CN111681736B - 一种基于分象限的正交双层光栅动态调强分割方法 - Google Patents

一种基于分象限的正交双层光栅动态调强分割方法 Download PDF

Info

Publication number
CN111681736B
CN111681736B CN202010515666.6A CN202010515666A CN111681736B CN 111681736 B CN111681736 B CN 111681736B CN 202010515666 A CN202010515666 A CN 202010515666A CN 111681736 B CN111681736 B CN 111681736B
Authority
CN
China
Prior art keywords
blade
quadrant
flux
segmentation
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010515666.6A
Other languages
English (en)
Other versions
CN111681736A (zh
Inventor
项云飞
文虎儿
姚毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Linatech Medical Science And Technology
Original Assignee
Suzhou Linatech Medical Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Linatech Medical Science And Technology filed Critical Suzhou Linatech Medical Science And Technology
Priority to CN202010515666.6A priority Critical patent/CN111681736B/zh
Publication of CN111681736A publication Critical patent/CN111681736A/zh
Priority to PCT/CN2020/130429 priority patent/WO2021248837A1/zh
Priority to US17/915,385 priority patent/US20230132237A1/en
Application granted granted Critical
Publication of CN111681736B publication Critical patent/CN111681736B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/40ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to mechanical, radiation or invasive therapies, e.g. surgery, laser therapy, dialysis or acupuncture
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/103Treatment planning systems
    • A61N5/1036Leaf sequencing algorithms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/103Treatment planning systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/103Treatment planning systems
    • A61N5/1031Treatment planning systems using a specific method of dose optimization
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1042X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head
    • A61N5/1045X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head using a multi-leaf collimator, e.g. for intensity modulated radiation therapy or IMRT
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1042X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head
    • A61N5/1045X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head using a multi-leaf collimator, e.g. for intensity modulated radiation therapy or IMRT
    • A61N5/1047X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head using a multi-leaf collimator, e.g. for intensity modulated radiation therapy or IMRT with movement of the radiation head during application of radiation, e.g. for intensity modulated arc therapy or IMAT

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Surgery (AREA)
  • Urology & Nephrology (AREA)
  • Epidemiology (AREA)
  • Medical Informatics (AREA)
  • Primary Health Care (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

本发明公开一种基于分象限的正交双层光栅动态调强分割方法,具体包括以下步骤:S1:通过放疗计划***计算出每个射野下的射线通量分布;S2:采用正交双层光栅进行通量分割;S3:进行划分象限,将上下左右四组叶片围成的射野区域划分成至少两个象限,得到每个象限的通量分布和对应叶片序列;S4:对各个象限的通量曲面进行区域规划,得到多个不同区域,确定不同区域的分割方式;S5:对于任一象限,采用两个互相正交的叶片组进行分割。本发明通过上下层正交叶片的相互配合运动完成任意形状靶区以及多个靶区的动态分割,实现正交双层光栅上下两层从两个方向的动态分割,避免叶片对间的端面透视,提高分割效率。

Description

一种基于分象限的正交双层光栅动态调强分割方法
技术领域
本发明涉及一种多叶准直器动态调强分割方法,具体涉及一种基于分象限的正交双层光栅动态调强分割方法。
背景技术
对肿瘤(靶区)进行放射治疗时,为保护健康组织免受损害,一般使用多叶准直器(multi-leaf collimator,MLC)来调整射束照射范围和强度的调整,实现射野束流强度可调的放射治疗,即调强放射治疗(intensity modulated radiotherapy,IMRT)。
MLC最初应用于经典适形放射治疗,替代常规放射治疗中的挡块,形成期望的照射野形状。MLC由两组紧密排列的叶片组成。每个叶片都由钨合金制成,呈长条状,由一个小型电机驱动。与射野挡块相比,MLC适形具有显著优势:缩短了治疗时间,也缩短了模拟定位和治疗之间的时间间隔,大幅提高了放射治疗的效率;对放射线的衰减能力比挡块强;操作简便安全,不用搬动笨重的挡块;可重复使用;不会产生有害气体或粉尘;能灵活应对靶区的变化和纠正错误。
正交双层光栅包含两层互相垂直的MLC,可以在靶区边缘位置由上下两层对应的叶片互相配合来实现MLC形状与靶区边界的一致性,提高射野与靶区的适形性;由于至少有两层叶片准直装置的叶片相互垂直,都可按照要求调整出一样形状的窗口,彼此遮挡叶片间的漏射射线,射线的透漏射大大减少,也有效的减小了半影区,从而可以准确定位治疗,为少分次、大剂量治疗提供了条件,并且叠加的叶片,使得穿透叶片准直器射线衰减到安全的范围,提高了设备的使用效率,降低了医疗成本和患者的负担;同时,由于上下两层叶片相互垂直,可在互相垂直的两个方向运动。
目前关于MLC动态分割的算法主要是Sliding window的动态滑窗扫描分割技术,但是由于在扫描过程中一对相互对立的叶片间始终存在间隙,无法完成内凹型靶区和内环形靶区的低剂量分割,G.Grigorow在文献《SU-GG-T-93:Dosimetry Evaluation andCorrection of DMLC Control Points for Sliding Window IMRT》提出了一种改变医用电子直线加速器剂量率和调整叶片最大速度的方法来减小叶片间的漏射,但是无法从根本上来消除一对叶片间的间隙产生的漏射问题;关于正交双层光栅动态上下两层同时进行动态分割的方法目前没有被提及,如何应用双层光栅解决内凹型靶区和环形靶区的动态分割问题,以及如何使用正交双层光栅从两个方向运动完成对肺部动态靶区跟踪治疗等等这些世界难题仍需要注入新的解决方案。
现有的MLC动态分割的算法主要存在以下问题:
第一,单层MLC的叶片在等中心平面的投影宽度通常在0.5cm~1.0cm之间,单层MLC形成的照射野具有台阶状边界,不能与期望形成的边界光滑的靶区边界完全一致。虽然可以通过将MLC的叶片宽度做的越来越薄,从而提高射野的适形度,但是因为叶片宽度机械加工的原因不能做到理论上的无限薄,所以锯齿状的射野边缘无法完全消除。
第二,由于在调强射野范围内,存在较多成对闭合的叶片,但因为机械及运动防撞的考虑,成对闭合叶片间留有间隙,存在大约20%-30%的叶片端面透射;
第三,单层MLC无法从两个方向运动完成对肺部动态靶区跟踪治疗。
发明内容
为了解决上述技术问题,本发明提出了一种基于分象限的正交双层光栅动态调强分割方法。
为了达到上述目的,本发明的技术方案如下:
一种基于分象限的正交双层光栅动态调强分割方法,具体包括以下步骤:
S1:通过放疗计划***计算出每个射野下的射线通量分布,在等中心平面内的射野范围内,可表示为一个通量曲面F(x,y);
S2:采用正交双层光栅进行通量分割;
S3:进行划分象限,将上下左右四组叶片围成的射野区域划分成至少两个象限,得到每个象限的通量分布和对应叶片序列;
S4:对各个象限的通量曲面进行区域规划,得到多个不同区域,确定不同区域的分割方式;
S5:对于任一象限,采用两个互相正交的叶片组进行分割。
在上述技术方案的基础上,还可做如下改进:
作为优选的方案,步骤S2包括以下内容:射线通过上下两层光栅投影在等中心平面坐标系S-XY下,上下两层叶片分别位于等中心平面的四个方位。
作为优选的方案,对于步骤S3,象限划分可以靶区内的极大值点或极小值点为分割中心。
