因的突变类型、突变reads和/或基因拷贝数变异;
所述蛋白标志物检测剂包括AFP检测剂和DCP检测剂;
所述AFP检测剂用于检测血浆中的AFP含量;
所述DCP检测剂用于检测血浆中的DCP含量。
10.根据权利要求9所述的用途,其中所述基因标志物检测剂还包括HBV整合检测剂;所述HBV整合检测剂用于检测HBV是否与基因整合。
11.根据权利要求10所述的用途,其中所述基因标志物检测剂还包括CNV检测剂;
所述CNV检测剂用于检测cfDNA浓度和不同***片段长度的cfDNA含量所占百分比。
CN201910179499.XA 2019-03-11 2019-03-11 肝细胞癌早筛试剂盒及其制备方法和用途 Active CN111690740B (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201910179499.XA CN111690740B (zh) 2019-03-11 2019-03-11 肝细胞癌早筛试剂盒及其制备方法和用途
EP19918650.3A EP3940086A4 (en) 2019-03-11 2019-09-17 LIVER CELL CANCER EARLY DETECTION KIT, METHOD FOR PREPARATION AND USE
KR1020217028609A KR20210133232A (ko) 2019-03-11 2019-09-17 간세포암 조기 선별용 키트 및 그 제조 방법과 용도
US17/438,050 US20220145399A1 (en) 2019-03-11 2019-09-17 Kit for early screening of liver cell cancer and preparation method and use thereof
JP2021547820A JP2022524304A (ja) 2019-03-11 2019-09-17 肝細胞がん早期スクリーニング用キット、その製造方法、及びその使用
PCT/CN2019/106064 WO2020181752A1 (zh) 2019-03-11 2019-09-17 肝细胞癌早筛试剂盒及其制备方法和用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910179499.XA CN111690740B (zh) 2019-03-11 2019-03-11 肝细胞癌早筛试剂盒及其制备方法和用途

Publications (2)

Publication Number Publication Date
CN111690740A CN111690740A (zh) 2020-09-22
CN111690740B true CN111690740B (zh) 2022-09-27

Family

ID=72425989

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910179499.XA Active CN111690740B (zh) 2019-03-11 2019-03-11 肝细胞癌早筛试剂盒及其制备方法和用途

Country Status (6)

Country Link
US (1) US20220145399A1 (zh)
EP (1) EP3940086A4 (zh)
JP (1) JP2022524304A (zh)
KR (1) KR20210133232A (zh)
CN (1) CN111690740B (zh)
WO (1) WO2020181752A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113539393A (zh) * 2020-04-17 2021-10-22 北京蛋白质组研究中心 基于多个尿液蛋白诊断肝细胞癌的***及试剂盒
WO2022193097A1 (zh) * 2021-03-15 2022-09-22 杭州诺辉健康科技有限公司 用于肝癌早筛的核酸及蛋白检测靶标组合及其联合检测方法
KR102534968B1 (ko) * 2021-03-22 2023-05-26 이원다이애그노믹스(주) 암 발생여부를 진단 또는 예측하는 방법
CN113337608B (zh) * 2021-06-29 2022-08-02 中国医学科学院肿瘤医院 用于肝癌早期诊断的组合标志物及其应用
CN116083425B (zh) * 2022-11-11 2023-09-29 深圳凯瑞思医疗科技有限公司 一种检测子宫内膜癌的引物组合、试剂盒及文库构建方法
CN115851951A (zh) * 2022-12-12 2023-03-28 广州优泽生物技术有限公司 含多组学标志物组合物的早期肝癌检测模型构建及试剂盒

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9598735B2 (en) * 2012-11-14 2017-03-21 JBS Science Inc. Detection of a panel of urine DNA markers for HCC screening and disease management
CN105452865A (zh) * 2013-08-06 2016-03-30 金弦起 小肝细胞癌和潜伏于肝硬化的肝细胞癌诊断用组合物
US10364467B2 (en) * 2015-01-13 2019-07-30 The Chinese University Of Hong Kong Using size and number aberrations in plasma DNA for detecting cancer
CN105420370B (zh) * 2015-12-18 2019-02-15 四川大学 用于肝癌早期预警和筛查的试剂盒
JP2019514372A (ja) * 2016-04-20 2019-06-06 ジェービーエス サイエンス インコーポレイテッド Ctnnb1およびhtertにおける突然変異を検出するためのキットおよび方法、ならびにhcc検出および疾患管理におけるそれらの使用
CN106468711A (zh) * 2016-09-07 2017-03-01 北京热景生物技术股份有限公司 Dcp快速分离检测试剂盒
CN106893784A (zh) * 2017-05-02 2017-06-27 北京泱深生物信息技术有限公司 用于预测肝癌预后的lncRNA标志物

