CN111682668B - 含有斜槽的分数槽无刷永磁电机转子轭及槽尺寸确定方法 - Google Patents

含有斜槽的分数槽无刷永磁电机转子轭及槽尺寸确定方法 Download PDF

Info

Publication number
CN111682668B
CN111682668B CN202010455953.2A CN202010455953A CN111682668B CN 111682668 B CN111682668 B CN 111682668B CN 202010455953 A CN202010455953 A CN 202010455953A CN 111682668 B CN111682668 B CN 111682668B
Authority
CN
China
Prior art keywords
slot
rotor yoke
permanent magnet
rotor
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010455953.2A
Other languages
English (en)
Other versions
CN111682668A (zh
Inventor
黄允凯
祝子冲
彭飞
夏雪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Liyang Research Institute of Southeast University
Original Assignee
Southeast University
Liyang Research Institute of Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University, Liyang Research Institute of Southeast University filed Critical Southeast University
Priority to CN202010455953.2A priority Critical patent/CN111682668B/zh
Publication of CN111682668A publication Critical patent/CN111682668A/zh
Application granted granted Critical
Publication of CN111682668B publication Critical patent/CN111682668B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/278Surface mounted magnets; Inset magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • H02K1/165Shape, form or location of the slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/12Windings characterised by the conductor shape, form or construction, e.g. with bar conductors arranged in slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

本发明公开了一种含有沿轴向倾斜窄槽的分数槽高速无刷永磁电机转子轭,同时给出了依据电机极槽配合、材料特性、运行转速和绕组连接方式确定该斜槽的槽距及槽深的方法。所提出的结构适用于采用高电阻率磁体及护套材料的分数槽高速永磁电机,采用本发明提出的斜槽转子轭有利于降低这类电机的转子涡流损耗,拓展其转速范围。另一方面,所提出的转子轭斜槽尺寸的确定方法具有普适性,且易于集成到现有电机设计过程中。

Description

含有斜槽的分数槽无刷永磁电机转子轭及槽尺寸确定方法
技术领域
本发明涉及无刷永磁电机技术领域,具体而言,涉及定子采用分数槽绕组的高速无刷永磁电机的斜槽转子轭及槽尺寸的确定方法。
背景技术
高速无刷永磁电机具有高功率密度、高效率及动态特性好等优点,在透平机械、高速车床、飞轮储能和燃机发电等领域应用广泛。得益于高转子强度及优异的转子动力学特性,表贴永磁转子结构在高速无刷永磁电机中更为常见,这种结构永磁体贴在转子轭的表面。为提高结构可靠性,一般采用高强度材料将永磁体固定到转子轭上,例如碳纤维复合材料和钛铝合金。
由于齿谐波、电流谐波和定子绕组电枢反应磁势谐波的存在,转子内的磁场是交变的,交变磁场在转子导电部件中产生涡流及相应的损耗。尤其在采用分数槽绕组的无刷永磁电机中,其每极每相槽数为分数,电枢反应磁势的正弦度相较于传统的整数槽分布绕组更差,含有较多幅值较大的谐波分量。无刷永磁电机高速运行时,这些谐波将在导电转子部件中感应较大的涡流,产生的涡流损耗难以传导出去,可能造成磁体高温失磁。转子涡流损耗抵消了无刷永磁电机采用分数槽时的优点,限制其应用的转速范围。对于转子采用非叠结构的表贴永磁电机,电枢磁势谐波产生的涡流损耗更为明显。
现有的抑制无刷永磁电机转子涡流的主要措施有:⑴采用电导率低的护套和/或永磁材料;⑵护套和/或永磁体轴/周向分段;⑶利用高电导率和/或高磁导率材料的屏蔽效应抑制转子涡流。后两种方法可以有效减少转子涡流损耗,但相关结构和工艺复杂,同时可能降低输出转矩及转子结构强度,仅适用于中大功率电机。
采用高电阻率的护套和永磁体在一定程度上能够降低转子涡流损耗。但由于采用分数槽绕组时,电枢磁势谐波的主要分量与基波频率接近,谐波磁场的集肤深度较大,仍将进入转子轭部。为增强转子刚度,转子轭一般由导电的合金材料制作,交变的谐波磁场在其中将产生较大的涡流损耗。转子涡流损耗及其导致的温升问题是制约进一步提高无刷永磁电机功率密度及基波频率的主要因素。
发明内容
技术问题:本发明的目的是提出一种含有沿轴向倾斜窄槽的分数槽无刷永磁电机转子轭结构,以进一步降低采用高电阻率护套和磁体材料时永磁电机转子轭中的涡流损耗。同时,本发明给出了依据电机极槽配合、运行转速、材料特性和绕组连接方式确定转子轭斜槽尺寸的方法。
技术方案:含有斜槽的分数槽无刷永磁电机转子轭,所述电机包括定子铁心、三相绕组线圈、护套、永磁体及转子轭,电机采用分数槽集中绕组结构,转子轭开有沿轴向倾斜的斜槽,所述斜槽沿圆周均匀分布。
进一步,所述电机的转子部分采用表贴磁体结构,所述护套及永磁体为高电阻率材料。
进一步,永磁体采用Halbach形式充磁。
进一步,转子轭采用不导磁的合金材料制作。
进一步,所述斜槽采用线切割工艺加工得到,斜槽宽度为0.5mm,在转子径向截面上的投影为矩形。
如上所述的含有斜槽的分数槽无刷永磁电机转子轭上的斜槽的尺寸确定方法,该方法包含以下步骤:
步骤1,依据分数槽集中绕组电机的绕组函数画出三相合成电枢反应磁势的波形,对该波形进行傅立叶分解得到电枢反应磁势的频谱,同时确定所述频谱中谐波次数最低的项和幅值最高的项;
步骤2,所述斜槽的槽距s为电枢反应磁势频谱中谐波幅值最大的项在转子轭中激励的交变磁场的极距p;
步骤3,所述斜槽的槽深h为电枢反应磁势频谱中谐波次数最低的项在转子轭中激励的交变磁场的集肤深度g的两倍。
进一步,当电枢反应磁势频谱中谐波次数最低的项的集肤深度超过转子轭半径的1/4时,斜槽的槽深h设置为转子轭半径的1/2。
有益效果:本发明所提供的技术方案的优点在于:
所提出的分数槽高速无刷永磁电机转子轭具有沿轴向倾斜的窄槽,该斜槽切断了转子交变磁场流动的路径,大幅降低了转子上的涡流损耗,有利于降低分数槽集中绕组电机转子温升并拓展此类电机的转速范围;
所提出的槽距及槽深确定方法适用于任意极槽配合的分数槽集中绕组电机,同时不依赖于无刷永磁电机的相数、工作模式和拓扑结构;该方法可以快速、准确地确定最优斜槽距及槽深,大幅简化了转子轭斜槽的设计过程,为其他电磁参数的选择拓展了空间。
附图说明
图1为本发明实施例中含有斜槽转子轭的分数槽集中绕组高速永磁电机整体结构;
图2为图1中电机转子轭部具体结构示意图;
图3为图2中转子轭沿外缘展开平面图的部分;
图4为图2中转子轭的横截面示意图;
图5为图1中电机三相合成电枢磁势波形图;
图6为图5电枢磁势波形的频谱图。
具体实施方式
为了使本发明的目的、技术方案特征及有益效果更加清楚直观,下面结合附图1-6,以具体实施例对本发明的内容做进一步说明。
本发明的主要目的是解决分数槽集中绕组应用于高速无刷永磁电机时的转子涡流损耗问题,提出含有沿轴向倾斜窄槽的分数槽无刷永磁电机转子轭结构,同时给出转子轭斜槽尺寸的确定方法。
参见图1,采用分数槽集中绕组的三相高速无刷永磁电机1,其极数p=10,槽数z=12,每极每相槽数q=2/5。电机1的额定转速n=15000r/min,电磁基波频率f=1250Hz。三相绕组的线圈2单独绕在定子铁心3的每个齿31上,正常工作时,三相绕组由逆变器通入三相交流电流。电机转子4布置在定子铁心3内,为内转子结构。所述转子由护套41、永磁体42和转子轭43构成,所述转子轭43与电机1的输出轴相连。护套41由碳纤维复合材料制造,永磁体42为粘接钕铁硼磁体,这两种材料具有极高的电阻率,电枢反应磁场谐波在其中产生的涡流损耗可以忽略不计。每极永磁体42由三块磁体拼接组成,采用Halbach充磁方式。
所述转子轭43采用不导磁的304#不锈钢制造,钢材具有优良的导电性,电枢反应磁场谐波转子轭中产生较大的涡流及由此导致的涡流损耗。为减小这部分损耗,所述转子轭43外缘上开有沿轴向倾斜的窄槽431,所述斜槽沿圆周均匀分布,如图2所示,这些窄槽在本实施例中采用线切割工艺得到。
为更加清楚直观,图3给出了所述转子轭43外缘平面展开图的一部分,图3中两条倾斜的平行线为斜槽431沿轴向的轮廓线,两条平行线在径向横截面上投影间的距离为斜槽宽度b,在本实施例中为0.35mm。
所述斜槽431的尺寸,包括斜槽距s及槽深h,如图3和图4所示,依据下述步骤得到:
步骤1,采用绕组函数法画出该10极12槽分数槽集中绕组永磁电机在通入三相正弦电流时的合成电枢反应磁势的波形,如图5所示(以标幺值表示)。对该波形进行傅立叶分解得到电枢反应频谱,如图6所示。需要指出的是,图6仅画出了次数小于60的谐波并以标幺值表示各次谐波的幅值。根据所述频谱确定谐波次数最低的项和幅值最高的项,在本实施例中分别为第1和第7次谐波。
步骤2,所述斜槽431的槽距s为电枢反应磁势频谱中谐波幅值最大的项(第7次谐波)在转子中激励的交变磁场的极距p:
s=p=πrou/7
其中rou为转子轭43的半径。
步骤3,所述斜槽431的槽深h为电枢反应磁势频谱中谐波次数最低的项(第1次谐波)在转子中激励的交变磁场的集肤深度g的2倍:
Figure BDA0002509235820000041
其中,f为所述电机的基波电磁频率(在本实施例中为1250Hz),μr为转子轭43的相对磁导率,μ0为真空磁导率,σ为转子轭的电导率。
该实施例采用本发明所提出的斜槽转子轭并按照所提出的斜槽距及槽深确定方法设计的电机转子总的涡流损耗大幅降低。与不采用斜槽转子轭的方案相比,转子总的涡流损耗降低了42.5%,有利于改善分数槽集中绕组电机转子部分的散热,拓展该类电机应用的转速范围。
应理解上述实施例仅用于解释本发明,而不用于穷举或限制本发明的范围。在阅读本发明之后,本领域技术人员对本发明的核心技术特征所做的各种等同形式的修改均落于本申请所附权利要求限定的范围内。

Claims (2)

1.含有斜槽的分数槽无刷永磁电机转子轭上的斜槽的尺寸确定方法,所述电机包括定子铁心(3)、三相绕组线圈(2)、护套(41)、永磁体(42)及转子轭(43),护套(41)、永磁体(42)及转子轭(43)构成的转子布置在定子铁心(3)内,永磁体(42)布置在护套(41)内,永磁体(42)和护套(41)装配后布置在转子轭(43)的外表面,三相绕组线圈(2)布置在定子铁心(3)上,三相绕组线圈(2)采用分数槽集中绕组结构,所述转子轭(43)开有沿轴向倾斜的斜槽(431),所述斜槽沿圆周均匀分布,其特征在于,该方法包含以下步骤:
步骤1,依据分数槽集中绕组的绕组函数画出三相合成电枢反应磁势的波形,对该波形进行傅立叶分解得到电枢反应磁势的频谱,同时确定所述频谱中谐波次数最低的项和幅值最高的项;
步骤2,所述斜槽(431)的槽距s为电枢反应磁势频谱中谐波幅值最大的项在转子轭(43)中激励的交变磁场的极距p
步骤3,所述斜槽(431)的槽深h为电枢反应磁势频谱中谐波次数最低的项在转子轭(43)中激励的交变磁场的集肤深度g的两倍。
2.如权利要求1所述的含有斜槽的分数槽无刷永磁电机转子轭上的斜槽的尺寸确定方法,其特征在于,当电枢反应磁势频谱中谐波次数最低的项的集肤深度超过转子轭(43)半径的1/4时,斜槽(431)的槽深h设置为转子轭半径的1/2。
CN202010455953.2A 2020-05-26 2020-05-26 含有斜槽的分数槽无刷永磁电机转子轭及槽尺寸确定方法 Active CN111682668B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010455953.2A CN111682668B (zh) 2020-05-26 2020-05-26 含有斜槽的分数槽无刷永磁电机转子轭及槽尺寸确定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010455953.2A CN111682668B (zh) 2020-05-26 2020-05-26 含有斜槽的分数槽无刷永磁电机转子轭及槽尺寸确定方法

Publications (2)

Publication Number Publication Date
CN111682668A CN111682668A (zh) 2020-09-18
CN111682668B true CN111682668B (zh) 2021-08-03

Family

ID=72453265

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010455953.2A Active CN111682668B (zh) 2020-05-26 2020-05-26 含有斜槽的分数槽无刷永磁电机转子轭及槽尺寸确定方法

Country Status (1)

Country Link
CN (1) CN111682668B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113162347B (zh) * 2021-03-19 2022-03-04 南京农业大学 一种用于新能源车辆的电机及其控制方法
CN112994403B (zh) * 2021-04-26 2022-04-26 合肥工业大学 一种低涡流损耗的齿槽型圆筒直线电机的初级结构
CN113659744A (zh) * 2021-08-11 2021-11-16 阚立琦 一种双向多回路转子绕组无刷双馈电机

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6499528B2 (ja) * 2015-06-19 2019-04-10 東芝産業機器システム株式会社 回転電機の回転子
JP6627520B2 (ja) * 2016-01-14 2020-01-08 ダイキン工業株式会社 ロータの製造方法、及びロータ
CN106374652A (zh) * 2016-09-26 2017-02-01 威灵(芜湖)电机制造有限公司 转子铁芯、转子及自起动永磁同步电机
CN107634632A (zh) * 2017-10-24 2018-01-26 江苏大学 一种表贴式永磁同步电机及设计方法
CN109586440B (zh) * 2018-11-08 2020-09-15 南京航空航天大学 一种基于组合Halbach永磁阵列的五相永磁电机
CN210225074U (zh) * 2019-07-22 2020-03-31 宁波华表机械制造有限公司 一种永磁同步电机定子体及永磁同步电机

Also Published As

Publication number Publication date
CN111682668A (zh) 2020-09-18

Similar Documents

Publication Publication Date Title
Carraro et al. Design and performance comparison of fractional slot concentrated winding spoke type synchronous motors with different slot-pole combinations
CN111682668B (zh) 含有斜槽的分数槽无刷永磁电机转子轭及槽尺寸确定方法
Fang et al. Rotor design and eddy-current loss suppression for high-speed machines with a solid-PM rotor
Petrov et al. Rotor surface ferrite permanent magnets in electrical machines: Advantages and limitations
Gerada et al. Design aspects of high-speed high-power-density laminated-rotor induction machines
Li et al. Comparison of Halbach and dual-side vernier permanent magnet machines
Li et al. Torque improvement and cost reduction of permanent magnet machines with a dovetailed consequent-pole rotor
Merdzan et al. Comparative analysis of rotor losses in high-speed permanent magnet machines with different winding configurations considering the influence of the inverter PWM
Li et al. Analysis of flux switching permanent magnet machine design for high-speed applications
Gilson et al. Design of a cost-efficient high-speed high-efficiency PM machine for compressor applications
CN101783560A (zh) 一种永磁同步电机
Yu et al. A new high-speed dual-stator flux switching permanent magnet machine with distributed winding
Zhao et al. Design and optimization of a high-speed permanent magnet synchronous machine for gas compressors
Zhu et al. Effect of end-winding on electromagnetic performance of fractional slot and vernier PM machines with different slot/pole number combinations and winding configurations
CN113765258B (zh) 一种复合多向无铁芯盘式电机
Zhou et al. Design and analysis of low-speed high torque direct-driven permanent magnet synchronous machines (PMSM) with fractional-slot concentrated winding used in coal mine belt conveyor system
Valavi et al. Characterization of radial magnetic forces in low-speed permanent magnet wind generator with non-overlapping concentrated windings
Sui et al. A five-phase 20-slot/18-pole PMSM for electric vehicles
CN105305684B (zh) 一种降低极频和槽频径向电磁激振力的永磁电机
Bharadwaj et al. Induction motor design analysis for electric vehicle application
Tsunata et al. Examination of enhancing efficiency of axial gap motor in high speed and high torque region by adopting neodymium bonded magnet
Xia et al. Comparison of two rotor topologies for high-speed permanent magnet synchronous machines
Souissi et al. Pole shape-based reduction of the harmonic content of the IPM T-LSM air gap flux density
Al-ani et al. Electromagnetic and mechanical analysis of high speed SPM rotor with copper shield
Zhang et al. Windage loss and torque ripple reduction in stator-permanent magnet flux-switching machines

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20201204

Address after: 213300 room 428, building a, 218 Hongkou Road, Kunlun Street, Liyang City, Changzhou City, Jiangsu Province (in Zhongguancun Science and Technology Industrial Park, Jiangsu Province)

Applicant after: Liyang Research Institute of Southeast University

Applicant after: SOUTHEAST University

Address before: 210096 Jiangsu city Nanjing Province four pailou No. 2

Applicant before: SOUTHEAST University

GR01 Patent grant
GR01 Patent grant