作为优选的方案,对于步骤S3,若存在内凹型通量分布或环形靶区通量分布时,则象限划分以极小值点为分割中心;
若存在多个内凹型区域时,则使凹型靶区的中心位于其中两象限的交线上。
作为优选的方案,对于步骤S3,完成象限分割后每个象限对应射野范围内一个区域的射线通量,对应至少一对相互正交的叶片组。
作为优选的方案,步骤S4具体包括以下内容:对于通量曲面内任意一个波峰或波谷周围,按照偏导数大小可以划分为四个区域A1、A2、A3和A4;
Figure BDA0002528686430000031
Figure BDA0002528686430000032
时,该区域为区域A1;
Figure BDA0002528686430000041
Figure BDA0002528686430000042
时,该区域为区域A2;
Figure BDA0002528686430000043
Figure BDA0002528686430000044
时,该区域为区域A3;
Figure BDA0002528686430000045
Figure BDA0002528686430000046
时,该区域为区域A4。
作为优选的方案,步骤S5具体包括以下步骤:
S5.1:确定叶片初始位置;
S5.2:建立叶片运动轨迹函数;
S5.3:应用时滞微分方程求解叶片运动轨迹函数。
作为优选的方案,步骤S5.1具体包括以下内容:两个正交的叶片组,定义其中一组为主动叶片,另一组为被动叶片,主动叶片由射野边缘向射野中心运动,从动叶片由射野中心往射野边缘进行回退;
其初始位置可以确定为:主动叶片在射野边缘,从动叶片位于象限交界位置。
作为优选的方案,步骤S5.2具体包括以下内容:在给定加速器剂量率以及叶片沿一个方向运动的前提下,采用叶片位置和通量大小之间对应关系描述叶片轨迹;
以叶片端面位置作为叶片位置,在没有其余叶片遮挡的情况下,叶片位置与其对应通量大小为单调函数关系。
作为优选的方案,步骤S5.3具体包括以下内容:已知每个叶片位置的起始位置,通过前一位置的通量函数对下一瞬时的通量函数进行求解。
本发明通过上下层正交叶片的相互配合运动完成任意形状靶区(内凹型靶区、环形靶区等)以及多个靶区的动态分割,实现正交双层光栅上下两层从两个方向的动态分割,避免叶片对间的端面透视,提高分割效率。
附图说明
图1为发明实施例提供的一个内凹型靶区强射线通量三维视图。
图2为发明实施例提供的正交双层光栅在射野坐标系下的位置分布;
图2(a)为射线以及上下两层光栅的投影时结构示意图;
图2(b)为上层叶片、下层叶片与等中心平面之间的位置关系。
图3为发明实施例提供的对通量曲面进行象限划分与叶片序列分配示意图。
图4为发明实施例提供的三种典型的象限分割模式图;
图4(a)象限分割模式图之一;
图4(b)象限分割模式图之二;
图4(c)象限分割模式图之三;
图5为发明实施例提供的第一象限的主(从)动叶片初始位置确定示意图。
图6为发明实施例提供的第一象限内右叶片位置与其通量值大小之间的函数关系曲线图。
图7为发明实施例提供的第一象限内前叶片作为从动叶片时其位置与通量值大小之间的函数关系曲线图。
图8为发明实施例提供的叶片轨迹函数求解示意图。
图9为发明实施例提供的波峰或波谷周围的区域划分示意图。
图10为发明实施例提供的第一象限内的区域划分示意图。
图11为发明实施例提供的第一象限内的通量分布三维视图。
图12为发明实施例提供的区域划分后第一象限内的叶片初始位置示意图。
图13为发明实施例提供的第一象限内叶片交叠区域内主动叶片或从动叶片的运动轨迹曲线图;
图13(a)为右叶片的运动轨迹图;
图13(b)为前叶片的运动轨迹图。
图14为发明实施例提供的通过叶片轨迹分割出的通量三维视图。
其中:1-波峰或波谷;2-凹谷中心。
具体实施方式
下面结合附图详细说明本发明的优选实施方式。
为了达到本发明的目的,一种基于分象限的正交双层光栅动态调强分割方法的其中一些实施例中,一种基于分象限的正交双层光栅动态调强分割方法,具体包括以下步骤:
S1:通过放疗计划***计算出每个射野下的射线通量分布,在等中心平面内的射野范围内,可表示为一个通量曲面F(x,y);
S2:采用正交双层光栅进行通量分割;
S3:进行划分象限,将上下左右四组叶片围成的射野区域划分成最多四个象限,得到每个象限的通量分布和对应叶片序列;
S4:对各个象限的通量曲面进行区域规划,得到多个不同区域,确定不同区域的分割方式;
S5:对于任一象限,采用两个互相正交的叶片组进行分割。
在步骤S3中,如图3所示,每个象限对应两组不同的叶片序列,相邻象限组合也可以形成一个单独的象限,其可能对应三组不同的叶片;象限的划分应尽量保证每个象限进行通量分割的总时间一致。
为了进一步地优化本发明的实施效果,在另外一些实施方式中,其余特征技术相同,不同之处在于,步骤S2包括以下内容:射线通过上下两层光栅投影在等中心平面坐标系S-XY下,上下两层叶片分别位于等中心平面的四个方位。
为了进一步地优化本发明的实施效果,在另外一些实施方式中,其余特征技术相同,不同之处在于,对于步骤S3,象限划分可以靶区内的极大值点或极小值点为分割中心。
为了进一步地优化本发明的实施效果,在另外一些实施方式中,其余特征技术相同,不同之处在于,如图4所示,对于步骤S3,若存在内凹型通量分布或环形靶区通量分布时,则象限划分以极小值点为分割中心;
若存在多个内凹型区域时,则使凹型靶区的中心位于其中两象限的交线上。
其中,图4中的“○”代表凹谷中心2。
为了进一步地优化本发明的实施效果,在另外一些实施方式中,其余特征技术相同,不同之处在于,对于步骤S3,完成象限分割后每个象限对应射野范围内一个区域的射线通量,对应至少一对相互正交的叶片组。
为了进一步地优化本发明的实施效果,在另外一些实施方式中,其余特征技术相同,不同之处在于,步骤S4具体包括以下内容:如图9所示,对于通量曲面内任意一个波峰或波谷1周围,按照偏导数大小可以划分为四个区域A1、A2、A3和A4;
Figure BDA0002528686430000071
Figure BDA0002528686430000072
时,该区域为区域A1;
Figure BDA0002528686430000073
Figure BDA0002528686430000074
时,该区域为区域A2;
Figure BDA0002528686430000075
Figure BDA0002528686430000076
时,该区域为区域A3;
Figure BDA0002528686430000077
Figure BDA0002528686430000078
时,该区域为区域A4。
采用该实施方式,为了提高分割效率,进行区域划分,对一个象限中不同区域采用不同分割方式,如图10所示,在第一象限中,区域A1和A3均可采用右叶片进行独立分割,区域A1和A2均可采用前叶片进行独立分割,对于区域A4则需要两组叶片进行正交配合分割。
为了进一步地优化本发明的实施效果,在另外一些实施方式中,其余特征技术相同,不同之处在于,步骤S5具体包括以下步骤:
S5.1:确定叶片初始位置;
S5.2:建立叶片运动轨迹函数;
S5.3:应用时滞微分方程求解叶片运动轨迹函数。
进一步,步骤S5.1具体包括以下内容:两个正交的叶片组,定义其中一组为主动叶片,另一组为被动叶片,主动叶片由射野边缘向射野中心运动,从动叶片由射野中心往射野边缘进行回退;
其初始位置可以确定为:主动叶片在射野边缘,从动叶片位于象限交界位置。
值得注意的是,在定义从动叶片的时候要避免一对相对的叶片均为从动叶片。如图5所示为第一象限叶片的一种初始位置情况,右叶片作为一组主动叶片,左叶片作为一组从动叶片。
进一步,步骤S5.2具体包括以下内容:在给定加速器剂量率以及叶片沿一个方向运动的前提下,采用叶片位置和通量大小之间对应关系描述叶片轨迹;
以叶片端面位置作为叶片位置,在没有其余叶片遮挡的情况下,叶片位置与其对应通量大小为单调函数关系。
采用该实施方式,在给定加速器剂量率以及叶片沿一个方向运动的前提下,由于射线通量值大小与时间成正比,可以用叶片的位置和通量大小之间对应的关系来描述叶片轨迹;以叶片端面位置作为叶片位置,可以发现在没有其余叶片遮挡的情况下,由于叶片最大运动速度限制,叶片位置与其对应通量大小始终是一个单调的函数关系。