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
Comprehesive analysis of mutations and hepatitis B virus integration in hepatocelluar carcinoma with clinicopathological features;Fukiko Kawai-Kitahata;《J Gastroenterol》;20151130;第51卷;摘要,第474页左栏第1段、右栏第1段,第475页表1,第476页,第479页表2,第480页表3 *
Development of a novel assay to quantify serum human telomerase reverse transcriptase messenger RNA and its significance as a tumor marker for hepatocellular carcinoma;Norimasa Miura等;《Oncology》;20071213;第72卷;全文 *
Genetic alterations in hepatocellular carcinoma: An update;Zhao-Shan Niu等;《World J Gastroenterol》;20161107;第22卷(第41期);全文 *
Hepatocellular carcinoma: Epidemiology, pathogenesis and surveillance- implications for sub-SaharanAfrica;K Zakharia等;《SAMJ》;20180830;第108卷;全文 *
Novel biomarkers in hepatocelluar carcinoma;Felice De Stefano等;《Digestive and Liver Diease》;20181130;第50卷(第11期);全文 *
Telomerase reverse transcriptase promoter mutations in hepatitis B virus-associated hepatocellular carcinoma;Xunjun Yang等;《Oncotarget》;20160510;第7卷(第19期);全文 *

Also Published As

Publication number Publication date
US20220145399A1 (en) 2022-05-12
EP3940086A4 (en) 2023-01-04
CN111690740A (zh) 2020-09-22
JP2022524304A (ja) 2022-05-02
WO2020181752A1 (zh) 2020-09-17
EP3940086A1 (en) 2022-01-19
KR20210133232A (ko) 2021-11-05

Similar Documents

Publication Publication Date Title
CN111690740B (zh) 肝细胞癌早筛试剂盒及其制备方法和用途
JP6546318B2 (ja) 心血管系リスクイベントの予測およびその使用
Chiang et al. Focal gains of VEGFA and molecular classification of hepatocellular carcinoma
JP5931874B2 (ja) 膵癌バイオマーカーおよびその使用
WO2022032429A1 (zh) 用于肝癌检测和诊断的甲基化标志物
Kearney et al. The building blocks of successful translation of proteomics to the clinic
WO2011031344A1 (en) Cancer biomarkers and uses thereof
WO2013062515A2 (en) Lung cancer biomarkers and uses thereof
Block et al. The degree of readiness of selected biomarkers for the early detection of hepatocellular carcinoma: notes from a recent workshop
CN112614546B (zh) 一种用于预测肝细胞癌免疫治疗疗效的模型及其构建方法
Singal et al. International Liver Cancer Association (ILCA) white paper on hepatocellular carcinoma risk stratification and surveillance
TW202409297A (zh) 用於快速診斷川崎病的分子生物標誌物和分析方法
Pal et al. Applications of liquid biopsy in the Pharmacological Audit Trail for anticancer drug development
Wu et al. DNA-methylation signature accurately differentiates pancreatic cancer from chronic pancreatitis in tissue and plasma
Ning et al. A comprehensive evaluation of full-spectrum cell-free RNAs highlights cell-free RNA fragments for early-stage hepatocellular carcinoma detection
US20150232943A1 (en) Methods of diagnosing liver cancer in a subject and a kit for diagnosing liver cancer
He et al. Plasma levels of methylated septin 9 are capable of detecting hepatocellular carcinoma and hepatic cirrhosis
Liang et al. Circulating tumour cell combined with DNA methylation for early detection of hepatocellular carcinoma
Hong et al. Cell-free DNA methylation biomarker for the diagnosis of papillary thyroid carcinoma
CN113234817B (zh) 利用CpG位点甲基化水平检测早期肝癌的标志物
Kessler et al. Improving cancer detection and treatment with liquid biopsies and ptDNA
Zheng et al. A blood-based 22-gene expression signature for hepatocellular carcinoma identification
Wang et al. Serum N-Glycan Markers for Diagnosing Significant Liver Fibrosis and Cirrhosis in Chronic Hepatitis B Patients with Normal Alanine Aminotransferase Levels
Han et al. Validation of urine-based gene classifiers for detecting bladder cancer in a chinese study
Wu et al. Plasma Circulating Tumor DNA Sequencing Reveals the Landscape of Acquired Mutations in Patients with Hepatocellular Carcinoma: a Potential Predictive Value in Liquid Biopsy

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant