CN111682213A - Preparation method of binder for lithium battery - Google Patents

Preparation method of binder for lithium battery Download PDF

Info

Publication number
CN111682213A
CN111682213A CN202010513335.9A CN202010513335A CN111682213A CN 111682213 A CN111682213 A CN 111682213A CN 202010513335 A CN202010513335 A CN 202010513335A CN 111682213 A CN111682213 A CN 111682213A
Authority
CN
China
Prior art keywords
aromatic
binder
lithium battery
butadiene rubber
polyamide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010513335.9A
Other languages
Chinese (zh)
Inventor
罗国光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Leji Intelligent Technology Co ltd
Original Assignee
Guangzhou Leji Intelligent Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou Leji Intelligent Technology Co ltd filed Critical Guangzhou Leji Intelligent Technology Co ltd
Priority to CN202010513335.9A priority Critical patent/CN111682213A/en
Publication of CN111682213A publication Critical patent/CN111682213A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/60Polyamides or polyester-amides
    • C08G18/603Polyamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7614Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

The invention relates to a preparation method of a binder for a lithium battery, which mainly comprises the following steps: (1) synthesis of aromatic polyamide: mixing and heating excessive aromatic diamine and dibasic acid to react to generate aromatic polyamide with amino at two ends; (2) carrying out solution polymerization on aromatic diisocyanate and aromatic polyamide to obtain a polyurea polymer; (3) and (3) dissolving styrene butadiene rubber with a certain molecular weight, adding the polyurea polymer prepared in the step (2) into a styrene butadiene rubber solution, and stirring and dispersing uniformly to obtain the binder for the lithium battery. The prepared binder for the lithium battery, disclosed by the invention, contains the polyurea polymer containing the rigid group and a large number of secondary amino groups, can well inhibit the volume effect of a lithium battery negative electrode material and has better binding performance; the contained flexible styrene-butadiene rubber is beneficial to improving the dispersion of rigid polyurea polymers and improving the energy density of the negative pole piece.

Description

Preparation method of binder for lithium battery
Technical Field
The invention belongs to the field of high polymer materials, and relates to a preparation method of a binder for a lithium battery.
Background
The silicon used as the lithium battery cathode material has the theoretical capacity of up to 4200mAh/g and has good development prospect. However, due to the characteristics of silicon, silicon has a relatively large volume change in the charging and discharging process, which greatly damages the structure of the negative electrode material, resulting in poor practical use effect. Therefore, the selection of a proper binder will effectively improve the volume effect of the silicon material.
CN110364734A discloses a high-performance water-based lithium ion battery negative electrode binder, a preparation method and application thereof, wherein the binding effect of the binder is improved by the composite use of polyacrylic acid-glycinamide. However, this does not well solve the problem of expansion and contraction of the negative electrode active material during charge and discharge. CN110137497A discloses a polycarbonate modified acrylate binder, which inhibits the expansion of the negative electrode material of the lithium battery by rigid polycarbonate, thereby improving the cycle performance of the battery. However, the bonding effect of the bonding agent prepared by the scheme is poor, the pole piece active material is easy to fall off, and the dispersion is difficult. CN110085867A discloses a preparation method of a composite binder of polyacrylic acid, metal oxide and lithium hydroxide, wherein polyacrylic acid provides cohesiveness, rigid metal oxide inhibits volume expansion of active material, and metal oxide improves conductive capability. However, the metal oxide in the composite binder prepared by the scheme is easy to fall off, enters into the electrolyte and is deposited on the diaphragm, so that the conductivity of the battery is greatly reduced.
Disclosure of Invention
The invention aims to solve the technical problem of providing a preparation method of a binder for a lithium battery cathode aiming at the defects in the prior art, wherein a polyurea polymer containing a rigid group and a large number of secondary amino groups can well inhibit the volume effect of a lithium battery cathode material and has better binding performance; the contained flexible styrene-butadiene rubber is beneficial to improving the dispersion of rigid polyurea polymers and improving the energy density of the negative pole piece.
The technical scheme adopted by the invention for solving the problems is as follows:
a preparation method of a binder for a lithium battery mainly comprises the following steps:
(1) mixing and heating excessive aromatic diamine and dibasic acid to react to generate aromatic polyamide with amino at two ends;
(2) carrying out solution polymerization on aromatic diisocyanate and aromatic polyamide with amino at two ends in an organic solvent to obtain a polyurea polymer;
(3) and (3) adding the polyurea polymer prepared in the step (2) into styrene butadiene rubber, and uniformly stirring and dispersing in an organic solvent to obtain the binder for the lithium battery.
According to the scheme, the aromatic diisocyanate is any one of 2, 4-toluene diisocyanate, 2, 6-toluene diisocyanate, naphthalene diisocyanate and the like; the aromatic diamine is one or more of diethyl toluene diamine, p-phenylenediamine and the like; the dibasic acid is any one of oxalic acid, adipic acid and the like.
According to the scheme, the organic solvent adopted in the step (2) and the step (3) is any one of N-methyl pyrrolidone, N-dimethylformamide, dimethylacetamide and the like.
According to the scheme, the molar ratio of the aromatic diamine to the dibasic acid in the step (1) is 2 (1.2-1.8) according to the functional group.
According to the scheme, the step (1) is specifically as follows: reacting aromatic diamine and dibasic acid at 60-80 ℃ for 1-2h by taking water as a solvent to obtain the aromatic polyamide with amino at two ends. Wherein the total solid content of the aromatic diamine and the dibasic acid in the water is 5-15%.
According to the scheme, the step (2) is specifically as follows: at the temperature of 100-115 ℃, the polyamide organic solution is dripped into the aromatic diisocyanate organic solution until the isocyanate reaction is completed, and the aromatic polyurea polymer is obtained. Wherein, the polyamide organic solution and the aromatic diisocyanate organic solution are generally mixed according to the volume ratio of (1.2-1.5) to 1, and the mass fractions of the polyamide organic solution and the aromatic diisocyanate organic solution are both about 10 percent.
According to the scheme, the step (3) is specifically as follows: dispersing a polyurea polymer in an organic solvent to ensure that the solid content of the polymer is 10-15 wt%; dispersing styrene butadiene rubber in an organic solvent, wherein the mass fraction is 5-15 wt%; and then adding the polyurea polymer organic solution into the styrene butadiene rubber organic solution, and uniformly stirring and dispersing to obtain the binder for the lithium battery. Wherein the mass ratio of the polyurea polymer to the styrene butadiene rubber is (2-4) to (3-6); the number average molecular weight of the styrene-butadiene rubber is 50000-80000.
The invention provides a preparation method of a more preferable binder for a lithium battery, which comprises the following specific steps:
(1) adding aromatic diamine and dibasic acid into deionized water according to the molar ratio of functional groups of 2 (1.2-1.8) to ensure that the solid content of solute is about 10 wt%, and heating to 60-80 ℃ in a device with condensation reflux to react for 1-2h to obtain aromatic polyamide suspension; centrifuging the obtained suspension, washing with deionized water, drying at 60 deg.C for 6-12h to obtain polyamide, and detecting amino group as terminal group with vanillin.
(2) Respectively preparing an aromatic diisocyanate organic solution and a polyamide organic solution with the mass fraction of about 10 wt%; at the temperature of 100-115 ℃, the polyamide organic solution is dripped into the aromatic diisocyanate organic solution, and the sodium nitrite solution is used for detecting isocyanic acid radical until the diisocyanate reaction is complete, so as to obtain the aromatic polyurea polymer solution.
(3) Adding an organic solvent into the aromatic polyurea polymer solution obtained in the step (2) to ensure that the solid content of the polymer is 10-15 wt%; preparing a styrene butadiene rubber organic solution with the mass fraction of 10 wt%; and (3) uniformly mixing the two organic solutions according to the mass ratio of (2-4) to (4-8) to obtain a polyurea-styrene butadiene rubber solution, namely the binder for the lithium battery.
According to the scheme, when the vanillin solution meets amino, the solution is yellow; when the sodium nitrite solution meets the isocyanate, the solution can be orange to reddish brown, and the color shade depends on the concentration of the isocyanate.
Compared with the prior art, the invention has the beneficial effects that:
the prepared binder for the lithium battery, namely the polyurea-styrene butadiene rubber solution, wherein the polyurea polymer containing rigid groups and a large number of secondary amino groups can well inhibit the volume effect of the lithium battery cathode material and has better binding performance; the contained flexible styrene-butadiene rubber is beneficial to improving the dispersion of rigid polyurea polymers and improving the energy density of the negative pole piece.
Drawings
Fig. 1 is a cycle chart at 0.2C rate for button cell a prepared in example 1 and comparative 1.
Detailed Description
In order to better understand the present invention, the following examples are further provided to illustrate the present invention, but the present invention is not limited to the following examples.
Example 1
A preparation method of a binder for a lithium battery comprises the following specific steps:
(1) adding diethyl toluenediamine and oxalic acid into deionized water according to the mol ratio of 2:1.2 to ensure that the solid content of solute is 10 wt%, and heating the mixture to 60 ℃ in a device with condensation reflux for reacting for 1.5h to obtain aromatic polyamide suspension; centrifuging the obtained suspension, washing with deionized water, drying at 60 deg.C for 6-12h to obtain polyamide, and detecting amino group as terminal group with vanillin.
(2) Preparing an N-methylpyrrolidone solution of 2, 4-toluene diisocyanate with the mass fraction of 10 wt%; preparing an N-methyl pyrrolidone solution of polyamide with the mass fraction of 10 wt%; at 110 ℃, dripping a polyamide organic solution into an aromatic diisocyanate organic solution, and detecting isocyanate by using a sodium nitrite solution until diisocyanate is completely reacted to obtain an aromatic polyurea polymer solution.
(3) Adding N-methyl pyrrolidone into the aromatic polyurea polymer solution obtained in the step (2) to ensure that the solid content of the polymer is 10 wt%; preparing an N-methyl pyrrolidone solution of styrene butadiene rubber with the mass fraction of 10 wt%; and uniformly mixing the two organic solutions according to the mass ratio of 3:2 to obtain a polyurea-styrene butadiene rubber organic solution, namely the binder for the lithium battery.
Mixing and grinding nano silicon and graphite for 1 hour according to the mass ratio of 10:80, and adding the mixed powder into the binder prepared in the embodiment 1 to obtain electrode slurry, wherein the mass ratio of the nano silicon to the graphite to the binder is 10: 80: 100; adding N-methyl pyrrolidone into the electrode slurry to enable the solid content of the slurry system to reach 20-30 wt%, uniformly stirring, coating on the carbon-coated copper foil, and drying at 80 ℃ and 0.1Mpa for 12h to obtain a negative electrode slice; the obtained negative electrode sheet, a polyethylene diaphragm, a lithium sheet and an LBC301 type electrolyte were assembled into a CR2016 type button cell, which was designated as sample a.
The sodium carboxymethylcellulose-styrene butadiene rubber (the mass ratio of the sodium carboxymethylcellulose to the styrene butadiene rubber is 3:2) is used as a binder, deionized water is used as a solvent, a negative electrode electrolyte sheet is prepared according to the method, and the negative electrode electrolyte sheet, a polypropylene diaphragm, a lithium sheet and electrolyte are assembled into a CR2016 type button cell which is marked as a comparison sample 1.
The cycling test pattern of the assembled button cell is shown in fig. 1. At 0.2C magnification, after 200 cycles, the capacity retention of sample a was 98.57%, with little attenuation. However, the capacity retention of comparative sample 1 was only 92.2%, and there was a significant capacity fade. And from the trend of the capacity variation of fig. 1, the capacity of the sample a remains stable, while the comparative sample 1 will continuously decay.
Example 2
A preparation method of a binder for a lithium battery comprises the following specific steps:
(1) adding p-phenylenediamine and oxalic acid into deionized water according to the mol ratio of 2:1.5 to ensure that the solid content of solute is 10 wt%, and heating the mixture to 60 ℃ in a device with condensation reflux for reaction for 1-2h to obtain aromatic polyamide suspension; centrifuging the obtained suspension, washing with deionized water, drying at 60 deg.C for 6-12h to obtain polyamide, and detecting amino group as terminal group with vanillin.
(2) Respectively preparing an N-methylpyrrolidone solution of 2, 4-toluene diisocyanate with the mass fraction of 10 wt% and an N-methylpyrrolidone solution of polyamide; at 110 ℃, dripping the polyamide organic solution into the aromatic diisocyanate organic solution, and detecting isocyanate by using a sodium nitrite solution until the diisocyanate is completely reacted to obtain the aromatic polyurea polymer solution.
(3) Adding N-methyl pyrrolidone into the aromatic polyurea polymer solution obtained in the step (2) to ensure that the solid content of the polymer is 10 wt%; preparing an N-methyl pyrrolidone solution of styrene butadiene rubber with the mass fraction of 10 wt%; and uniformly mixing the two organic solutions according to the mass ratio of 2:4 to obtain the polyurea-styrene butadiene rubber solution.
The prepared polyurea-styrene butadiene rubber organic solution is directly used as a binder. Mixing and grinding nano silicon and graphite according to a mass ratio of 10:80 for 1h, and adding the mixed powder into the cross-linked polyurethane organic solution prepared in the embodiment 2 to obtain electrode slurry, wherein the mass ratio of the nano silicon to the graphite to the binder solution is 10: 80: 100; adding N-methyl pyrrolidone into the electrode slurry to enable the solid content of the slurry system to reach 20-30 wt%, uniformly stirring, coating on the carbon-coated copper foil, and drying at 80 ℃ and 0.1Mpa for 12h to obtain a negative electrode slice; the obtained negative electrode plate, a polyethylene diaphragm, a lithium sheet and an electrolyte are assembled into a CR2016 type button cell, and the CR2016 type button cell is marked as a sample B.
Example 3
A preparation method of a binder for a lithium battery comprises the following specific steps:
(1) adding diethyl toluenediamine and oxalic acid into deionized water according to the mol ratio of 2:1.8 to ensure that the solid content of solute is 10 wt%, and heating the mixture to 70 ℃ in a device with condensation reflux for reacting for 1-2h to obtain aromatic polyamide suspension; centrifuging the obtained suspension, washing with deionized water, drying at 60 deg.C for 6-12h to obtain polyamide, and detecting amino group as terminal group with vanillin.
(2) Respectively preparing an N-methylpyrrolidone solution of 2, 6-toluene diisocyanate with the mass fraction of 10 wt% and an N-methylpyrrolidone solution of polyamide; at 115 ℃, dripping the polyamide organic solution into the aromatic diisocyanate organic solution, and detecting isocyanic acid radical by using a sodium nitrite solution until the diisocyanate is completely reacted to obtain the aromatic polyurea polymer solution.
(3) Adding N-methyl pyrrolidone into the aromatic polyurea polymer solution obtained in the step (2) to ensure that the solid content of the polymer is 10 wt%; preparing an N-methyl pyrrolidone solution of styrene butadiene rubber with the mass fraction of 10 wt%; and uniformly mixing the two organic solutions according to the mass ratio of 2:5 to obtain the polyurea-styrene butadiene rubber solution.
The prepared polyurea-styrene butadiene rubber organic solution is directly used as a binder. Mixing and grinding nano silicon and graphite according to a mass ratio of 10:80 for 1h, and adding the mixed powder into the cross-linked polyurethane organic solution prepared in the embodiment 3 to obtain electrode slurry, wherein the mass ratio of the nano silicon to the graphite to the binder solution is 10: 80: 100; adding N-methyl pyrrolidone into the electrode slurry to enable the solid content of the slurry system to reach 20-30 wt%, uniformly stirring, coating on the carbon-coated copper foil, and drying at 80 ℃ and 0.1Mpa for 12h to obtain a negative electrode slice; and assembling the obtained negative electrode plate, a polyethylene diaphragm, a lithium sheet and electrolyte into a CR2016 type button cell, and marking as a sample C.
Example 4
A preparation method of a binder for a lithium battery comprises the following specific steps:
(1) adding diethyl toluenediamine and adipic acid into deionized water according to the mol ratio of 2:1.5 to ensure that the solid content of solute is 10 wt%, and heating to 80 ℃ in a device with condensation reflux to react for 1-2h to obtain aromatic polyamide suspension; centrifuging the obtained suspension, washing with deionized water, drying at 60 deg.C for 6-12h to obtain polyamide, and detecting amino group as terminal group with vanillin.
(2) Respectively preparing an N-methyl pyrrolidone solution of 2, 4-toluene diisocyanate with the mass fraction of 10 wt% and a dimethylacetamide solution of polyamide; at 115 ℃, dripping the polyamide organic solution into the aromatic diisocyanate organic solution, and detecting isocyanic acid radical by using a sodium nitrite solution until the diisocyanate is completely reacted to obtain the aromatic polyurea polymer solution.
(3) Adding dimethylacetamide into the aromatic polyurea polymer solution obtained in the step (2) to ensure that the solid content of the polymer is 10 wt%; preparing an N-methyl pyrrolidone solution of styrene butadiene rubber with the mass fraction of 10 wt%; and uniformly mixing the two organic solutions according to the mass ratio of 1:3 to obtain the polyurea-styrene butadiene rubber solution.
The prepared polyurea-styrene butadiene rubber organic solution is directly used as a binder. Mixing and grinding nano silicon and graphite according to a mass ratio of 10:80 for 1h, and adding the mixed powder into the cross-linked polyurethane organic solution prepared in the embodiment 4 to obtain electrode slurry, wherein the mass ratio of the nano silicon to the graphite to the binder solution is 10: 80: 100; adding dimethyl acetamide into the electrode slurry to enable the solid content of the slurry system to reach 20-30 wt%, uniformly stirring, coating on a carbon-coated copper foil, and drying at 80 ℃ and 0.1Mpa for 12h to obtain a negative electrode plate; the obtained negative electrode plate, a polyethylene diaphragm, a lithium sheet and an electrolyte are assembled into a CR2016 type button cell, and the CR2016 type button cell is marked as a sample D.
The sodium carboxymethylcellulose-styrene butadiene rubber is used as a binder, the dimethylacetamide is used as a solvent, the negative electrode electrolyte sheet is prepared according to the method, and the negative electrode electrolyte sheet, the polypropylene diaphragm, the lithium sheet and the electrolyte are assembled into the CR2016 type button cell which is marked as a comparison sample 2.
In the above embodiment, the assembled lithium battery samples a to D and the comparative samples 1 to 2 are tested by a blue testing system for cycle stability, the testing current density is 0.2C, and the testing results are shown in table 1, and the capacity retention rate of the button cell prepared in the embodiments 1 to 4 is significantly higher than that of the comparative samples 1 and 2 at 200 cycles.
TABLE 1
Sample (I) 0.2C initial discharge Capacity Capacity retention after 200 cycles at 0.2C
Comparative sample 1 556mAh/g 92.2%
Comparative sample 2 543mAh/g 92.3%
Sample A 562mAh/g 98.57%
Sample B 561mAh/g 96.5%
Sample C 558mAh/g 97.8%
Sample D 556mAh/g 97.2%
The above description is only a preferred embodiment of the present invention, and it should be noted that, for those skilled in the art, many modifications and changes can be made without departing from the inventive concept of the present invention, and these modifications and changes are within the protection scope of the present invention.

Claims (10)

1. A preparation method of a binder for a lithium battery is characterized by mainly comprising the following steps:
(1) mixing and heating excessive aromatic diamine and dibasic acid to react to generate aromatic polyamide with amino at two ends;
(2) carrying out solution polymerization on aromatic diisocyanate and aromatic polyamide with amino at two ends in an organic solvent to obtain a polyurea polymer;
(3) and (3) adding the polyurea polymer prepared in the step (2) into styrene butadiene rubber, and uniformly stirring and dispersing in an organic solvent to obtain the binder for the lithium battery.
2. The method of claim 1, wherein the aromatic diamine and the dibasic acid in the step (1) have a functional group molar ratio of 2 (1.2-1.8).
3. The method for preparing a binder for a lithium battery according to claim 1, wherein the step (1) is specifically: reacting aromatic diamine and dibasic acid at 60-80 ℃ for 1-2h by taking water as a solvent to obtain the aromatic polyamide with amino at two ends.
4. The method of claim 3, wherein the aromatic diamine and the dibasic acid have a total solid content of 5 to 15% in water.
5. The method for preparing a binder for a lithium battery according to claim 1, wherein the step (2) is specifically: at the temperature of 100-115 ℃, the polyamide organic solution is dripped into the aromatic diisocyanate organic solution until the isocyanate reaction is completed, and the aromatic polyurea polymer is obtained.
6. The method of claim 5, wherein the polyamide organic solution and the aromatic diisocyanate organic solution are mixed in a volume ratio of (1.2-1.5):1, and the mass fractions of the polyamide organic solution and the aromatic diisocyanate organic solution are 8-12%.
7. The method of claim 1, wherein the aromatic diisocyanate is any one of 2, 4-toluene diisocyanate, 2, 6-toluene diisocyanate, and naphthalene diisocyanate; the aromatic diamine is one or more of diethyl toluene diamine and p-phenylenediamine; the dibasic acid is any one of oxalic acid and adipic acid.
8. The method of claim 1, wherein the organic solvent used in step (2) and step (3) is any one of N-methylpyrrolidone, N-dimethylformamide, and dimethylacetamide.
9. The method for preparing a binder for a lithium battery according to claim 1, wherein the step (3) is specifically: dispersing a polyurea polymer in an organic solvent to ensure that the solid content of the polymer is 10-15 wt%; dispersing styrene butadiene rubber in an organic solvent, wherein the mass fraction is 5-15 wt%; and then adding the polyurea polymer organic solution into the styrene butadiene rubber organic solution, and uniformly stirring and dispersing to obtain the binder for the lithium battery.
10. The method of claim 9, wherein the mass ratio of the polyurea polymer to the styrene-butadiene rubber is (2-4) to (3-6); the number average molecular weight of the styrene-butadiene rubber is 50000-80000.
CN202010513335.9A 2020-06-08 2020-06-08 Preparation method of binder for lithium battery Pending CN111682213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010513335.9A CN111682213A (en) 2020-06-08 2020-06-08 Preparation method of binder for lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010513335.9A CN111682213A (en) 2020-06-08 2020-06-08 Preparation method of binder for lithium battery

Publications (1)

Publication Number Publication Date
CN111682213A true CN111682213A (en) 2020-09-18

Family

ID=72435124

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010513335.9A Pending CN111682213A (en) 2020-06-08 2020-06-08 Preparation method of binder for lithium battery

Country Status (1)

Country Link
CN (1) CN111682213A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112341572A (en) * 2020-11-04 2021-02-09 深圳港池科技有限公司 Preparation method of styrene-butadiene latex applied to lithium ion battery cathode
CN112599878A (en) * 2020-12-14 2021-04-02 中国科学院福建物质结构研究所 Treatment method and application of electrode waste
CN113555554A (en) * 2021-06-03 2021-10-26 浙江中科玖源新材料有限公司 Binder, silicon-carbon negative plate and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1840558A (en) * 2005-03-29 2006-10-04 气体产品与化学公司 Novel polyurea isocyanates
CN102391453A (en) * 2011-08-31 2012-03-28 山东蓝星东大化工有限责任公司 Preparation method of aliphatic polyurea polymer
CN103779515A (en) * 2014-01-13 2014-05-07 江苏绿遥燃料电池***制造有限公司 Fuel cell sealing material and preparation method thereof
CN104362289A (en) * 2014-09-26 2015-02-18 珠海市讯达科技有限公司 Lithium ion battery pole piece provided with inorganic isolating layers, battery comprising the pole piece and preparation method for pole piece
CN104868081A (en) * 2014-12-22 2015-08-26 上海恩捷新材料科技股份有限公司 Water-based multi-layer membrane for lithium ion battery
CN105713228A (en) * 2014-12-04 2016-06-29 上海恩捷新材料科技股份有限公司 Manufacture method and applications of high temperature resistant and deformation resistant composite microporous membrane
CN108219104A (en) * 2018-01-24 2018-06-29 西安交通大学 Hold silica alkyl polymer adhesive and its preparation method and application

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1840558A (en) * 2005-03-29 2006-10-04 气体产品与化学公司 Novel polyurea isocyanates
CN102391453A (en) * 2011-08-31 2012-03-28 山东蓝星东大化工有限责任公司 Preparation method of aliphatic polyurea polymer
CN103779515A (en) * 2014-01-13 2014-05-07 江苏绿遥燃料电池***制造有限公司 Fuel cell sealing material and preparation method thereof
CN104362289A (en) * 2014-09-26 2015-02-18 珠海市讯达科技有限公司 Lithium ion battery pole piece provided with inorganic isolating layers, battery comprising the pole piece and preparation method for pole piece
CN105713228A (en) * 2014-12-04 2016-06-29 上海恩捷新材料科技股份有限公司 Manufacture method and applications of high temperature resistant and deformation resistant composite microporous membrane
CN104868081A (en) * 2014-12-22 2015-08-26 上海恩捷新材料科技股份有限公司 Water-based multi-layer membrane for lithium ion battery
CN108219104A (en) * 2018-01-24 2018-06-29 西安交通大学 Hold silica alkyl polymer adhesive and its preparation method and application

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112341572A (en) * 2020-11-04 2021-02-09 深圳港池科技有限公司 Preparation method of styrene-butadiene latex applied to lithium ion battery cathode
CN112599878A (en) * 2020-12-14 2021-04-02 中国科学院福建物质结构研究所 Treatment method and application of electrode waste
CN113555554A (en) * 2021-06-03 2021-10-26 浙江中科玖源新材料有限公司 Binder, silicon-carbon negative plate and preparation method thereof

Similar Documents

Publication Publication Date Title
CN111682213A (en) Preparation method of binder for lithium battery
CN109004220B (en) Boric acid compound modified lithium ion battery silicon cathode and preparation method thereof
WO2018082181A1 (en) Strong polar polymer adhesive, synthetic method, and application thereof in lithium battery
CN112864369B (en) Modified high-nickel ternary cathode material and preparation method thereof
CN109755481B (en) Manufacturing process for improving low-temperature performance of lead storage battery
CN110061239B (en) Lignin-based binder, preparation method thereof and lithium ion battery
JP7330956B2 (en) Elastic and Stretchable Gel Polymer Electrolyte
CN111704708B (en) Preparation method of cross-linked polyurethane binder and application of cross-linked polyurethane binder in field of lithium batteries
CN111777984A (en) Sulfonated polyimide binder, electrode plate and lithium ion battery
CN106981681A (en) A kind of long circulating moderate multiplying factor ternary system power lithium-ion battery and preparation method
CN110459733B (en) Preparation method of negative electrode of lithium ion battery
CN111647345A (en) Lithium ion battery negative electrode polymer protective coating and preparation method and application thereof
CN113363414B (en) Lithium ion battery positive plate using multilayer coated ternary positive material and preparation method thereof
CN110970606B (en) Nitrogen-doped hollow spherical carbon-coated sulfur positive electrode material and preparation method and application thereof
CN116731635A (en) Conductive adhesive and preparation method and application thereof
CN116111091A (en) Adhesive composition, sodium ion battery positive electrode slurry and sodium ion battery
CN114276357B (en) 2,8, 14-trinitro substituted hexaazanaphthalene monomer and azo-based polymer thereof, preparation method and application
CN109860592A (en) A kind of nickel-cobalt lithium manganate cathode material and preparation method thereof of boracic molecular modification
CN115692659A (en) Lithium ion battery negative electrode material, preparation method thereof and lithium ion battery
CN111313008B (en) Magnesium-containing lithium-rich manganese-based positive electrode and preparation method thereof
CN113501792A (en) Organic positive electrode material of lithium ion battery and preparation method and application thereof
CN113270584A (en) Ionic supermolecule adhesive, preparation method and application
CN112500542A (en) Water-soluble polymer for negative plate, preparation method and negative plate
CN113174044B (en) Modified polyimide binder and preparation method and application thereof
CN115010111B (en) Self-supporting sodium ion battery anode carbon material and preparation method and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200918