如图6所示,以第一象限任一右叶片为例,其位置与其对应通量之间的关系如图,记为g2(x,yi),其中x为该右叶片某时刻对应的端面位置,yi为该右叶片在坐标系S下对应的纵坐标。同理,从动叶片位置与其对应的通量大小也为一个单调函数。如图7所示,以第一象限前叶片为例,作为从动叶片时,前叶片在坐标系S下由初始位置0往Y轴正方向回退,前叶片在每个位置独立的遮挡量为h1(xi,y)=T-g1(xi,y),其中T为总照射量,g1(xi,y)为前叶片位置对应的通量,y为该前叶片某时刻对应的端面位置,xi为该前叶片在坐标系S下对应的横坐标。
进一步,步骤S5.3具体包括以下内容:已知每个叶片位置的起始位置,通过前一位置的通量函数对下一瞬时的通量函数进行求解。
如图8所示,以第一象限任一点的右叶片(主动叶片)为例,建立时滞微分方程进行通量函数g2(x,y)求解,如下:
Figure BDA0002528686430000091
其中,Δx,Δy为坐标系S下,两个相邻时刻叶片位置的变化量,
Figure BDA0002528686430000092
为射线通量曲面沿x,y两个方向的偏导数,kmin为叶片最大速度限制对应最小通量增量效率,g21(x,y),g22(x,y),g23(x,y)分别为沿x轴方向、沿通量曲面方向导数、沿y轴方向搜索得到的通量函数值。
以上多种实施方式可交叉并行实现。
本发明通过上下层正交叶片的相互配合运动完成任意形状靶区(内凹型靶区、环形靶区等)以及多个靶区的动态分割,实现正交双层光栅上下两层从两个方向的动态分割,避免叶片对间的端面透视,提高分割效率。
为了说明本发明的具体实施过程,针对一个多连通区域的环形靶区进行说明。
具体过程如下:
S1:从放疗计划***中导入一个多连通区域的环形靶区的射线通量,在等中心平面内的射野范围内,可以表示为一个通量曲面F(x,y),如图1所示;
S2:采用正交双层光栅进行通量分割,如图2(a)所示,射线通过上下两层光栅投影在等中心平面坐标系S-XY下,上下两层叶片分别位于等中心平面四个方位,如图2(b)所示,其中上层叶片位于等中心平面前后端,下层叶片位于等中心平面左右端;
S3:进行象限划分,得到四个象限的通量分布和对应叶片序列,如图11为第一象限的通量分布;
S4:对各个象限的通量曲面进行区域规划,得到所有的A1、A2、A3、A4区域,同时确定不同区域的分割当时,如图10所示,以第一象限为例,所在第一象限的A1区域选用右叶片进行独立分割,所在第一象限的A3区域选用右叶片进行独立分割;第一象限的A2区域选用前叶片进行独立分割,第一象限的A4区域则需要进过该区域的所有右叶片和前叶片进行正交配合分割;
S5.1:进行区域划分后确定主动从动叶片的初始位置,如图12所示,为第一象限内所有叶片的初始位置,图中在交叠区域A4,设置前叶片为从动叶片,在A4区域的所有从动叶片初始位置位于象限的交界图,进行回退运动。
S5.2:建立叶片运动轨迹函数,如图13所示,其为第一象限交叠区域两组正交叶片的运动轨迹,图13(a)为右叶片的运动轨迹,图13(b)为前叶片的运动轨迹。
S5.3:在不考虑半影影响的情况下通过叶片轨迹计算分割后的通量F’(x,y),其三维分布如图14所示。采用向量二范数与初始通量图进行相对误差比较如下:
segNum 50 100 250 500 1000 10000
<![CDATA[∑||F′-F||<sub>2</sub>/∑F]]> 0.0416 0.0206 0.0084 0.0042 0.0021 2.05E-04
其中:segNum是指通量曲面分割的等分数,与分割步长成反比,segNum越大,说明对通量曲面分割的越细。
本发明相比于现有技术的有益成果为:
1.提高了适形度:能够实现对各种复杂靶区,如内凹型靶区和环形靶区的动态分割;
2.提高了分割精度:采用正交的叶片对进行配合运动,通过空间上的交错,避免了叶片闭合位置发生碰撞,解决了叶片对间的端面透视的问题;
3.实现多靶区的强度分割:采用四组不同方位的叶片组合,可以划分至少两个,最多四个象限,对四个以内的多靶区问题进行同时分割;
4.分割效率高:通过强度分布曲面的方向导数特征,把一个波峰或波谷区域分成4个部分,采用不同的叶片分割方式,提高了分割效率;
5.能够从两个方向运动完成对动态靶区跟踪治疗:采用一对正交叶片对靶区进行分割,能够实现两个方向运动完成对动态靶区跟踪治疗。
对于本发明的优选实施方式,应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。

Claims (10)

1.一种基于分象限的正交双层光栅动态调强分割方法,其特征在于,具体包括以下步骤:
S1:通过放疗计划***计算出每个射野下的射线通量分布,在等中心平面内的射野范围内,可表示为一个通量曲面F(x,y);
S2:采用正交双层光栅进行通量分割;
S3:进行划分象限,将上下左右四组叶片围成的射野区域划分成至少两个象限,得到每个象限的通量分布和对应叶片序列;
S4:对各个象限的通量曲面进行区域规划,得到多个不同区域,确定不同区域的分割方式;
S5:对于任一象限,采用两个互相正交的叶片组进行分割。
2.根据权利要求1所述的基于分象限的正交双层光栅动态调强分割方法,其特征在于,所述步骤S2包括以下内容:射线通过上下两层光栅投影在等中心平面坐标系S-XY下,上下两层叶片分别位于等中心平面的四个方位。
3.根据权利要求2所述的基于分象限的正交双层光栅动态调强分割方法,其特征在于,对于所述步骤S3,象限划分可以靶区内的极大值点或极小值点为分割中心。
4.根据权利要求2所述的基于分象限的正交双层光栅动态调强分割方法,其特征在于,对于所述步骤S3,若存在内凹型通量分布或环形靶区通量分布时,则象限划分以极小值点为分割中心;
若存在多个内凹型区域时,则使凹型靶区的中心位于其中两象限的交线上。
5.根据权利要求2所述的基于分象限的正交双层光栅动态调强分割方法,其特征在于,对于所述步骤S3,完成象限分割后每个象限对应射野范围内一个区域的射线通量,对应至少一对相互正交的叶片组。
6.根据权利要求1-5任一项所述的基于分象限的正交双层光栅动态调强分割方法,其特征在于,所述步骤S4具体包括以下内容:对于通量曲面内任意一个波峰或波谷周围,按照偏导数大小可以划分为四个区域A1、A2、A3和A4;
Figure FDA0002528686420000021
Figure FDA0002528686420000022
时,该区域为区域A1;
Figure FDA0002528686420000023
Figure FDA0002528686420000024
时,该区域为区域A2;
Figure FDA0002528686420000025
Figure FDA0002528686420000026
时,该区域为区域A3;
Figure FDA0002528686420000027
Figure FDA0002528686420000028
时,该区域为区域A4。
7.根据权利要求1-5任一项所述的基于分象限的正交双层光栅动态调强分割方法,其特征在于,所述步骤S5具体包括以下步骤:
S5.1:确定叶片初始位置;
S5.2:建立叶片运动轨迹函数;
S5.3:应用时滞微分方程求解叶片运动轨迹函数。
8.根据权利要求7所述的基于分象限的正交双层光栅动态调强分割方法,其特征在于,所述步骤S5.1具体包括以下内容:两个正交的叶片组,定义其中一组为主动叶片,另一组为被动叶片,主动叶片由射野边缘向射野中心运动,从动叶片由射野中心往射野边缘进行回退;
其初始位置可以确定为:主动叶片在射野边缘,从动叶片位于象限交界位置。
9.根据权利要求8所述的基于分象限的正交双层光栅动态调强分割方法,其特征在于,所述步骤S5.2具体包括以下内容:在给定加速器剂量率以及叶片沿一个方向运动的前提下,采用叶片位置和通量大小之间对应关系描述叶片轨迹;
以叶片端面位置作为叶片位置,在没有其余叶片遮挡的情况下,叶片位置与其对应通量大小为单调函数关系。
10.根据权利要求9所述的基于分象限的正交双层光栅动态调强分割方法,其特征在于,所述步骤S5.3具体包括以下内容:已知每个叶片位置的起始位置,通过前一位置的通量函数对下一瞬时的通量函数进行求解。
CN202010515666.6A 2020-06-08 2020-06-08 一种基于分象限的正交双层光栅动态调强分割方法 Active CN111681736B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202010515666.6A CN111681736B (zh) 2020-06-08 2020-06-08 一种基于分象限的正交双层光栅动态调强分割方法
PCT/CN2020/130429 WO2021248837A1 (zh) 2020-06-08 2020-11-20 一种基于分象限的正交双层光栅动态调强分割方法
US17/915,385 US20230132237A1 (en) 2020-06-08 2020-11-20 An orthogonal double-layer grating dynamic intensity modulation segmentation method based on quadrant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010515666.6A CN111681736B (zh) 2020-06-08 2020-06-08 一种基于分象限的正交双层光栅动态调强分割方法

Publications (2)

Publication Number Publication Date
CN111681736A CN111681736A (zh) 2020-09-18
CN111681736B true CN111681736B (zh) 2023-05-12

Family

ID=72454147

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010515666.6A Active CN111681736B (zh) 2020-06-08 2020-06-08 一种基于分象限的正交双层光栅动态调强分割方法

Country Status (3)

Country Link
US (1) US20230132237A1 (zh)
CN (1) CN111681736B (zh)
WO (1) WO2021248837A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111681736B (zh) * 2020-06-08 2023-05-12 苏州雷泰医疗科技有限公司 一种基于分象限的正交双层光栅动态调强分割方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110404185A (zh) * 2019-07-09 2019-11-05 苏州雷泰智能科技有限公司 一种正交双层光栅的旋转调强分割方法及装置

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5591983A (en) * 1995-06-30 1997-01-07 Siemens Medical Systems, Inc. Multiple layer multileaf collimator
US6526123B2 (en) * 1997-09-29 2003-02-25 Moshe Ein-Gal Multiple layer multileaf collimator
IL121866A (en) * 1997-09-29 2000-11-21 Ein Gal Moshe Multiple layer multileaf collimator
US6600810B1 (en) * 1998-08-10 2003-07-29 Siemens Medical Solutions Usa, Inc. Multiple layer multileaf collimator design to improve resolution and reduce leakage
US6757355B1 (en) * 2000-08-17 2004-06-29 Siemens Medical Solutions Usa, Inc. High definition radiation treatment with an intensity modulating multi-leaf collimator
US6661871B2 (en) * 2001-09-28 2003-12-09 Siemens Medical Solutions Usa, Inc. System and method for optimizing radiation treatment with an intensity modulating multi-leaf collimator by minimizing junctions
US6473490B1 (en) * 2001-09-28 2002-10-29 Siemens Medical Solutions Usa, Inc. Intensity map reconstruction for radiation therapy with a modulating multi-leaf collimator
US6577707B2 (en) * 2001-10-30 2003-06-10 Siemens Medical Solutions Usa, Inc. Edge extension of intensity map for radiation therapy with a modulating multi-leaf collimator
US6647092B2 (en) * 2002-01-18 2003-11-11 General Electric Company Radiation imaging system and method of collimation
JP2004275636A (ja) * 2003-03-19 2004-10-07 Nakano Syst:Kk 放射線治療計画装置
US6853705B2 (en) * 2003-03-28 2005-02-08 The University Of North Carolina At Chapel Hill Residual map segmentation method for multi-leaf collimator-intensity modulated radiotherapy
US7283611B1 (en) * 2004-03-22 2007-10-16 The University Of Notre Dame Segmentation algorithmic approach to step-and-shoot intensity modulated radiation therapy
US7180980B2 (en) * 2004-08-25 2007-02-20 Prowess, Inc. Method for intensity modulated radiation treatment using independent collimator jaws
US8009794B2 (en) * 2008-01-30 2011-08-30 Varian Medical Systems, Inc. Methods, apparatus, and computer-program products for increasing accuracy in cone-beam computed tomography
US10510456B2 (en) * 2015-09-10 2019-12-17 Shanghai United Imaging Healthcare Co., Ltd. Multi-leaf collimator and driving system
US10420958B2 (en) * 2015-09-25 2019-09-24 Varian Medical Systems International Ag Apparatus and method for employing a multi-leaf collimator while administering a radiation dose
US10398911B2 (en) * 2015-09-25 2019-09-03 Varian Medical Systems Internationl AG Method and apparatus for using a multi-layer multi-leaf collimation system
US10441814B2 (en) * 2015-09-25 2019-10-15 Varian Medical Systems International Ag Method and apparatus to employ a multi-layer multi-leaf collimator when administering a radiation therapy treatment
WO2017070433A1 (en) * 2015-10-23 2017-04-27 The Regents Of The University Of California A platform for intensity modulated radiation therapy
US10449389B2 (en) * 2016-12-05 2019-10-22 Varian Medical Systems International Ag Dynamic target masker in radiation treatment of multiple targets
RU2019121943A (ru) * 2016-12-13 2021-01-15 Вьюрэй Текнолоджиз, Инк. Системы и способы лучевой терапии
CN107823806B (zh) * 2017-09-15 2019-11-19 中北大学 一种用于调强放射治疗直接子野优化的方法及***
US11446518B2 (en) * 2017-09-20 2022-09-20 Our United Corporation Multi-leaf collimator and radiation therapy head
CN108175953B (zh) * 2017-12-29 2020-07-21 苏州雷泰医疗科技有限公司 一种基于动态光栅的旋转调强优化方法及放射治疗设备
US10500417B2 (en) * 2018-02-05 2019-12-10 Varian Medical Systems International Ag Compensating for leakage radiation in MLC modulated treatment
US11679278B2 (en) * 2018-03-30 2023-06-20 Varian Medical Systems, Inc. Method and apparatus for using a multi-layer multi-leaf collimator as a virtual flattening filter
US10770196B2 (en) * 2018-08-06 2020-09-08 Accuray Incorporated Binary multileaf collimator delivery with per-leaf field width
US10751550B2 (en) * 2018-08-06 2020-08-25 Accuray Incorporated Fast sliding window delivery via a high-speed multileaf collimator
CN110170109B (zh) * 2018-12-21 2020-12-18 苏州雷泰医疗科技有限公司 用于放疗设备的正交双层光栅装置及其子野分割控制方法
CN109499011B (zh) * 2018-12-21 2020-11-10 苏州雷泰医疗科技有限公司 用于正交双层光栅装置的动态调强子野分割方法
CN110215623B (zh) * 2019-06-11 2020-11-10 苏州雷泰智能科技有限公司 基于子野优化的正交双层光栅旋转调强的实现方法及装置
US11730977B2 (en) * 2020-01-23 2023-08-22 Shanghai United Imaging Healthcare Co., Ltd. Systems and methods for adjusting multi-leaf collimator
US11511130B2 (en) * 2020-04-15 2022-11-29 Shanghai United Imaging Healthcare Co., Ltd. Systems and methods for adjusting multi-leaf collimator
CN111681736B (zh) * 2020-06-08 2023-05-12 苏州雷泰医疗科技有限公司 一种基于分象限的正交双层光栅动态调强分割方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110404185A (zh) * 2019-07-09 2019-11-05 苏州雷泰智能科技有限公司 一种正交双层光栅的旋转调强分割方法及装置

Also Published As

Publication number Publication date
WO2021248837A1 (zh) 2021-12-16
US20230132237A1 (en) 2023-04-27
CN111681736A (zh) 2020-09-18

Similar Documents

Publication Publication Date Title
US11529532B2 (en) Radiation therapy systems and methods
US6907105B2 (en) Methods and apparatus for planning and delivering intensity modulated radiation fields with a rotating multileaf collimator
CN112043974B (zh) 一种基于正交双层光栅旋转扫掠的动态调强方法及装置
US7609811B1 (en) Method for minimizing the tongue and groove effect in intensity modulated radiation delivery
US7796731B2 (en) Leaf sequencing algorithm for moving targets
CN109310880B (zh) 辐射疗法中的使用切片的轨迹优化
US20100012859A1 (en) Method For Treating A Target Volume With A Particle Beam And Device Implementing Same
US20090225942A1 (en) Arc-Sequencing Technique for Intensity Modulated Arc Therapy
GB2370746A (en) High definition radiation treatment with an intensity modulating multi leaf collimator
US7945023B2 (en) Stereotactic radiotherapy with rotating attenuator
CN113272012B (zh) 具有交替梯形叶片几何形状设计的多叶准直器
Xia et al. Delivery systems of intensity-modulated radiotherapy using conventional multileaf collimators
CN111681736B (zh) 一种基于分象限的正交双层光栅动态调强分割方法
US20220249870A1 (en) Multi-leaf collimator for radiotherapy apparatus and radiotherapy apparatus using the same
US7573978B2 (en) Variable feathering field splitting for intensity modulated fields of large size
US11712583B2 (en) Utilizing an offset multi-leaf collimator to improve dose conformality and homogeneity
CN1178711A (zh) 独立准直器在适形放疗中的应用
Niu et al. Planning 4D intensity-modulated arc therapy for tumor tracking with a multileaf collimator
CN113521562B (zh) 一种基于正交双层光栅区域缩小的动态调强方法及装置
CN215995323U (zh) 一种用于放射治疗机的多叶准直器以及放射治疗机
CN116474277A (zh) 考虑双层光栅侧边半影的旋转扫掠动态调强方法及装置
CN113521561A (zh) 正交双层光栅逆向旋转调强的实现方法、存储介质及装置
Topolnjak et al. IMRT sequencing for a six-bank multi-leaf system
Park et al. Monte Carlo simulation of a 2D dynamic multileaf collimator to improve the plan quality in radiotherapy plan: a proof-of-concept study
Chu 5.1. Dose localization characteristics of ions

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant