CN111646995A - 4-amino-pyrimidoazenitrogen heterocycle-phenylurea derivative and preparation method and application thereof - Google Patents

4-amino-pyrimidoazenitrogen heterocycle-phenylurea derivative and preparation method and application thereof Download PDF

Info

Publication number
CN111646995A
CN111646995A CN202010123847.4A CN202010123847A CN111646995A CN 111646995 A CN111646995 A CN 111646995A CN 202010123847 A CN202010123847 A CN 202010123847A CN 111646995 A CN111646995 A CN 111646995A
Authority
CN
China
Prior art keywords
alkyl
substituted
halogen
alkoxy
cycloalkyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010123847.4A
Other languages
Chinese (zh)
Other versions
CN111646995B (en
Inventor
陈俐娟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Original Assignee
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University filed Critical Sichuan University
Publication of CN111646995A publication Critical patent/CN111646995A/en
Application granted granted Critical
Publication of CN111646995B publication Critical patent/CN111646995B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Abstract

The invention belongs to the field of chemical medicine, and particularly relates to a 4-amino-pyrimidoazepine-phenylurea derivative, and a preparation method and application thereof. The invention provides a 4-amino-pyrimidoazepine-phenylurea derivative, the structural formula of which is shown in formula I. In addition, the invention also provides a preparation method and application of the 4-amino-pyrimidoazepine-phenylurea derivative. The 4-amino-pyrimidoazepine-phenylurea derivative provided by the invention can be used as a FLT3 kinase inhibitor, has a good effect, and provides a new choice for preparing antitumor drugs.
Figure DDA0002393819110000011

Description

4-amino-pyrimidoazenitrogen heterocycle-phenylurea derivative and preparation method and application thereof
Technical Field
The invention belongs to the field of chemical medicine, and particularly relates to a 4-amino-pyrimidoazepine-phenylurea derivative, and a preparation method and application thereof.
Background
Leukemia is an abnormal clonal disease of hematopoietic stem cells, is arrested in different stages of cell development and malignant proliferation because of the loss of the ability of the leukemia cells to differentiate into mature functional blood cells, and the leukemia cells are proliferated and accumulated in large quantity in bone marrow and other hematopoietic tissues and infiltrate into other organs and tissues, so that normal hematopoiesis is inhibited, and symptoms such as anemia, hemorrhage, infection, infiltration of various organs and the like are clinically shown. Leukemia belongs to cell heterogeneous malignant tumor, has various types, complex etiology and different clinical manifestations, and some leukemias have the characteristics of quick onset, high mortality, short survival period, easy relapse, poor prognosis and extremely difficult cure.
Protein kinases, the family of receptor protein tyrosine kinases in particular, which catalyze the phosphorylation of hydroxyl groups on tyrosine, serine and threonine residues of proteins, play an important role as growth factor receptors in the control of many signal transduction pathways responsible for cellular functions, such as cell cycle, cell growth, cell differentiation and cell death. Dysregulation of receptor tyrosine kinases is often found in diseases such as proliferative disorders, inflammatory disorders, and immune system disorders.
FLT3(Fms-like tyrosine kinase 3) is an Fms-like tyrosine kinase 3, which belongs to a member of the type III receptor tyrosine kinase (RTK III) family with c-Kit, c-Fms and PDGFR, and the structure of FLT3 includes an extracellular domain consisting of 5 immunoglobulin-like molecules, a transmembrane domain and an intracellular tyrosine kinase domain. FLT3 is expressed predominantly on the cell surface of normal hematopoietic stem and progenitor cells, with its ligand predominantly expressed in bone marrow stromal cells. When ligand is combined with the extracellular domain of FLT3 cell membrane, FLT3 receptor is promoted to dimerize, and tyrosine kinase domain in cell membrane is self-phosphorylated, so that a series of downstream signal transduction pathways, such as Ras/MAPK, PI3K/Akt/mTOR and STAT5, are activated to regulate the proliferation and differentiation of cells. FLT3 mutation usually leads to its abnormal activation, and in the absence of ligand binding, autophosphorylation activates downstream signaling pathways, leading to abnormal proliferation of hematopoietic and lymphoid cells, leading to a variety of hematological malignancies.
Activating mutations for FLT3 have been demonstrated to be mainly two: point mutations in the activation loop in the internal tandem repeat (ITD) and kinase domain (TKD). The FLT3-ITD mutation occurred in approximately 25% of acute myelocytic leukemia patients and was associated with some adverse prognosis, while the FLT3-TKD mutation occurred in approximately 5% of acute myelocytic leukemia patients.
Numerous studies have shown that FLT3 mutation is one of the most common molecular genetic abnormalities and poor prognosis factors in AML, and its transduction involves multiple signaling pathways, making FLT3 an ideal drug target. In previous studies, more than 20 compounds have shown inhibition of FLT3 tyrosine kinase. Many have entered clinical trials. These small molecule tyrosinase inhibitors are mostly heterocyclic purine analogs, are ATP analogs, or intermediates with a structure similar to tyrosine covalently bound to ATP. The FLT3 receptor is still expressed, but the ATP pathway is blocked, thus autophosphorylation and sustained phosphorylation of the substrate is terminated, thereby blocking the signaling pathway of FLT3-ITD dependent cell lines and exerting cytotoxic effects.
The current research on FLT3-ITD and FLT3-TKD inhibitors belongs to the hot spot of drug development, and the single-target FLT3 inhibitor AC220 is currently subjected to clinical three-phase tests and is expected to be on the market, but the drug resistance in the later treatment period becomes an urgent problem to be solved. Therefore, the development of inhibitors effective against both mutations is the direction of research and development.
Disclosure of Invention
In order to solve the problems, the invention provides a 4-amino-pyrimidoazepine-phenylurea derivative, the structural formula of which is shown as formula I:
Figure BDA0002393819090000021
wherein X is N or C;
R1is-H,-OH, halogen, C1-C10 alkoxy, C1-C10 haloalkoxy,
Figure BDA0002393819090000022
C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl,
Figure BDA0002393819090000023
Or substituted or unsubstituted C1-C10 alkyl; the substituent of the substituted C1-C10 alkyl is-H,
Figure BDA0002393819090000024
-CN, -OH, phenyl, halogen, C1-C8 alkoxy, C3-C8 cycloalkyl, C1-C8 carbonyl or substituted or unsubstituted 3-6 membered heterocycloalkyl; the heteroatom of the 3-6 membered heterocycloalkyl is N, O or S, and the number of the heteroatoms is 1-3; the substituent for substituting the 3-to 6-membered heterocycloalkyl is-H, -OH, halogen, C1-C8 oxycarbonyl, C1-C8 alkyl, C1-C8 alkoxy or
Figure BDA0002393819090000025
R4is-H, -OH, halogen, C1-C8 alkyl, C1-C8 alkoxy or
Figure BDA0002393819090000026
R5~R10Independently is-H or C1-C8 alkyl;
R2is-H, -OH, halogen, C1-C10 alkyl, C3-C10 cycloalkyl, C1-C10 haloalkyl, amino-substituted C1-C10 alkyl, benzyl, substituted or unsubstituted C5-C10 aryl or substituted or unsubstituted 5-10 membered heteroaryl; the 5-to 10-membered heteroaryl has N, O or S as heteroatoms, and the number of the heteroatoms is 1-3; the substituent of the substituted C5-C10 aryl or 5-10-membered heteroaryl is-H, halogen or-NH2C1-C8 alkyl, C3-C8 cycloalkyl, C1-C8 haloalkyl, C1-C8 alkoxy, C1-C8 haloalkoxy, -OH or C1-C8 carbonyl;
R3is-H, -OH, halogen, -NH2Or C1-C10 alkyl.
As a preferred embodiment of the present inventionX is N or C; r1is-H, -OH, halogen, C1-C8 alkoxy, C1-C8 haloalkoxy,
Figure BDA0002393819090000031
C2-C8 alkenyl, C2-C8 alkynyl, C3-C8 cycloalkyl,
Figure BDA0002393819090000032
Or substituted or unsubstituted C1-C8 alkyl; the substituent of the substituted C1-C8 alkyl is-H,
Figure BDA0002393819090000033
-CN, -OH, phenyl, halogen, C1-C6 alkoxy, C3-C6 cycloalkyl, C1-C6 carbonyl or substituted or unsubstituted 3-6 membered heterocycloalkyl; the heteroatom of the 3-6 membered heterocycloalkyl is N, O or S, and the number of the heteroatoms is 1-3; the substituent for substituting the 3-to 6-membered heterocycloalkyl is-H, -OH, halogen, C1-C6 oxycarbonyl, C1-C6 alkyl, C1-C6 alkoxy or
Figure BDA0002393819090000034
R4is-H, -OH, halogen, C1-C6 alkyl, C1-C6 alkoxy or
Figure BDA0002393819090000035
R5~R10Independently is-H or C1-C6 alkyl;
R2is-H, -OH, halogen, C1-C8 alkyl, C3-C8 cycloalkyl, C1-C8 haloalkyl, amino-substituted C1-C8 alkyl, benzyl, substituted or unsubstituted C5-C8 aryl or substituted or unsubstituted 5-8 membered heteroaryl; the 5-8 membered heteroaryl has N, O or S as heteroatoms, and the number of the heteroatoms is 1-3; the substituent of the substituted C5-C8 aryl or 5-8-membered heteroaryl is-H, halogen or-NH2C1-C6 alkyl, C3-C6 cycloalkyl, C1-C6 haloalkyl, C1-C6 alkoxy, C1-C6 haloalkoxy, -OH or C1-C6 carbonyl;
R3is-H, -OH, halogen, -NH2Or C1-C8 alkyl.
Further, the method comprisesIn a preferred embodiment of the present invention, X is N or C; r1is-H, -OH, halogen, C1-C8 alkyl, C1-C6 alkoxy, C1-C6 halogenated alkoxy,
Figure BDA0002393819090000036
C2-C6 alkenyl, C2-C6 alkynyl, C3-C6 cycloalkyl,
Figure BDA0002393819090000037
Or substituted C1-C6 alkyl; the substituent of the substituted C1-C6 alkyl is-H,
Figure BDA0002393819090000038
-CN, -OH, phenyl, halogen, C1-C4 alkoxy, C3-C6 cycloalkyl, C1-C4 carbonyl or substituted or unsubstituted 3-6 membered heterocycloalkyl; the heteroatom of the 3-6 membered heterocycloalkyl is N, O or S, and the number of the heteroatoms is 1-3; the substituent for substituting the 3-to 6-membered heterocycloalkyl is-H, -OH, halogen, C1-C4 oxycarbonyl, C1-C4 alkyl, C1-C4 alkoxy or
Figure BDA0002393819090000039
R4is-H, -OH, halogen, C1-C4 alkyl, C1-C4 alkoxy or
Figure BDA00023938190900000310
R5~R10Independently is-H or C1-C4 alkyl;
R2is-H, -OH, halogen, C1-C6 alkyl, C3-C6 cycloalkyl, C1-C6 haloalkyl, amino-substituted C1-C6 alkyl, benzyl, substituted or unsubstituted C5-C6 aryl or substituted or unsubstituted 5-6 membered heteroaryl; the 5-6 membered heteroaryl has N, O or S as heteroatoms, and the number of the heteroatoms is 1-3; the substituent of the substituted C5-C6 aryl or 5-6-membered heteroaryl is-H, halogen or-NH2C1-C4 alkyl, C3-C6 cycloalkyl, C1-C4 haloalkyl, C1-C4 alkoxy, C1-C4 haloalkoxy, -OH or C1-C4 carbonyl;
R3is-H, -OH, halogen, -NH2Or C1-C6 alkyl.
Preferably, the 4-amino-pyrimidoazepine-phenylurea derivative has X being N or C; r1is-H, C1-C8 alkyl,
Figure BDA0002393819090000041
C2-C6 alkenyl, C2-C6 alkynyl, C3-C6 cycloalkyl or substituted C1-C4 alkyl; the substituent of the substituted C1-C4 alkyl is-H,
Figure BDA0002393819090000042
-CN, -OH, phenyl, halogen, C1-C4 alkoxy, C3-C6 cycloalkyl, C1-C4 carbonyl or substituted or unsubstituted 5-to 6-membered heterocycloalkyl; the heteroatom of the 5-6 membered heterocycloalkyl is N or O, and the number of the heteroatoms is 1-2; the substituent for substituting the 5-to 6-membered heterocycloalkyl is-H, C1-C4 oxycarbonyl, C1-C4 alkyl, C1-C4 alkoxy or
Figure BDA0002393819090000043
R4is-H, -OH, halogen, C1-C4 alkyl, C1-C4 alkoxy or
Figure BDA0002393819090000044
R5~R10Independently is-H or C1-C4 alkyl;
R2is-H, -OH, halogen, C1-C6 alkyl, C3-C6 cycloalkyl, C1-C6 haloalkyl, amino-substituted C1-C6 alkyl, benzyl, substituted or unsubstituted C5-C6 aryl or substituted or unsubstituted 5-6 membered heteroaryl; the 5-6 membered heteroaryl has N, O or S as heteroatoms, and the number of the heteroatoms is 1-3; the substituent of the substituted C5-C6 aryl or 5-6-membered heteroaryl is-H, halogen or-NH2C1-C4 alkyl, C3-C6 cycloalkyl, C1-C4 haloalkyl, C1-C4 alkoxy, C1-C4 haloalkoxy, -OH or C1-C4 carbonyl;
R3is-H, -OH, halogen, -NH2Or C1-C6 alkyl.
Further, X is N or C; r1is-H, C1-C8 alkyl,
Figure BDA0002393819090000045
C2-C6 alkenyl, C2-C6 alkynyl, C3-C6 cycloalkyl or substituted C1-C4 alkyl; the substituent of the substituted C1-C4 alkyl is-H,
Figure BDA0002393819090000046
-CN, -OH, phenyl, halogen, C1-C4 alkoxy, C3-C6 cycloalkyl, C1-C4 carbonyl,
Figure BDA0002393819090000047
Or
Figure BDA0002393819090000048
R4is-H, C1-C4 alkyl, C1-C4 alkoxy or
Figure BDA0002393819090000049
R5~R10Independently is-H or C1-C4 alkyl; r11is-H, C1-C4 oxycarbonyl, C1-C4 alkyl, C1-C4 alkoxy or
Figure BDA00023938190900000410
R2is-H, -OH, halogen, C1-C6 alkyl, C3-C6 cycloalkyl, C1-C6 haloalkyl, amino-substituted C1-C6 alkyl, benzyl, substituted or unsubstituted C5-C6 aryl or substituted or unsubstituted 5-6 membered heteroaryl; the 5-6 membered heteroaryl has N, O or S as heteroatoms, and the number of the heteroatoms is 1-3; the substituent of the substituted C5-C6 aryl or 5-6-membered heteroaryl is-H, halogen or-NH2C1-C4 alkyl, C3-C6 cycloalkyl, C1-C4 haloalkyl, C1-C4 alkoxy, C1-C4 haloalkoxy, -OH or C1-C4 carbonyl;
R3is-H, -OH, halogen, -NH2Or C1-C6 alkyl.
Further, X is N or C; r1is-H, C1-C8 alkyl,
Figure BDA0002393819090000051
C2-C6 alkenyl, C2-C6 alkynylC3-C6 cycloalkyl or substituted C1-C4 alkyl; the substituent of the substituted C1-C4 alkyl is-H,
Figure BDA0002393819090000052
Figure BDA0002393819090000053
-CN, -OH, phenyl, halogen, methoxy, ethoxy, N-acetyl, N,
Figure BDA0002393819090000054
Formyl, acetyl,
Figure BDA0002393819090000055
Figure BDA0002393819090000056
R4is-H, C1-C4 alkyl, tert-butyloxy or
Figure BDA0002393819090000057
R5~R10Independently is-H, methyl or ethyl;
R2is-H, -OH, halogen, C1-C6 alkyl, C3-C6 cycloalkyl, C1-C6 haloalkyl, amino-substituted C1-C6 alkyl, benzyl, substituted or unsubstituted C5-C6 aryl or substituted or unsubstituted 5-6 membered heteroaryl; the 5-6 membered heteroaryl has N, O or S as heteroatoms, and the number of the heteroatoms is 1-3; the substituent of the substituted C5-C6 aryl or 5-6-membered heteroaryl is-H, halogen or-NH2C1-C4 alkyl, C3-C6 cycloalkyl, C1-C4 haloalkyl, C1-C4 alkoxy, C1-C4 haloalkoxy, -OH or C1-C4 carbonyl;
R3is-H, -OH, halogen, -NH2Or C1-C6 alkyl.
Most preferably, X is N or C; r1is-H, C1-C8 alkyl,
Figure BDA0002393819090000058
T-butyloxycarbonyl, C2-C6 alkenyl, C2-C6 alkynyl,
Figure BDA0002393819090000059
Figure BDA00023938190900000510
R2is-H, -OH, halogen, C1-C6 alkyl, C3-C6 cycloalkyl, C1-C6 haloalkyl, amino-substituted C1-C6 alkyl, benzyl, substituted or unsubstituted C5-C6 aryl or substituted or unsubstituted 5-6 membered heteroaryl; the 5-6 membered heteroaryl has N, O or S as heteroatoms, and the number of the heteroatoms is 1-3; the substituent of the substituted C5-C6 aryl or 5-6-membered heteroaryl is-H, halogen or-NH2C1-C4 alkyl, C3-C6 cycloalkyl, C1-C4 haloalkyl, C1-C4 alkoxy, C1-C4 haloalkoxy, -OH or C1-C4 carbonyl;
R3is-H, -OH, halogen, -NH2Or C1-C6 alkyl.
Preferably, the 4-amino-pyrimidoazepine-phenylurea derivative has X being N or C; r2Is benzyl, C3-C6 cycloalkyl, substituted or unsubstituted C5-C6 aryl or substituted or unsubstituted 5-6 membered heteroaryl; the 5-6 membered heteroaryl has 1-2 heteroatoms and N or O as heteroatoms; the substituent of the substituted C5-C6 aryl or 5-6-membered heteroaryl is-H, halogen or-NH2C1-C4 alkyl, C3-C6 cycloalkyl, C1-C4 haloalkyl, C1-C4 alkoxy, C1-C4 haloalkoxy, -OH or C1-C4 carbonyl;
R1is-H, C1-C8 alkyl,
Figure BDA0002393819090000061
C2-C6 alkenyl, C2-C6 alkynyl, C3-C6 cycloalkyl or substituted C1-C4 alkyl; the substituent of the substituted C1-C4 alkyl is-H,
Figure BDA0002393819090000062
-CN, -OH, phenyl, halogen, C1-C4 alkoxy, C3-C6 cycloalkyl, C1-C4 carbonyl or substituted or unsubstituted 5-to 6-membered heterocycloalkyl; the hetero atom of the 5-to 6-membered heterocycloalkyl group is N or OThe number of the active ingredients is 1-2; the substituent for substituting the 5-to 6-membered heterocycloalkyl is-H, C1-C4 oxycarbonyl, C1-C4 alkyl, C1-C4 alkoxy or
Figure BDA0002393819090000063
R4is-H, -OH, halogen, C1-C4 alkyl, C1-C4 alkoxy or
Figure BDA0002393819090000064
R5~R10Independently is-H or C1-C4 alkyl;
R3is-H, -OH, halogen, -NH2Or C1-C6 alkyl.
Further, X is N or C; r2Is benzyl, C3-C6 cycloalkyl,
Figure BDA0002393819090000065
Figure BDA0002393819090000066
R12~R19Independently is-H, halogen, -NH2C1-C4 alkyl, C3-C6 cycloalkyl, C1-C4 haloalkyl, C1-C4 alkoxy, C1-C4 haloalkoxy, -OH or C1-C4 carbonyl;
R1is-H, C1-C8 alkyl,
Figure BDA0002393819090000067
C2-C6 alkenyl, C2-C6 alkynyl, C3-C6 cycloalkyl or substituted C1-C4 alkyl; the substituent of the substituted C1-C4 alkyl is-H,
Figure BDA0002393819090000068
-CN, -OH, phenyl, halogen, C1-C4 alkoxy, C3-C6 cycloalkyl, C1-C4 carbonyl or substituted or unsubstituted 5-to 6-membered heterocycloalkyl; the heteroatom of the 5-6 membered heterocycloalkyl is N or O, and the number of the heteroatoms is 1-2; the substituent for substituting the 5-to 6-membered heterocycloalkyl is-H, C1-C4 oxycarbonyl, C1-C4 alkyl, C1-C4 alkoxy or
Figure BDA0002393819090000071
R4is-H, -OH, halogen, C1-C4 alkyl, C1-C4 alkoxy or
Figure BDA0002393819090000072
R5~R10Independently is-H or C1-C4 alkyl;
R3is-H, -OH, halogen, -NH2Or C1-C6 alkyl.
Further, X is N or C; r2Is benzyl, C3-C6 cycloalkyl,
Figure BDA0002393819090000073
Figure BDA0002393819090000074
R16~R19Independently is-H, halogen, -NH2C1-C4 alkyl, C1-C4 haloalkyl, -OH or C1-C4 carbonyl;
R1is-H, C1-C8 alkyl,
Figure BDA0002393819090000075
C2-C6 alkenyl, C2-C6 alkynyl, C3-C6 cycloalkyl or substituted C1-C4 alkyl; the substituent of the substituted C1-C4 alkyl is-H,
Figure BDA0002393819090000076
-CN, -OH, phenyl, halogen, C1-C4 alkoxy, C3-C6 cycloalkyl, C1-C4 carbonyl or substituted or unsubstituted 5-to 6-membered heterocycloalkyl; the heteroatom of the 5-6 membered heterocycloalkyl is N or O, and the number of the heteroatoms is 1-2; the substituent for substituting the 5-to 6-membered heterocycloalkyl is-H, C1-C4 oxycarbonyl, C1-C4 alkyl, C1-C4 alkoxy or
Figure BDA0002393819090000077
R4is-H, -OH, halogen, C1-C4 alkyl, C1-C4 alkoxy or
Figure BDA0002393819090000078
R5~R10Independently is-H or C1-C4 alkyl;
R3is-H, -OH, halogen, -NH2Or C1-C6 alkyl.
Still further, X is N or C; r2Is benzyl, C3-C6 cycloalkyl,
Figure BDA0002393819090000079
Figure BDA00023938190900000710
R16~R19Independently is-H, -F, -Cl, -Br, -CF3Methyl or acetyl;
R1is-H, C1-C8 alkyl,
Figure BDA00023938190900000711
C2-C6 alkenyl, C2-C6 alkynyl, C3-C6 cycloalkyl or substituted C1-C4 alkyl; the substituent of the substituted C1-C4 alkyl is-H,
Figure BDA00023938190900000712
-CN, -OH, phenyl, halogen, C1-C4 alkoxy, C3-C6 cycloalkyl, C1-C4 carbonyl or substituted or unsubstituted 5-to 6-membered heterocycloalkyl; the heteroatom of the 5-6 membered heterocycloalkyl is N or O, and the number of the heteroatoms is 1-2; the substituent for substituting the 5-to 6-membered heterocycloalkyl is-H, C1-C4 oxycarbonyl, C1-C4 alkyl, C1-C4 alkoxy or
Figure BDA0002393819090000081
R4is-H, -OH, halogen, C1-C4 alkyl, C1-C4 alkoxy or
Figure BDA0002393819090000082
R5~R10Independently is-H or C1-C4 alkyl;
R3is-H, -OH, halogen, -NH2Or C1-C6 alkyl.
Most preferably, X is N or C; r2Is composed of
Figure BDA0002393819090000083
Figure BDA0002393819090000084
R1is-H, C1-C8 alkyl,
Figure BDA0002393819090000085
C2-C6 alkenyl, C2-C6 alkynyl, C3-C6 cycloalkyl or substituted C1-C4 alkyl; the substituent of the substituted C1-C4 alkyl is-H,
Figure BDA0002393819090000086
-CN, -OH, phenyl, halogen, C1-C4 alkoxy, C3-C6 cycloalkyl, C1-C4 carbonyl or substituted or unsubstituted 5-to 6-membered heterocycloalkyl; the heteroatom of the 5-6 membered heterocycloalkyl is N or O, and the number of the heteroatoms is 1-2; the substituent for substituting the 5-to 6-membered heterocycloalkyl is-H, C1-C4 oxycarbonyl, C1-C4 alkyl, C1-C4 alkoxy or
Figure BDA0002393819090000087
R4is-H, -OH, halogen, C1-C4 alkyl, C1-C4 alkoxy or
Figure BDA0002393819090000088
R5~R10Independently is-H or C1-C4 alkyl;
R3is-H, -OH, halogen, -NH2Or C1-C6 alkyl.
Preferably, the 4-amino-pyrimidoazepine-phenylurea derivative has X being N or C; r3is-H, halogen, -OH or C1-C4 alkyl; r2Is benzyl, C3-C6 cycloalkyl, substituted or unsubstituted C5-C6 aryl or substituted or unsubstituted 5-6 membered heteroaryl; the 5-6 membered heteroaryl has 1-2 heteroatoms and N or O as heteroatoms; the substituent of the substituted C5-C6 aryl or 5-6-membered heteroaryl is-H, halogen or-NH2C1-C4 alkyl, C3-C6 cycloalkyl, C1-C4 haloalkyl, C1-C4 alkoxy, C1-C4 haloalkoxy, -OH orC1-C4 carbonyl;
R1is-H, C1-C8 alkyl,
Figure BDA0002393819090000089
C2-C6 alkenyl, C2-C6 alkynyl, C3-C6 cycloalkyl or substituted C1-C4 alkyl; the substituent of the substituted C1-C4 alkyl is-H,
Figure BDA0002393819090000091
-CN, -OH, phenyl, halogen, C1-C4 alkoxy, C3-C6 cycloalkyl, C1-C4 carbonyl or substituted or unsubstituted 5-to 6-membered heterocycloalkyl; the heteroatom of the 5-6 membered heterocycloalkyl is N or O, and the number of the heteroatoms is 1-2; the substituent for substituting the 5-to 6-membered heterocycloalkyl is-H, C1-C4 oxycarbonyl, C1-C4 alkyl, C1-C4 alkoxy or
Figure BDA0002393819090000092
R4is-H, -OH, halogen, C1-C4 alkyl, C1-C4 alkoxy or
Figure BDA0002393819090000093
R5~R10Independently is-H or C1-C4 alkyl.
Further, X is N or C; r3is-H, halogen or C1-C4 alkyl; r2Is benzyl, C3-C6 cycloalkyl, substituted or unsubstituted C5-C6 aryl or substituted or unsubstituted 5-6 membered heteroaryl; the 5-6 membered heteroaryl has 1-2 heteroatoms and N or O as heteroatoms; the substituent of the substituted C5-C6 aryl or 5-6-membered heteroaryl is-H, halogen or-NH2C1-C4 alkyl, C3-C6 cycloalkyl, C1-C4 haloalkyl, C1-C4 alkoxy, C1-C4 haloalkoxy, -OH or C1-C4 carbonyl;
R1is-H, C1-C8 alkyl,
Figure BDA0002393819090000094
C2-C6 alkenyl, C2-C6 alkynyl, C3-C6 cycloalkyl or substituted C1-C4 alkyl; the substituent of the substituted C1-C4 alkyl is-H,
Figure BDA0002393819090000095
-CN, -OH, phenyl, halogen, C1-C4 alkoxy, C3-C6 cycloalkyl, C1-C4 carbonyl or substituted or unsubstituted 5-to 6-membered heterocycloalkyl; the heteroatom of the 5-6 membered heterocycloalkyl is N or O, and the number of the heteroatoms is 1-2; the substituent for substituting the 5-to 6-membered heterocycloalkyl is-H, C1-C4 oxycarbonyl, C1-C4 alkyl, C1-C4 alkoxy or
Figure BDA0002393819090000096
R4is-H, -OH, halogen, C1-C4 alkyl, C1-C4 alkoxy or
Figure BDA0002393819090000097
R5~R10Independently is-H or C1-C4 alkyl.
Further, X is N or C; r3is-H or halogen; r2Is benzyl, C3-C6 cycloalkyl, substituted or unsubstituted C5-C6 aryl or substituted or unsubstituted 5-6 membered heteroaryl; the 5-6 membered heteroaryl has 1-2 heteroatoms and N or O as heteroatoms; the substituent of the substituted C5-C6 aryl or 5-6-membered heteroaryl is-H, halogen or-NH2C1-C4 alkyl, C3-C6 cycloalkyl, C1-C4 haloalkyl, C1-C4 alkoxy, C1-C4 haloalkoxy, -OH or C1-C4 carbonyl;
R1is-H, C1-C8 alkyl,
Figure BDA0002393819090000098
C2-C6 alkenyl, C2-C6 alkynyl, C3-C6 cycloalkyl or substituted C1-C4 alkyl; the substituent of the substituted C1-C4 alkyl is-H,
Figure BDA0002393819090000099
-CN, -OH, phenyl, halogen, C1-C4 alkoxy, C3-C6 cycloalkyl, C1-C4 carbonyl or substituted or unsubstituted 5-to 6-membered heterocycloalkyl; the heteroatom of the 5-6 membered heterocycloalkyl is N or O, and the number of the heteroatoms is 1-2; the substituent for substituting the 5-to 6-membered heterocycloalkyl is-H,C1-C4 oxycarbonyl, C1-C4 alkyl, C1-C4 alkoxy or
Figure BDA0002393819090000101
R4is-H, -OH, halogen, C1-C4 alkyl, C1-C4 alkoxy or
Figure BDA0002393819090000102
R5~R10Independently is-H or C1-C4 alkyl.
Most preferably, X is N or C; r3is-H, -F, -Cl or-Br; r2Is benzyl, C3-C6 cycloalkyl, substituted or unsubstituted C5-C6 aryl or substituted or unsubstituted 5-6 membered heteroaryl; the 5-6 membered heteroaryl has 1-2 heteroatoms and N or O as heteroatoms; the substituent of the substituted C5-C6 aryl or 5-6-membered heteroaryl is-H, halogen or-NH2C1-C4 alkyl, C3-C6 cycloalkyl, C1-C4 haloalkyl, C1-C4 alkoxy, C1-C4 haloalkoxy, -OH or C1-C4 carbonyl;
R1is-H, C1-C8 alkyl,
Figure BDA0002393819090000103
C2-C6 alkenyl, C2-C6 alkynyl, C3-C6 cycloalkyl or substituted C1-C4 alkyl; the substituent of the substituted C1-C4 alkyl is-H,
Figure BDA0002393819090000104
-CN, -OH, phenyl, halogen, C1-C4 alkoxy, C3-C6 cycloalkyl, C1-C4 carbonyl or substituted or unsubstituted 5-to 6-membered heterocycloalkyl; the heteroatom of the 5-6 membered heterocycloalkyl is N or O, and the number of the heteroatoms is 1-2; the substituent for substituting the 5-to 6-membered heterocycloalkyl is-H, C1-C4 oxycarbonyl, C1-C4 alkyl, C1-C4 alkoxy or
Figure BDA0002393819090000105
R4is-H, -OH, halogen, C1-C4 alkyl, C1-C4 alkoxy or
Figure BDA0002393819090000106
R5~R10Independently is-H or C1-C4 alkyl.
As a preferred technical scheme of the invention, the 4-amino-pyrimidoazepine-phenylurea derivative has the structure that X is N or C; r1is-H, C1-C8 alkyl,
Figure BDA0002393819090000107
C2-C6 alkenyl, C2-C6 alkynyl, C3-C6 cycloalkyl or substituted C1-C4 alkyl; the substituent of the substituted C1-C4 alkyl is-H,
Figure BDA0002393819090000108
-CN, -OH, phenyl, halogen, C1-C4 alkoxy, C3-C6 cycloalkyl, C1-C4 carbonyl,
Figure BDA0002393819090000109
R4is-H, C1-C4 alkyl, C1-C4 alkoxy or
Figure BDA00023938190900001010
R5~R10Independently is-H or C1-C4 alkyl; r11is-H, C1-C4 oxycarbonyl, C1-C4 alkyl, C1-C4 alkoxy or
Figure BDA00023938190900001011
R2Is benzyl, C3-C6 cycloalkyl,
Figure BDA0002393819090000111
R12~R19Independently is-H, halogen, -NH2C1-C4 alkyl, C3-C6 cycloalkyl, C1-C4 haloalkyl, C1-C4 alkoxy, C1-C4 haloalkoxy, -OH or C1-C4 carbonyl;
R3is-H, halogen or C1-C4 alkyl.
Preferably, X is N or C; r1is-H, C1-C8 alkyl,
Figure BDA0002393819090000112
C2-C6 alkenyl, C2-C6 alkynyl, C3-C6 cycloalkyl or substituted C1-C4 alkyl; the substituent of the substituted C1-C4 alkyl is-H,
Figure BDA0002393819090000113
-CN, -OH, phenyl, halogen, methoxy, ethoxy, N-acetyl, N,
Figure BDA0002393819090000114
Formyl, acetyl,
Figure BDA0002393819090000115
Figure BDA0002393819090000116
R4is-H, C1-C4 alkyl, tert-butyloxy or
Figure BDA0002393819090000117
R5~R10Independently is-H, methyl or ethyl;
R2is benzyl, C3-C6 cycloalkyl,
Figure BDA0002393819090000118
R16~R19Independently is-H, halogen, -NH2C1-C4 alkyl, C1-C4 haloalkyl, -OH or C1-C4 carbonyl;
R3is-H or halogen.
Most preferably, X is N or C; r1is-H, C1-C8 alkyl,
Figure BDA0002393819090000119
T-butyloxycarbonyl, C2-C6 alkenyl, C2-C6 alkynyl,
Figure BDA00023938190900001110
Figure BDA00023938190900001111
Figure BDA0002393819090000121
R2Is composed of
Figure BDA0002393819090000122
Figure BDA0002393819090000123
R3is-H, -F, -Cl or-Br.
As a preferred embodiment of the present invention, when R is the above-mentioned 4-amino-pyrimidoazepine-phenylurea derivative2Is composed of
Figure BDA0002393819090000124
And the structure is shown as formula II:
Figure BDA0002393819090000125
wherein X is N or C; r1is-H, -OH, halogen, C1-C10 alkoxy, C1-C10 haloalkoxy,
Figure BDA0002393819090000126
C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl,
Figure BDA0002393819090000127
Or substituted or unsubstituted C1-C10 alkyl; the substituent of the substituted C1-C10 alkyl is-H,
Figure BDA0002393819090000128
-CN, -OH, phenyl, halogen, C1-C8 alkoxy, C3-C8 cycloalkyl, C1-C8 carbonyl or substituted or unsubstituted 3-6 membered heterocycloalkyl; the heteroatom of the 3-6 membered heterocycloalkyl is N, O or S, and the number of the heteroatoms is 1-3; the substituent for substituting the 3-to 6-membered heterocycloalkyl is-H, -OH, halogen, C1-C8 oxycarbonyl, C1-C8 alkyl, C1-C8 alkoxy or
Figure BDA0002393819090000131
R4is-H,-OH, halogen, C1-C8 alkyl, C1-C8 alkoxy or
Figure BDA0002393819090000132
R5~R10Independently is-H or C1-C8 alkyl;
R3is-H, -OH, halogen, -NH2Or C1-C10 alkyl.
Preferably, X is N or C; r1is-H, -OH, halogen, C1-C8 alkoxy, C1-C8 haloalkoxy,
Figure BDA0002393819090000133
C2-C8 alkenyl, C2-C8 alkynyl, C3-C8 cycloalkyl,
Figure BDA0002393819090000134
Or substituted or unsubstituted C1-C8 alkyl; the substituent of the substituted C1-C8 alkyl is-H,
Figure BDA0002393819090000135
-CN, -OH, phenyl, halogen, C1-C6 alkoxy, C3-C6 cycloalkyl, C1-C6 carbonyl or substituted or unsubstituted 3-6 membered heterocycloalkyl; the heteroatom of the 3-6 membered heterocycloalkyl is N, O or S, and the number of the heteroatoms is 1-3; the substituent for substituting the 3-to 6-membered heterocycloalkyl is-H, -OH, halogen, C1-C6 oxycarbonyl, C1-C6 alkyl, C1-C6 alkoxy or
Figure BDA0002393819090000136
R4is-H, -OH, halogen, C1-C6 alkyl, C1-C6 alkoxy or
Figure BDA0002393819090000137
R5~R10Independently is-H or C1-C6 alkyl;
R3is-H, -OH, halogen, -NH2Or C1-C8 alkyl.
Further preferably, X is N or C; r1is-H, -OH, halogen, C1-C8 alkyl, C1-C6 alkoxy, C1-C6 halogenated alkoxy,
Figure BDA0002393819090000138
C2-C6 alkenyl, C2-C6 alkynyl, C3-C6 cycloalkyl,
Figure BDA0002393819090000139
Or substituted C1-C6 alkyl; the substituent of the substituted C1-C6 alkyl is-H,
Figure BDA00023938190900001310
-CN, -OH, phenyl, halogen, C1-C4 alkoxy, C3-C6 cycloalkyl, C1-C4 carbonyl or substituted or unsubstituted 3-6 membered heterocycloalkyl; the heteroatom of the 3-6 membered heterocycloalkyl is N, O or S, and the number of the heteroatoms is 1-3; the substituent for substituting the 3-to 6-membered heterocycloalkyl is-H, -OH, halogen, C1-C4 oxycarbonyl, C1-C4 alkyl, C1-C4 alkoxy or
Figure BDA00023938190900001311
R4is-H, -OH, halogen, C1-C4 alkyl, C1-C4 alkoxy or
Figure BDA00023938190900001312
R5~R10Independently is-H or C1-C4 alkyl;
R3is-H, -OH, halogen, -NH2Or C1-C6 alkyl.
Further, X is N or C; r1is-H, C1-C8 alkyl,
Figure BDA00023938190900001313
C2-C6 alkenyl, C2-C6 alkynyl, C3-C6 cycloalkyl or substituted C1-C4 alkyl; the substituent of the substituted C1-C4 alkyl is-H,
Figure BDA0002393819090000141
-CN, -OH, phenyl, halogen, C1-C4 alkoxy, C3-C6 cycloalkyl, C1-C4 carbonyl or substituted or unsubstituted 5-to 6-membered heterocycloalkyl; the heteroatom of the 5-6 membered heterocycloalkyl is N or O, and the number of the heteroatoms is 1-2; the substituted 5-to 6-membered heteroThe substituent of the cycloalkyl is-H, C1-C4 oxycarbonyl, C1-C4 alkyl, C1-C4 alkoxy or
Figure BDA0002393819090000142
R4is-H, -OH, halogen, C1-C4 alkyl, C1-C4 alkoxy or
Figure BDA0002393819090000143
R5~R10Independently is-H or C1-C4 alkyl;
R3is-H, -OH, halogen or C1-C4 alkyl.
Further, X is N or C; r1is-H, C1-C8 alkyl,
Figure BDA0002393819090000144
C2-C6 alkenyl, C2-C6 alkynyl, C3-C6 cycloalkyl or substituted C1-C4 alkyl; the substituent of the substituted C1-C4 alkyl is-H,
Figure BDA0002393819090000145
Figure BDA0002393819090000146
-CN, -OH, phenyl, halogen, C1-C4 alkoxy, C3-C6 cycloalkyl, C1-C4 carbonyl,
Figure BDA0002393819090000147
Figure BDA0002393819090000148
R4is-H, C1-C4 alkyl, C1-C4 alkoxy or
Figure BDA0002393819090000149
R5~R10Independently is-H or C1-C4 alkyl; r11is-H, C1-C4 oxycarbonyl, C1-C4 alkyl, C1-C4 alkoxy or
Figure BDA00023938190900001410
R3is-H, -OH or halogen.
More preferably, X is N or C; r1is-H, C1-C8 alkyl,
Figure BDA00023938190900001411
C2-C6 alkenyl, C2-C6 alkynyl, C3-C6 cycloalkyl or substituted C1-C4 alkyl; the substituent of the substituted C1-C4 alkyl is-H,
Figure BDA00023938190900001412
-CN, -OH, phenyl, halogen, methoxy, ethoxy, N-acetyl, N,
Figure BDA00023938190900001413
Formyl, acetyl,
Figure BDA00023938190900001414
Figure BDA00023938190900001415
R4is-H, C1-C4 alkyl, tert-butyloxy or
Figure BDA00023938190900001416
R5~R10Independently is-H, methyl or ethyl;
R3is-H or halogen.
Most preferably, X is N or C; r1is-H, C1-C8 alkyl,
Figure BDA0002393819090000151
T-butyloxycarbonyl, C2-C6 alkenyl, C2-C6 alkynyl,
Figure BDA0002393819090000152
Figure BDA0002393819090000153
R3is-H, -F, -Cl or-Br.
As a preferred embodiment of the present invention, when R is the above-mentioned 4-amino-pyrimidoazepine-phenylurea derivative2Is composed of
Figure BDA0002393819090000154
R3When the structure is-H, the structure is shown as formula III:
Figure BDA0002393819090000155
wherein X is N or C; r1is-H, -OH, halogen, C1-C10 alkoxy, C1-C10 haloalkoxy,
Figure BDA0002393819090000156
C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl,
Figure BDA0002393819090000157
Or substituted or unsubstituted C1-C10 alkyl; the substituent of the substituted C1-C10 alkyl is-H,
Figure BDA0002393819090000158
-CN, -OH, phenyl, halogen, C1-C8 alkoxy, C3-C8 cycloalkyl, C1-C8 carbonyl or substituted or unsubstituted 3-6 membered heterocycloalkyl; the heteroatom of the 3-6 membered heterocycloalkyl is N, O or S, and the number of the heteroatoms is 1-3; the substituent for substituting the 3-to 6-membered heterocycloalkyl is-H, -OH, halogen, C1-C8 oxycarbonyl, C1-C8 alkyl, C1-C8 alkoxy or
Figure BDA0002393819090000159
R4is-H, -OH, halogen, C1-C8 alkyl, C1-C8 alkoxy or
Figure BDA0002393819090000161
R5~R10Independently is-H or C1-C8 alkyl.
Preferably, X is N or C; r1is-H, -OH, halogen, C1-C8 alkoxy, C1-C8 haloalkoxy,
Figure BDA0002393819090000162
C2-C8 alkenyl, C2-C8 alkynyl, C3EC8 cycloalkyl,
Figure BDA0002393819090000163
Or substituted or unsubstituted C1-C8 alkyl; the substituent of the substituted C1-C8 alkyl is-H,
Figure BDA0002393819090000164
-CN, -OH, phenyl, halogen, C1-C6 alkoxy, C3-C6 cycloalkyl, C1-C6 carbonyl or substituted or unsubstituted 3-6 membered heterocycloalkyl; the heteroatom of the 3-6 membered heterocycloalkyl is N, O or S, and the number of the heteroatoms is 1-3; the substituent for substituting the 3-to 6-membered heterocycloalkyl is-H, -OH, halogen, C1-C6 oxycarbonyl, C1-C6 alkyl, C1-C6 alkoxy or
Figure BDA0002393819090000165
R4is-H, -OH, halogen, C1-C6 alkyl, C1-C6 alkoxy or
Figure BDA0002393819090000166
R5~R10Independently is-H or C1-C6 alkyl.
Further preferably, X is N or C; r1is-H, -OH, halogen, C1-C8 alkyl, C1-C6 alkoxy, C1-C6 halogenated alkoxy,
Figure BDA0002393819090000167
C2-C6 alkenyl, C2-C6 alkynyl, C3-C6 cycloalkyl,
Figure BDA0002393819090000168
Or substituted C1-C6 alkyl; the substituent of the substituted C1-C6 alkyl is-H,
Figure BDA0002393819090000169
-CN, -OH, phenyl, halogen, C1-C4 alkoxy, C3-C6 cycloalkyl, C1-C4 carbonyl or substituted or unsubstituted 3-6 membered heterocycloalkyl; the heteroatom of the 3-6 membered heterocycloalkyl is N, O or S, and the number of the heteroatoms is 1-3; the substituent for substituting the 3-to 6-membered heterocycloalkyl is-H, -OH, halogenElements, C1-C4 oxycarbonyl, C1-C4 alkyl, C1-C4 alkoxy or
Figure BDA00023938190900001610
R4is-H, -OH, halogen, C1-C4 alkyl, C1-C4 alkoxy or
Figure BDA00023938190900001611
R5~R10Independently is-H or C1-C4 alkyl.
Further, X is N or C; r1is-H, C1-C8 alkyl,
Figure BDA00023938190900001612
C2-C6 alkenyl, C2-C6 alkynyl, C3-C6 cycloalkyl or substituted C1-C4 alkyl; the substituent of the substituted C1-C4 alkyl is-H,
Figure BDA00023938190900001613
-CN, -OH, phenyl, halogen, C1-C4 alkoxy, C3-C6 cycloalkyl, C1-C4 carbonyl or substituted or unsubstituted 5-to 6-membered heterocycloalkyl; the heteroatom of the 5-6 membered heterocycloalkyl is N or O, and the number of the heteroatoms is 1-2; the substituent for substituting the 5-to 6-membered heterocycloalkyl is-H, C1-C4 oxycarbonyl, C1-C4 alkyl, C1-C4 alkoxy or
Figure BDA0002393819090000171
R4is-H, -OH, halogen, C1-C4 alkyl, C1-C4 alkoxy or
Figure BDA0002393819090000172
R5~R10Independently is-H or C1-C4 alkyl.
Further, X is N or C; r1is-H, C1-C8 alkyl,
Figure BDA0002393819090000173
C2-C6 alkenyl, C2-C6 alkynyl, C3-C6 cycloalkyl or substituted C1-C4 alkyl; the substituent of the substituted C1-C4 alkyl is-H,
Figure BDA0002393819090000174
Figure BDA0002393819090000175
-CN, -OH, phenyl, halogen, C1-C4 alkoxy, C3-C6 cycloalkyl, C1-C4 carbonyl,
Figure BDA0002393819090000176
Figure BDA0002393819090000177
R4is-H, C1-C4 alkyl, C1-C4 alkoxy or
Figure BDA0002393819090000178
R5~R10Independently is-H or C1-C4 alkyl; r11is-H, C1-C4 oxycarbonyl, C1-C4 alkyl, C1-C4 alkoxy or
Figure BDA0002393819090000179
More preferably, X is N or C; r1is-H, C1-C8 alkyl,
Figure BDA00023938190900001710
C2-C6 alkenyl, C2-C6 alkynyl, C3-C6 cycloalkyl or substituted C1-C4 alkyl; the substituent of the substituted C1-C4 alkyl is-H,
Figure BDA00023938190900001711
Figure BDA00023938190900001712
-CN, -OH, phenyl, halogen, methoxy, ethoxy, N-acetyl, N,
Figure BDA00023938190900001713
Formyl, acetyl,
Figure BDA00023938190900001714
Figure BDA00023938190900001715
R4is-H, C1-C4 alkyl, tert-butyloxy or
Figure BDA00023938190900001716
R5~R10Independently is-H, methyl or ethyl.
Most preferably, X is N or C; r1is-H, C1-C8 alkyl,
Figure BDA00023938190900001717
T-butyloxycarbonyl, C2-C6 alkenyl, C2-C6 alkynyl,
Figure BDA00023938190900001718
Figure BDA00023938190900001719
Figure BDA0002393819090000181
As a preferred embodiment of the present invention, when R is the above-mentioned 4-amino-pyrimidoazepine-phenylurea derivative2Is composed of
Figure BDA0002393819090000182
R3is-H, X is C, R1Is composed of
Figure BDA0002393819090000183
And when the structure is shown as formula IV:
Figure BDA0002393819090000184
wherein R is16~R19Independently is-H, halogen, -NH2C1-C4 alkyl, C3-C6 cycloalkyl, C1-C4 haloalkyl, C1-C4 alkoxy, C1-C4 haloalkoxy, -OH or C1-C4 carbonyl.
Preferably, R16~R19Independently is-H, halogen, -NH2C1-C4 alkylC1-C4 haloalkyl, -OH or C1-C4 carbonyl.
Most preferably, R16~R19Independently is-H, -F, -Cl, -Br, -CF3Methyl or acetyl.
The 4-amino-pyrimidoazenitrogen heterocycle-phenylurea derivative has the following structural formula:
Figure BDA0002393819090000185
Figure BDA0002393819090000191
Figure BDA0002393819090000201
Figure BDA0002393819090000211
Figure BDA0002393819090000221
the invention also provides a synthesis method of the 4-amino-pyrimidoazenitrogen heterocycle-phenylurea derivative, which mainly adopts the following synthesis route:
Figure BDA0002393819090000222
the synthesis method of the compound comprises the following steps: the structure of the compound of the general formula (I) is divided into a part A and a part B, wherein the part A is an amine intermediate (formula V) compound, and the part B is an active urea intermediate (formula VI) compound or an isocyanate intermediate.
Figure BDA0002393819090000223
The first scheme is as follows: the synthesis method of the part A amine intermediate (formula V) compound is as follows:
Figure BDA0002393819090000231
the synthesis method of the pyrimido pyrrole intermediate is shown as the following scheme:
Figure BDA0002393819090000232
step a: ammoniation: taking 4-chloro-pyrrolopyrimidine (commercially available) as a starting material SM1, adding ammonia water (g/mL is approximately 5-7 times) into an autoclave, reacting for 4 hours under the pressure of 10-15 atm, cooling, filtering to obtain an intermediate M1, and drying without further purification;
step b: iodination: dissolving the intermediate M1 in a solvent at room temperature, adding N-iodosuccinimide (NIS) (1.5 times equivalent) for reacting for 1 hour, concentrating the solution, adding 30-40 times of water for pulping, adding 0.5 equivalent of sodium thiosulfate, filtering to obtain an intermediate M2, and drying without further purification; the solvent is tetrahydrofuran, DMF or acetonitrile, etc.;
step c: and (4) Boc protection: dissolving the intermediate M2 in a solvent, adding 2 equivalents of organic base, adding 1 equivalent of Boc anhydride (such as di-tert-butyl dicarbonate) and reacting at 50-60 ℃ for 2 hours, concentrating the reaction solution after the reaction is finished, pulping with 30-40 times of water, filtering to obtain an intermediate M3, and drying without further purification; the solvent is acetonitrile, DMF or dioxane, etc.; the organic base is triethylamine, DIEA or pyridine and the like;
step d: suzuki reaction: mixing the intermediate M3 with boric acid/boric acid pinacol ester, alkali, a catalyst and the like, adding a solvent, reacting under the protection of nitrogen at the reaction temperature of 70-90 ℃ for 2-4 hours, treating, and obtaining an intermediate M4 after simple treatment, wherein the intermediate M4 needs to be further purified; the alkali is inorganic alkali such as potassium carbonate, sodium carbonate, potassium bicarbonate or sodium bicarbonate; the catalyst is (dppf) PdCl2Or tetrakis (triphenylphosphine) palladium; the solvent is a mixed solvent of dioxane, ethanol and water orA mixed solvent of toluene, ethanol and water;
step e: removing Boc: dissolving the intermediate M4 in a solvent at room temperature, adding strong acid, adjusting the pH of the system to about 1, adjusting the pH to be alkaline by using inorganic base after the reaction is finished, adjusting the pH to about 13, extracting by using dichloromethane, concentrating an organic phase, pulping by using diethyl ether, filtering to obtain an intermediate M5, and drying without further purification; the solvent is water or ethanol and the like; the strong acid is inorganic strong acid such as sulfuric acid, methanesulfonic acid or hydrochloric acid; the inorganic alkali is potassium hydroxide or sodium hydroxide and the like;
step f: and (3) substitution: dissolving the intermediate M5 in a solvent, adding 1.2 equivalents of halide, reacting at 70-80 ℃ for 1 hour, filtering the reaction solution to remove inorganic salts to obtain a solution of the intermediate M6 (the compound of formula V), and not requiring further purification; the solvent is acetonitrile, toluene, dioxane or DMF.
The synthesis method of the part B amine intermediate (formula VI) compound is as follows:
Figure BDA0002393819090000241
dissolving triphosgene in a solvent, adding 1 equivalent of amine raw material, adding organic base, reacting at 60-65 ℃ for 4-5 hours, filtering to remove solid residues after the reaction is finished, and concentrating the filtrate to obtain an intermediate (a compound shown in a formula VI); the solvent is tetrahydrofuran and the like; the organic base is triethylamine or DIEA and the like.
Figure BDA0002393819090000242
Then, dissolving the intermediate compound (formula V) in a solvent, adding 1 equivalent of the intermediate compound (formula VI), reacting at 70-80 ℃ for 1 hour, precipitating a large amount of solid, and filtering to obtain a filter cake, namely the final urea compound, namely the compound of the general formula (I); the solvent is acetonitrile, dioxane, toluene or DMF, etc.;
wherein X is N or C; r1is-H, -OH, halogen, C1-C10 alkoxy, C1-C10 haloalkoxy,
Figure BDA0002393819090000243
C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl,
Figure BDA0002393819090000244
Or substituted or unsubstituted C1-C10 alkyl; the substituent of the substituted C1-C10 alkyl is-H,
Figure BDA0002393819090000245
-CN, -OH, phenyl, halogen, C1-C8 alkoxy, C3-C8 cycloalkyl, C1-C8 carbonyl or substituted or unsubstituted 3-6 membered heterocycloalkyl; the heteroatom of the 3-6 membered heterocycloalkyl is N, O or S, and the number of the heteroatoms is 1-3; the substituent for substituting the 3-to 6-membered heterocycloalkyl is-H, -OH, halogen, C1-C8 oxycarbonyl, C1-C8 alkyl, C1-C8 alkoxy or
Figure BDA0002393819090000246
R4is-H, -OH, halogen, C1-C8 alkyl, C1-C8 alkoxy or
Figure BDA0002393819090000247
R5~R10Independently is-H or C1-C8 alkyl;
R2is-H, -OH, halogen, C1-C10 alkyl, C3-C10 cycloalkyl, C1-C10 haloalkyl, amino-substituted C1-C10 alkyl, benzyl, substituted or unsubstituted C5-C10 aryl or substituted or unsubstituted 5-10 membered heteroaryl; the 5-to 10-membered heteroaryl has N, O or S as heteroatoms, and the number of the heteroatoms is 1-3; the substituent of the substituted C5-C10 aryl or 5-10-membered heteroaryl is-H, halogen or-NH2C1-C8 alkyl, C3-C8 cycloalkyl, C1-C8 haloalkyl, C1-C8 alkoxy, C1-C8 haloalkoxy, -OH or C1-C8 carbonyl;
R3is-H, -OH, halogen, -NH2Or C1-C10 alkyl.
Scheme II:
Figure BDA0002393819090000251
the synthesis of the intermediate compound (formula V) is the same as that of the first scheme, the intermediate compound (formula V) is dissolved in a solvent, 1 equivalent of isocyanate intermediate is added, the reaction is carried out for 1 hour at 70-80 ℃, a large amount of solids are separated out, and a filter cake after filtration is the final urea compound, namely the compound of the general formula (I); the solvent is acetonitrile, dioxane, toluene or DMF, etc.;
wherein X is N or C; r1is-H, -OH, halogen, C1-C10 alkoxy, C1-C10 haloalkoxy,
Figure BDA0002393819090000252
C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl,
Figure BDA0002393819090000253
Or substituted or unsubstituted C1-C10 alkyl; the substituent of the substituted C1-C10 alkyl is-H,
Figure BDA0002393819090000254
-CN, -OH, phenyl, halogen, C1-C8 alkoxy, C3-C8 cycloalkyl, C1-C8 carbonyl or substituted or unsubstituted 3-6 membered heterocycloalkyl; the heteroatom of the 3-6 membered heterocycloalkyl is N, O or S, and the number of the heteroatoms is 1-3; the substituent for substituting the 3-to 6-membered heterocycloalkyl is-H, -OH, halogen, C1-C8 oxycarbonyl, C1-C8 alkyl, C1-C8 alkoxy or
Figure BDA0002393819090000255
R4is-H, -OH, halogen, C1-C8 alkyl, C1-C8 alkoxy or
Figure BDA0002393819090000256
R5~R10Independently is-H or C1-C8 alkyl;
R2is-H, -OH, halogen, C1-C10 alkyl, C3-C10 cycloalkyl, C1-C10 haloalkyl, amino-substituted C1-C10 alkyl, benzyl, substituted or unsubstitutedA C5-C10 aryl or a substituted or unsubstituted 5-to 10-membered heteroaryl; the 5-to 10-membered heteroaryl has N, O or S as heteroatoms, and the number of the heteroatoms is 1-3; the substituent of the substituted C5-C10 aryl or 5-10-membered heteroaryl is-H, halogen or-NH2C1-C8 alkyl, C3-C8 cycloalkyl, C1-C8 haloalkyl, C1-C8 alkoxy, C1-C8 haloalkoxy, -OH or C1-C8 carbonyl;
R3is-H, -OH, halogen, -NH2Or C1-C10 alkyl.
The invention also provides the 4-amino-pyrimidoazenitrogen heterocyclic-phenylurea derivative, including tautomers, stereoisomers, mixtures of all proportions thereof and isotopically substituted compounds thereof.
The invention also provides pharmaceutically acceptable salts of the 4-amino-pyrimidoazepine-phenylurea derivatives. Wherein the salt with an acid is obtained by reacting the free base of the parent compound with an inorganic or organic acid. The inorganic acid includes hydrochloric acid, hydrobromic acid, nitric acid, phosphoric acid, metaphosphoric acid, sulfuric acid, sulfurous acid, perchloric acid and the like. The organic acid includes acetic acid, propionic acid, acrylic acid, oxalic acid, (D) or (L) malic acid, fumaric acid, maleic acid, hydroxybenzoic acid, γ -hydroxybutyric acid, methoxybenzoic acid, phthalic acid, methanesulfonic acid, ethanesulfonic acid, naphthalene-1-sulfonic acid, naphthalene-2-sulfonic acid, p-toluenesulfonic acid, salicylic acid, tartaric acid, citric acid, lactic acid, mandelic acid, succinic acid, malonic acid, or the like.
The term "pharmaceutically acceptable" as used herein, means that which, within the scope of sound medical judgment, is suitable for use in contact with the tissues of human beings and other mammals without undue toxicity, irritation, allergic response and the like, and which, when administered to a recipient, provides, directly or indirectly, a compound of the invention or a prodrug of the compound.
The invention also provides pharmaceutically acceptable hydrates of the 4-amino-pyrimidoazenitrogen heterocyclic-phenylurea derivatives. The term "hydrate" refers to a compound that further binds stoichiometric or non-stoichiometric water by non-covalent intermolecular forces.
The invention also provides pharmaceutically acceptable polymorphic substances of the 4-amino-pyrimidoazepine-phenylurea derivatives. The term "polymorph" denotes a solid crystalline form of a compound or a complex thereof, which can be characterized by physical means, such as x-ray powder diffraction patterns or infrared spectroscopy.
The invention also provides a pharmaceutically acceptable pharmaceutical composition of the 4-amino-pyrimidoazepine-phenylurea derivative, which is prepared by adding pharmaceutically acceptable auxiliary components into the 4-amino-pyrimidoazepine-phenylurea derivative shown in formulas I to IV or salt or hydrate thereof, wherein the auxiliary components are cyclodextrin, arginine or meglumine, the cyclodextrin is selected from α -cyclodextrin, β -cyclodextrin, gamma-cyclodextrin, (C) and (D)1-4Alkyl) - α -cyclodextrins (C)1-4Alkyl) - β -cyclodextrins (C)1-4Alkyl) -gamma-cyclodextrin, (hydroxy-C)1-4Alkyl) - α -cyclodextrins, (hydroxy-C1-4Alkyl) - β -cyclodextrins, (hydroxy-C1-4Alkyl) -gamma-cyclodextrin, (carboxy-C)1-4Alkyl) - α -cyclodextrins, (carboxy-C1-4Alkyl) - β -cyclodextrins, (carboxy-C1-4Alkyl) -gamma-cyclodextrin, α -cyclodextrin saccharide ether, β -cyclodextrin saccharide ether, gamma-cyclodextrin saccharide ether, α -cyclodextrin sulfobutyl ether, β -cyclodextrin sulfobutyl ether and gamma-cyclodextrin sulfobutyl ether.
The pharmaceutical composition may be in liquid form or solid form. Wherein the liquid form may be an aqueous solution. The solid form may be in the form of a powder, granules, tablets or lyophilized powder. The pharmaceutical composition further comprises water for injection, saline solution, aqueous glucose solution, saline for injection/infusion, glucose for injection/infusion, Grignard solution or Grignard solution containing lactate.
The invention also provides application of the 4-amino-pyrimidoazepine-phenylurea derivatives, salts, hydrates or pharmaceutical compositions shown in the formulas I to IV in preparation of FLT3 kinase inhibitors; in particular mutant FLT3 kinase; especially FLT3/ITD mutant kinase.
The invention also provides application of the 4-amino-pyrimidoazepine-phenylurea derivatives, salts, hydrates or pharmaceutical compositions shown in the formulas I to IV in preparing medicines for treating diseases in the aspect of cell proliferation disorder.
The invention also provides application of the 4-amino-pyrimidoazepine-phenylurea derivatives, salts, hydrates or pharmaceutical compositions shown in the formulas I to IV in preparing medicaments for treating tumors.
Further, the tumor is a solid tumor and/or a hematological tumor.
Still further, the solid tumor includes lymphoma, B-cell lymphoma, diffuse large B-cell lymphoma, chronic lymphocytic lymphoma, lymphoplasmacytic lymphoma, ovarian cancer, breast cancer, prostate cancer, bladder cancer, kidney cancer, esophageal cancer, neck cancer, pancreatic cancer, colorectal cancer, gastric cancer, non-small cell lung cancer, thyroid cancer, brain cancer, lymphatic cancer, epidermal hyperproliferation, psoriasis, and/or prostatic hyperplasia.
Still further, the hematologic neoplasm comprises: acute myeloid leukemia, chronic myeloid leukemia, myeloma, acute lymphocytic leukemia, acute myelogenous leukemia, acute promyelocytic leukemia, chronic lymphocytic leukemia, chronic neutrophilic leukemia, acute undifferentiated cell leukemia, myelodysplastic syndrome, myelodysplasia, multiple myeloma, and/or myelosarcoma.
The invention also provides application of the 4-amino-pyrimidoazenitrogen heterocycle-phenylurea derivatives, salts, hydrates or pharmaceutical compositions shown in the formulas I to IV in preparation of oral or intravenous injection preparations. The oral or intravenous injection preparation at least comprises a 4-amino-pyrimidoazepine-phenylurea derivative, salt, hydrate or pharmaceutical composition shown in formulas I-IV and any excipient and/or adjuvant.
The 4-amino-pyrimidoazepine-phenylurea derivative provided by the invention can be used as a FLT3 kinase inhibitor, has a good effect, and provides a new choice for preparing antitumor drugs.
Drawings
FIG. 1MV4-11 verifies target pathways;
FIG. 2Molm-13 verifies the target pathway;
FIG. 3Molm-13 in vivo pharmacodynamic model;
FIG. 4MV4-11 in vivo pharmacodynamic model;
FIG. 5 survival study of NCG mice.
Detailed Description
The present invention will be described in further detail with reference to the following specific embodiments in the form of examples, but the present invention is not limited thereto.
In the examples, the reaction temperature is, without particular mention, room temperature, i.e.from 20 to 30 ℃.
Example 1: 1- (4- (4-amino-7- (2-morpholinoethyl) -7H-pyrrolo [2,3-d ] pyrimidin-5-yl) phenyl) -3- (4-fluorophenyl) urea compound CLJ-1
Figure BDA0002393819090000271
Step a: preparation of M1 intermediate
Weighing raw materials SM1(20g,130mmol) and ammonia water (150mL, 25% -28% industrial ammonia water), adding into a high-pressure reaction kettle, sealing the system, inserting a thermometer, setting the temperature to 130 ℃, reacting for 4 hours, and cooling to room temperature. The reaction suspension was directly filtered and the filter cake was washed with diethyl ether to give intermediate M1.1H NMR(400MHz,DMSO):11.45(s,1H),8.03(s,1H),7.06(d,J=3.2Hz,1H),6.88(s,2H),6.51(d,J=3.3Hz,1H).
Step b: preparation of M2 intermediate
Intermediate M1(16g,112mmol) from the previous step was added to 200mL tetrahydrofuran at room temperature and NIS (37.8g,168mmol) was added in portions and reacted for 1 h. The reaction suspension was evaporated under reduced pressure to give a solid mixture, 300mL of water was added, sodium thiosulfate (8.8g,56mmol) was added with stirring, the mixture turned from brown to yellow, and stirring was continued for 0.After 5h, filtration was carried out and the filter cake was washed with diethyl ether to give intermediate M2.1H NMR(400MHz,DMSO):11.97(s,1H),8.07(s,1H),7.36(s,1H),6.56(s,2H).
Step c: preparation of M3 intermediate
Intermediate M2(28g,107.7mmol), potassium carbonate (29.7g,215.4mmol), Boc anhydride (25.8g,118.5mmol) from the previous step was added to 500mL acetonitrile and the resulting mixture was heated to 60 ℃ for 2 h. And filtering the reaction liquid, discarding a filter cake, distilling the mother liquor under reduced pressure to obtain a mixture solid, adding 500mL of water for pulping, continuously stirring for 0.5h, filtering, draining the filter cake, transferring into a vacuum drying oven, and drying at 60 ℃ for 5h to obtain an intermediate M3.1H NMR(400MHz,DMSO):8.28(s,1H),7.73(s,1H),6.87(s,2H),1.62(s,10H).
Step d: preparation of M4 intermediate
Intermediate M3(9.56g,26.6mmol), p-aminobenzoate (5.5g,31.8mmol), potassium carbonate (7.3g,53.1mmol) and dppf (Pd)2Cl2) The mixture was charged into a 250mL three-necked flask, dioxane/ethanol/water (7: 3:4 in total 120mL) was added as a solvent, nitrogen was replaced three times, and the mixture was put into an oil bath at 80 ℃ for reaction for 2 hours. After the reaction is finished, concentrating the reaction solution to be dry, mixing the sample, and separating the mixture by a column to obtain an intermediate M4.1H NMR(400MHz,DMSO):9.57(s,1H),9.02(s,1H),8.28(s,1H),7.59(d,J=8.6Hz,2H),7.47(s,1H),7.44(d,J=8.5Hz,2H),6.52(s,1H),6.23(s,2H),1.61(s,9H),1.31(s,9H).
Step e: preparation of M5 intermediate
Intermediate M4(5g,15.4mmol) from the previous step was added to 50mL of dichloromethane, concentrated hydrochloric acid (10mL, 36-38% concentrated hydrochloric acid) was added, and the reaction was complete after 1 h. 200mL of dichloromethane and 100mL of water were added to adjust the pH of the mixture to basic pH (about 10), the organic phase was retained by extraction and dried to afford intermediate M5.1H NMR(400MHz,DMSO):11.57(s,1H),8.07(s,1H),7.12(d,J=8.3Hz,2H),7.03(s,1H),6.66(d,J=8.3Hz,2H),5.94(s,2H),5.16(s,2H).
Step f: preparation of intermediate M6
Intermediate M5(225mg,1mmol) from the previous step, cesium carbonate (650mg,2mmol), N- (2-chloroethyl) morpholine saltThe acid salt (223mg,1.2mmol) was added to 20mL acetonitrile and heated to 80 ℃ for 1 h. The reaction was spin dried and extracted with dichloromethane to afford the purer intermediate M6.1H NMR(400MHz,CDCl3) 8.68(s,1H),7.25(d, J ═ 8.4Hz,4H),7.13(s,1H),6.80(d, J ═ 8.4Hz,2H),4.44(s,2H),3.72(s,4H),2.87(s,2H),2.59(s,4H). Preparation of the end product CLJ-1
Adding the intermediate M6(338mg,1mmol) in the previous step into 20mL of dichloromethane, adding 4-fluoroisocyanate (137mg,1mmol), reacting for 0.5h, separating out a solid, filtering, and rinsing the filter cake with diethyl ether to obtain the high-purity final product CLJ-1.1H NMR(400MHz,DMSO):9.56(s,1H),9.47(s,1H),8.54(s,1H),7.71(s,1H),7.62(d,J=8.6Hz,2H),7.52–7.45(m,2H),7.40(d,J=8.6Hz,2H),7.16–7.10(m,2H),4.75(t,J=6.5Hz,2H),3.89(s,4H),3.65(t,J=6.4Hz,4H).HRMS(ESI),m/z:476.2214[M+H]+.
EXAMPLE 21- (4- (4-amino-7- (2-morpholinoethyl) -7H-pyrrolo [2,3-d ] pyrimidin-5-yl) phenyl) -3- (2-chlorophenyl) urea Compound CLJ-2
Figure BDA0002393819090000291
The phenyl 4-fluoroisocyanate was replaced with 2-chlorophenyl isocyanate in step g in the same manner as in the synthesis of example 1 to give CLJ-2 as a final product.1H NMR(400MHz,DMSO):11.47(s,1H),10.10(s,1H),8.59(s,1H),8.55(s,1H),8.15(dd,J=8.3,1.5Hz,1H),7.72(s,1H),7.66(d,J=8.6Hz,2H),7.46(dd,J=8.0,1.5Hz,1H),7.42(d,J=8.6Hz,2H),7.34–7.28(m,1H),7.07–7.01(m,1H),4.75(t,J=6.5Hz,2H),3.89(s,4H),3.65(t,J=6.4Hz,3H).HRMS(ESI),m/z:492.1922[M+H]+.
EXAMPLE 31- (4- (4-amino-7- (2-morpholinoethyl) -7H-pyrrolo [2,3-d ] pyrimidin-5-yl) phenyl) -3-benzylurea Compound CLJ-3
Figure BDA0002393819090000292
In step g, benzyl isocyanate was used as in the synthesis of example 1Replacing 4-phenyl fluoroisocyanate to obtain the final product CLJ-3.1H NMR(400MHz,DMSO):11.58(s,1H),9.31(s,1H),8.55(s,1H),7.70(s,1H),7.59(d,J=8.6Hz,2H),7.37–7.30(m,6H),7.27–7.20(m,1H),7.05(s,1H),4.75(t,J=6.5Hz,2H),4.32(s,2H),3.87(m,9H),3.65(t,J=6.4Hz,3H).HRMS(ESI),m/z:472.2455[M+H]+.
EXAMPLE 41- (4- (4-amino-7- (2-morpholinoethyl) -7H-pyrrolo [2,3-d ] pyrimidin-5-yl) phenyl) -3- (4-chlorophenyl) urea Compound CLJ-4
Figure BDA0002393819090000293
The phenyl 4-fluoroisocyanate was replaced with phenyl 4-chloroisocyanate in step g in the same manner as in the synthesis of example 1 to give CLJ-4 as a final product.1H NMR(400MHz,DMSO):8.86(s,1H),8.82(s,1H),8.14(s,1H),7.56(d,J=8.5Hz,2H),7.53–7.49(m,2H),7.38(d,J=8.5Hz,2H),7.35–7.30(m,3H),6.05(s,2H),4.28(t,J=6.5Hz,2H),3.56–3.50(m,4H),2.71(t,J=6.4Hz,2H),2.46(s,4H).HRMS(ESI),m/z:492.1913[M+H]+.
EXAMPLE 51- (4- (4-amino-7- (2-morpholinoethyl) -7H-pyrrolo [2,3-d ] pyrimidin-5-yl) phenyl) -3- (3-chlorophenyl) urea Compound CLJ-5
Figure BDA0002393819090000301
The phenyl 4-fluoroisocyanate was replaced with 3-chlorophenyl isocyanate in step g in the same manner as in the synthesis of example 1 to give CLJ-5 as a final product.1H NMR(400MHz,DMSO):9.44(s,1H),9.33(s,1H),8.22(s,1H),7.73(s,1H),7.59(d,J=8.5Hz,2H),7.43–7.35(m,3H),7.32–7.27(m,2H),7.05–6.98(m,1H),6.39(s,2H),4.49(s,2H),3.73(s,4H),2.98(s,4H).HRMS(ESI),m/z:492.1915[M+H]+.
EXAMPLE 61- (4- (4-amino-7- (2-morpholinoethyl) -7H-pyrrolo [2,3-d ] pyrimidin-5-yl) phenyl) -3- (2-fluorophenyl) urea Compound CLJ-6
Figure BDA0002393819090000302
The phenyl 4-fluoroisocyanate was replaced with phenyl 2-fluoroisocyanate in step g in the same manner as in the synthesis of example 1 to give CLJ-6 as a final product.1H NMR(400MHz,DMSO):9.23(s,1H),8.62(s,1H),8.16(dd,J=15.3,6.0Hz,2H),7.57(d,J=8.4Hz,2H),7.39(d,J=8.4Hz,2H),7.32(s,1H),7.29–7.20(m,1H),7.15(t,J=7.6Hz,1H),7.01(dd,J=12.7,6.5Hz,1H),6.04(s,2H),4.28(t,J=6.4Hz,2H),3.54(s,4H),2.70(t,J=6.5Hz,2H),2.45(s,4H).HRMS(ESI),m/z:476.2207[M+H]+.
EXAMPLE 71- (4- (4-amino-7- (2-morpholinoethyl) -7H-pyrrolo [2,3-d ] pyrimidin-5-yl) phenyl) -3- (4-chloro-3- (trifluoromethyl) phenyl) urea Compound CLJ-7
Figure BDA0002393819090000311
The phenyl 4-fluoroisocyanate was replaced in step g with 4-chloro-3-trifluoromethyl-phenyl isocyanate in the same manner as the synthesis of example 1 to give the final product CLJ-7.1H NMR(400MHz,DMSO):11.11(s,1H),9.99(s,1H),9.66(s,1H),8.52(s,1H),8.14(d,J=1.8Hz,1H),7.70(s,1H),7.66–7.59(m,3H),7.41(d,J=8.6Hz,2H),4.73(t,J=6.3Hz,2H),3.87(s,4H),3.64(m,3H),3.41–3.13(m,4H).HRMS(ESI),m/z:560.1786[M+H]+.
EXAMPLE 81- (4- (4-amino-7- (2-morpholinoethyl) -7H-pyrrolo [2,3-d ] pyrimidin-5-yl) phenyl) -3- (p-tolyl) urea Compound CLJ-8
Figure BDA0002393819090000312
The phenyl 4-fluoroisocyanate was replaced with p-tolylisocyanate in step g in the same manner as in the synthesis of example 1 to give the final product CLJ-8.1H NMR(400MHz,DMSO):9.46(s,1H),9.20(s,1H),8.52(s,1H),7.69(s,1H),7.62(d,J=8.6Hz,2H),7.39(d,J=8.6Hz,2H),7.36(d,J=8.5Hz,2H),7.09(d,J=8.3Hz,2H),4.73(t,J=6.5Hz,2H),3.88(s,4H),3.64(t,J=6.1Hz,3H),3.44–3.11(m,4H),2.25(s,3H).HRMS(ESI),m/z:472.2458[M+H]+.
EXAMPLE 91- (4- (4-amino-7- (2-morpholinoethyl) -7H-pyrrolo [2,3-d ] pyrimidin-5-yl) phenyl) -3- (3-chloro-4-methylphenyl) urea Compound CLJ-9
Figure BDA0002393819090000313
The phenyl 4-fluoroisocyanate was replaced with 3-chloro-4-methyl-phenyl isocyanate in step g in the same manner as in the synthesis of example 1 to give the final product CLJ-9.1H NMR(400MHz,DMSO):11.40(s,1H),9.66(d,J=4.5Hz,2H),8.55(s,1H),7.72(s,1H),7.71(d,J=1.9Hz,1H),7.62(d,J=8.6Hz,2H),7.40(d,J=8.6Hz,2H),7.27–7.19(m,2H),4.75(t,J=6.5Hz,2H),3.89(s,4H),3.66(t,J=6.5Hz,3H),2.26(s,3H).HRMS(ESI),m/z:506.2066[M+H]+.
EXAMPLE 101- (4- (4-amino-7- (2-morpholinoethyl) -7H-pyrrolo [2,3-d ] pyrimidin-5-yl) phenyl) -3- (3-acetylphenyl) urea Compound CLJ-10
Figure BDA0002393819090000321
The phenyl 4-fluoroisocyanate was replaced with 3-acetylphenyl isocyanate in step g in the same manner as in the synthesis of example 1 to give the final product CLJ-10.1H NMR(400MHz,DMSO):11.39(s,1H),9.70(d,J=8.8Hz,2H),8.54(s,1H),8.11(t,J=1.8Hz,1H),7.73–7.68(m,2H),7.65(d,J=8.6Hz,2H),7.61–7.57(m,1H),7.48–7.42(m,1H),7.41(d,J=8.6Hz,2H),4.75(t,J=6.5Hz,2H),3.89(s,4H),3.66(t,J=6.5Hz,2H),2.57(s,3H).HRMS(ESI),m/z:500.2406[M+H]+.
EXAMPLE 111- (4- (4-amino-7- (2-morpholinoethyl) -7H-pyrrolo [2,3-d ] pyrimidin-5-yl) phenyl) -3-cyclohexylurea compound CLJ-11
Figure BDA0002393819090000322
In the same manner as in the synthesis of example 1, phenyl 4-fluoroisocyanate was replaced with cyclohexyl isocyanate in step g to giveThe final product CLJ-11.1H NMR(400MHz,DMSO):8.38(s,1H),8.12(s,1H),7.47(d,J=8.6Hz,2H),7.30(d,J=8.6Hz,2H),7.28(s,1H),6.09(d,J=7.9Hz,1H),4.27(t,J=6.6Hz,2H),3.56–3.51(m,4H),2.69(t,J=6.6Hz,2H),2.45(d,J=4.1Hz,4H),1.81(dd,J=8.5,3.9Hz,2H),1.67(dd,J=9.0,4.0Hz,2H),1.59–1.49(m,1H),1.38–1.25(m,2H),1.24–1.12(m,4H).HRMS(ESI),m/z:464.2773[M+H]+.
EXAMPLE 121- (4- (4-amino-7- (2-morpholinoethyl) -7H-pyrrolo [2,3-d ] pyrimidin-5-yl) phenyl) -3- (4-bromophenyl) urea Compound CLJ-12
Figure BDA0002393819090000331
The phenyl 4-fluoroisocyanate was replaced in step g with 4-bromobenzene isocyanate in the same manner as the synthesis of example 1 to give the final product CLJ-12.1H NMR(400MHz,DMSO):8.86(s,1H),8.82(s,1H),8.14(s,1H),7.56(d,J=8.5Hz,2H),7.53–7.49(m,2H),7.38(d,J=8.5Hz,2H),7.35–7.30(m,3H),6.05(s,2H),4.28(t,J=6.5Hz,2H),3.56–3.50(m,4H),2.71(t,J=6.4Hz,2H),2.46(s,4H).HRMS(ESI),m/z:536.1408,538.1390[M+H]+.
EXAMPLE 131- (4- (4-amino-7- (2-morpholinoethyl) -7H-pyrrolo [2,3-d ] pyrimidin-5-yl) phenyl) -3- (5-tert-butyl-isoxazol-3-yl) urea Compound CLJ-13
Figure BDA0002393819090000332
Preparation of active urea intermediate 1, 3-bis (5- (tert-butyl) isoxazol-3-yl) urea
Triphosgene (47.07g,156.9mmol) was added to 300mL of tetrahydrofuran, and 3-amino-5-tert-butylisoxazole (20g,142.65mmol) was dissolved in 100mL of tetrahydrofuran under an ice bath, then added dropwise to the triphosgene solution, and finally triethylamine (39.8mL,285.3mmol) was added dropwise. The reaction was transferred to a 60 ℃ oil bath and reacted for 5 h. After the reaction is completed, the reaction mixture is filtered, the filtrate is retained, and the filtrate is concentrated under reduced pressure to obtain a solid, namely the active urea intermediate.1H NMR(400MHz,DMSO):6.71(s,1H),6.35(s,1H),4.90(s,2H),1.36(s,9H),1.35(s,9H).
Combining steps f and h into a one-pot reaction process
Intermediate M5(225mg,1mmol) from the previous step, cesium carbonate (650mg,2mmol), N- (2-chloroethyl) morpholine hydrochloride (223mg,1.2mmol) were added to 20mL acetonitrile and heated to 80 ℃ for 1 h. The reaction solution was filtered, and the mother liquor was retained. Transferring the mother liquor to 80 ℃, adding an active urea intermediate (306mg,1mmol), reacting for 0.5h, separating out a large amount of solid, filtering, and leaching with diethyl ether to obtain the high-purity final product CLJ-13.1H NMR(400MHz,DMSO):9.53(s,1H),8.91(s,1H),8.14(s,1H),7.56(d,J=8.3Hz,2H),7.40(d,J=8.2Hz,2H),7.33(s,1H),6.52(s,1H),6.06(s,2H),4.29(t,J=6.3Hz,2H),3.54(s,4H),2.71(t,J=6.4Hz,2H),2.46(s,4H),1.31(s,9H).HRMS(ESI),m/z:505.2672[M+H]+.
Example 141- (4- (4-amino-7H-pyrrolo [2,3-d ] pyrimidin-5-yl) phenyl) -3- (5-tert-butyl-isoxazol-3-yl) urea Compound CLJ-14
Figure BDA0002393819090000341
And adding the intermediate M5(225mg,1mmol) in the last step into 20mL of acetonitrile, heating to 80 ℃ for reaction, adding an active urea intermediate (306mg,1mmol), reacting for 0.5h, precipitating a large amount of solid, filtering, and leaching with diethyl ether to obtain the high-purity final product CLJ-14.1H NMR(400MHz,DMSO):11.74(s,1H),9.53(s,1H),8.93(s,1H),8.11(s,1H),7.55(d,J=8.5Hz,2H),7.40(d,J=8.5Hz,2H),7.19(d,J=2.3Hz,1H),6.52(s,1H),5.99(s,2H),1.31(s,9H).HRMS(ESI),m/z:392.1831[M+H]+.
EXAMPLE 151- (4- (4-amino-7-tert-butoxycarbonyl-7H-pyrrolo [2,3-d ] pyrimidin-5-yl) phenyl) -3- (5-tert-butyl-isoxazol-3-yl) urea compound CLJ-15
Figure BDA0002393819090000342
Intermediate M4(325mg,1mmol) from the previous step was added to 20mL acetonitrileHeating to 80 ℃ for reaction, adding an active urea intermediate (306mg,1mmol), reacting for 0.5h, separating out a large amount of solid, filtering, and leaching with diethyl ether to obtain the high-purity final product CLJ-15.1H NMR(400MHz,DMSO):9.57(s,1H),9.02(s,1H),8.28(s,1H),7.59(d,J=8.6Hz,2H),7.47(s,1H),7.44(d,J=8.5Hz,2H),6.52(s,1H),6.23(s,2H),1.61(s,9H),1.31(s,9H).HRMS(ESI),m/z:592.2353[M+H]+.
EXAMPLE 164- (2- (4-amino-5- (4- (3- (5- (tert-butyl) isoxazol-3-yl) ureido) phenyl) -7H-pyrrolo [2,3-d ] tert-butylpyrimidin-7-yl) ethyl) piperazine-1-carboxylic acid tert-butyl ester Compound CLJ-16
Figure BDA0002393819090000351
In the same manner as in example 13, N-Boc-2-ethylpiperazine was used in place of N- (2-chloroethyl) morpholine hydrochloride, to give CLJ-16 as a highly pure final product.1H NMR(400MHz,DMSO):9.53(s,1H),8.91(s,1H),8.14(s,1H),7.56(d,J=8.5Hz,2H),7.39(d,J=8.5Hz,2H),7.33(s,1H),6.52(s,1H),6.06(s,2H),4.29(t,J=6.5Hz,2H),3.28(s,4H),2.73(t,J=6.5Hz,2H),2.46–2.37(m,4H),1.39(s,9H),1.31(s,9H).HRMS(ESI),m/z:604.3353[M+H]+.
Example 171- (4- (4-amino-7- (2-piperazinoethyl) -7H-pyrrolo [2,3-d ] pyrimidin-5-yl) phenyl) -3- (5-tert-butyl-isoxazol-3-yl) urea Compound CLJ-17
Figure BDA0002393819090000352
Compound CLJ-16(252mg,0.5mmol) was added to 20mL of methylene chloride, concentrated hydrochloric acid (10mL, 36-38% concentrated hydrochloric acid) was added, and the reaction was completed after 1 h. 200mL of methylene chloride and 100mL of water were added to adjust the pH of the mixture to basic pH (about 10), the organic phase was retained by extraction, and the final product, CLJ-17, was obtained after concentration.1H NMR(400MHz,DMSO):9.58(s,1H),9.01(s,1H),8.14(s,1H),7.57(d,J=8.5Hz,2H),7.39(d,J=8.5Hz,2H),7.33(s,1H),6.52(s,1H),6.05(s,2H),4.27(t,J=6.6Hz,2H),2.75–2.63(m,6H),2.41(s,4H),1.31(s,9H).HRMS(ESI),m/z:504.2829[M+H]+.
Example 181- (4- (4-amino-7- (3-morpholinopropyl) -7H-pyrrolo [2,3-d ] pyrimidin-5-yl) phenyl) -3- (5-tert-butyl-isoxazol-3-yl) urea Compound CLJ-18
Figure BDA0002393819090000353
In the same manner as in example 13, high-purity CLJ-18 was obtained by substituting N- (2-chloroethyl) morpholine hydrochloride with N- (3-chloropropyl) morpholine.1H NMR(400MHz,DMSO):9.53(s,1H),8.90(s,1H),8.14(s,1H),7.56(d,J=8.6Hz,2H),7.40(d,J=8.6Hz,2H),7.31(s,1H),6.52(s,1H),6.05(s,2H),4.20(t,J=7.0Hz,2H),3.59–3.51(m,4H),2.29(dd,J=14.3,7.0Hz,6H),2.02–1.91(m,2H),1.31(s,9H).HRMS(ESI),m/z:519.2825[M+H]+.
EXAMPLE 191- (4- (4-amino-7- (2- (dimethylamino) ethyl) -7H-pyrrolo [2,3-d ] pyrimidin-5-yl) phenyl) -3- (5-tert-butyl-isoxazol-3-yl) urea compound CLJ-19
Figure BDA0002393819090000361
In the same manner as in example 13, high-purity CLJ-19 was obtained by substituting N, N-dimethyl-2-chloroethyl for N- (2-chloroethyl) morpholine hydrochloride.1H NMR(400MHz,DMSO):9.54(s,1H),8.93(s,1H),8.14(s,1H),7.56(d,J=8.3Hz,2H),7.39(d,J=8.3Hz,2H),7.33(s,1H),6.52(s,1H),6.05(s,2H),4.26(t,J=6.6Hz,2H),2.67(t,J=6.5Hz,2H),2.20(s,6H),1.31(s,9H).HRMS(ESI),m/z:463.2563[M+H]+.
EXAMPLE 201- (4- (4-amino-7-allyl) -7H-pyrrolo [2,3-d ] pyrimidin-5-yl) phenyl) -3- (5-tert-butyl-isoxazol-3-yl) urea Compound CLJ-20
Figure BDA0002393819090000362
In the same manner as in the synthesis of example 13, bromopropene was used in place of N- (2-chloroethyl) morpholine hydrochlorideThus obtaining the high-purity final product CLJ-20.1H NMR(400MHz,DMSO):9.53(s,1H),8.91(s,1H),8.15(s,1H),7.56(d,J=8.5Hz,2H),7.40(d,J=8.4Hz,2H),7.25(s,1H),6.52(s,1H),6.06(m,3H),5.18(d,J=10.1Hz,1H),5.09(d,J=17.1Hz,1H),4.81(d,J=5.4Hz,2H),1.31(s,9H).HRMS(ESI),m/z:432.2149[M+H]+.
Example 211- (4- (4-amino-7- (cyanomethyl) -7H-pyrrolo [2,3-d ] pyrimidin-5-yl) phenyl) -3- (5-tert-butyl-isoxazol-3-yl) urea Compound CLJ-21
Figure BDA0002393819090000363
High purity final product CLJ-21 was obtained by substituting chloroacetonitrile for N- (2-chloroethyl) morpholine hydrochloride in the same manner as in example 13.1H NMR(400MHz,DMSO):9.54(s,1H),8.94(s,1H),8.24(s,1H),7.58(d,J=7.4Hz,2H),7.42(d,J=7.6Hz,2H),7.38(s,1H),6.53(s,1H),6.26(s,2H),5.41(s,2H),1.31(s,9H).HRMS(ESI),m/z:431.1937[M+H]+.
Example 221- (4- (4-amino-7-isopropyl-7H-pyrrolo [2,3-d ] pyrimidin-5-yl) phenyl) -3- (5-tert-butyl-isoxazol-3-yl) urea Compound CLJ-22
Figure BDA0002393819090000371
In the same manner as in example 13, high-purity CLJ-22 was obtained by substituting 2-iodopropane for N- (2-chloroethyl) morpholine hydrochloride.1H NMR(400MHz,DMSO):9.55(s,1H),8.97(s,1H),8.33(s,1H),7.65(s,1H),7.59(d,J=8.6Hz,2H),7.43(d,J=8.5Hz,2H),6.52(s,1H),5.10–4.93(m,1H),1.49(d,J=6.8Hz,6H),1.31(s,9H).HRMS(ESI),m/z:434.2299[M+H]+.
EXAMPLE 231- (4- (4-amino-7- (4-hydroxybutyl) -7H-pyrrolo [2,3-d ] pyrimidin-5-yl) phenyl) -3- (5-tert-butyl-isoxazol-3-yl) urea Compound CLJ-23
Figure BDA0002393819090000372
In the same manner as in example 13, 4-iodobutanol was used in place of N- (2-chloroethyl) morpholine hydrochloride to give high purity CLJ-23.1H NMR(400MHz,DMSO):9.53(s,1H),8.91(s,1H),8.14(s,1H),7.56(d,J=8.4Hz,2H),7.40(d,J=8.4Hz,2H),7.32(s,1H),6.52(s,1H),6.05(s,2H),4.41(t,J=5.2Hz,1H),4.17(t,J=7.0Hz,2H),4.09(q,J=5.2Hz,1H),3.41(dd,J=11.8,6.2Hz,2H),3.18(d,J=5.2Hz,2H),1.88–1.76(m,2H),1.46–1.36(m,2H),1.31(s,9H).HRMS(ESI),m/z:464.2409[M+H]+.
Example 241- (4- (4-amino-7- (N, N-diethylformyl) -7H-pyrrolo [2,3-d ] pyrimidin-5-yl) phenyl) -3- (5-tert-butyl-isoxazol-3-yl) urea Compound CLJ-24
Figure BDA0002393819090000373
In the same manner as in example 13, N-diethylchloroformamide was used in place of N- (2-chloroethyl) morpholine hydrochloride to obtain high-purity CLJ-24.1H NMR(400MHz,DMSO):9.55(s,1H),8.96(s,1H),8.20(s,1H),7.58(d,J=8.6Hz,2H),7.44(d,J=8.5Hz,2H),7.41(s,1H),6.53(s,1H),6.25(s,2H),3.39(m,4H),1.31(s,9H),1.21–1.06(m,6H).HRMS(ESI),m/z:491.2493[M+H]+.
EXAMPLE 251- (4- (4-amino-7- (2- (methylsulfonyl) piperazin-1-yl) -7H-pyrrolo [2,3-d ] pyrimidin-5-yl) phenyl) -3- (5-tert-butyl-isoxazol-3-yl) urea Compound CLJ-25
Figure BDA0002393819090000381
Compound CLJ-17(252mg,0.5mmol) was dissolved in 20mL dichloromethane, triethylamine (61mg,0.6mmol) was added, methanesulfonyl chloride (57mg,0.5mmol) diluted with dichloromethane was added under ice bath, after 1h reaction, extraction was performed with dichloromethane and water, and the organic phase was dried by spin drying to give the purer final product CLJ-25.1H NMR(400MHz,DMSO):9.53(s,1H),8.92(s,1H),8.15(s,1H),7.56(d,J=8.6Hz,2H),7.40(d,J=8.5Hz,2H),7.34(s,1H),6.52(s,1H),6.05(s,2H),4.30(t,J=6.4Hz,2H),3.12–3.03(m,4H),2.85(s,3H),2.79(t,J=6.5Hz,2H),2.62–2.54(m,4H),1.31(s,9H).HRMS(ESI),m/z:582.2610[M+H]+.
EXAMPLE 261- (4- (4-amino-7- (2-methoxyethyl) -7H-pyrrolo [2,3-d ] pyrimidin-5-yl) phenyl) -3- (5-tert-butyl-isoxazol-3-yl) urea Compound CLJ-26
Figure BDA0002393819090000382
In the same manner as the synthesis method in example 13, N- (2-chloroethyl) morpholine hydrochloride was replaced with chloroethyl methyl ether to obtain high-purity final product CLJ-26.1H NMR(400MHz,DMSO):9.56(s,1H),8.95(s,1H),8.15(s,1H),7.56(d,J=8.4Hz,2H),7.39(d,J=8.4Hz,2H),7.29(s,1H),6.53(s,1H),6.09(s,2H),4.33(t,J=5.3Hz,2H),3.71(t,J=5.4Hz,2H),3.26(s,3H),1.31(s,9H).HRMS(ESI),m/z:450.2249[M+H]+.
EXAMPLE 271- (4- (4-amino-7- (but-2-yn-1-yl) -7H-pyrrolo [2,3-d ] pyrimidin-5-yl) phenyl) -3- (5-tert-butyl-isoxazol-3-yl) urea Compound CLJ-27
Figure BDA0002393819090000391
In the same manner as in example 13, 1-bromo-2-butyne was used in place of N- (2-chloroethyl) morpholine hydrochloride to give high purity final product CLJ-27.1H NMR(400MHz,DMSO):9.55(s,1H),8.97(s,1H),8.17(s,1H),7.57(d,J=8.5Hz,2H),7.41(d,J=8.4Hz,2H),7.32(s,1H),6.53(s,1H),6.12(s,1H),4.97(d,J=2.3Hz,2H),1.81(dd,J=5.3,3.1Hz,3H),1.31(s,9H).HRMS(ESI),m/z:444.2147[M+H]+.
Example 281- (4- (4-amino-7- (pent-2-yn-1-yl) -7H-pyrrolo [2,3-d ] pyrimidin-5-yl) phenyl) -3- (5-tert-butyl-isoxazol-3-yl) urea Compound CLJ-28
Figure BDA0002393819090000392
1-bromo was reacted as in the synthesis of example 13The N- (2-chloroethyl) morpholine hydrochloride is replaced by the-2-pentyne, and the high-purity final product CLJ-28 can be obtained.1H NMR(400MHz,DMSO):9.53(s,1H),8.93(s,1H),8.16(s,1H),7.56(d,J=8.6Hz,2H),7.40(d,J=8.5Hz,2H),7.31(s,1H),6.52(s,1H),6.12(s,2H),4.98(t,J=2.1Hz,2H),2.25–2.16(m,2H),1.30(s,9H),1.06(t,J=7.5Hz,3H).HRMS(ESI),m/z:458.2299[M+H]+.
EXAMPLE 291- (4- (4-amino-7- (but-3-yn-1-yl) -7H-pyrrolo [2,3-d ] pyrimidin-5-yl) phenyl) -3- (5-tert-butyl-isoxazol-3-yl) urea Compound CLJ-29
Figure BDA0002393819090000393
In the same manner as in example 13, 1-bromo-2-pentyne was substituted for N- (2-chloroethyl) morpholine hydrochloride to give high purity final product CLJ-29.1H NMR(400MHz,DMSO):9.57(s,1H),8.99(s,1H),8.15(s,1H),7.56(d,J=8.4Hz,2H),7.39(d,J=8.3Hz,2H),7.32(s,1H),6.52(s,1H),6.05(s,2H),5.82(ddd,J=23.8,10.3,6.7Hz,1H),5.14–4.93(m,2H),4.24(t,J=7.0Hz,2H),2.56(dd,J=13.3,6.5Hz,2H),1.31(s,9H).HRMS(ESI),m/z:446.2302[M+H]+.
EXAMPLE 301- (4- (4-amino-7- (2-ethoxyethyl) -7H-pyrrolo [2,3-d ] pyrimidin-5-yl) phenyl) -3- (5-tert-butyl-isoxazol-3-yl) urea compound CLJ-30
Figure BDA0002393819090000401
The same synthesis method as that in example 13 is adopted, and bromoethyl ether is used to replace N- (2-chloroethyl) morpholine hydrochloride to obtain the high-purity final product CLJ-30.1H NMR(400MHz,DMSO):9.53(s,1H),8.92(s,1H),8.15(s,1H),7.56(d,J=8.4Hz,2H),7.39(d,J=8.4Hz,2H),7.29(s,1H),6.52(s,1H),6.06(s,2H),4.32(t,J=5.4Hz,2H),3.74(t,J=5.5Hz,2H),3.46(q,J=6.9Hz,2H),1.31(s,9H).HRMS(ESI),m/z:464.2406[M+H]+.
EXAMPLE 311- (4- (4-amino-7- (3-methylbut-2-en-1-yl) -7H-pyrrolo [2,3-d ] pyrimidin-5-yl) phenyl) -3- (5-tert-butyl-isoxazol-3-yl) urea Compound CLJ-31
Figure BDA0002393819090000402
In the same manner as in example 13, 3-dimethylallyl bromide was used in place of N- (2-chloroethyl) morpholine hydrochloride to give high-purity CLJ-31 as a final product.1H NMR(400MHz,DMSO):9.53(s,1H),8.92(s,1H),8.15(s,1H),7.56(d,J=8.4Hz,2H),7.39(d,J=8.4Hz,2H),7.23(s,1H),6.52(s,1H),6.05(s,2H),5.41(t,J=6.8Hz,1H),4.76(d,J=7.0Hz,2H),1.81(s,3H),1.72(s,3H),1.31(s,9H).HRMS(ESI),m/z:460.2457[M+H]+.
Example 321- (4- (4-amino-7- (2-methylallyl) -7H-pyrrolo [2,3-d ] pyrimidin-5-yl) phenyl) -3- (5-tert-butyl-isoxazol-3-yl) urea Compound CLJ-32
Figure BDA0002393819090000403
In the same manner as in example 13, 2-methylallyl bromide was used in place of N- (2-chloroethyl) morpholine hydrochloride to give high-purity CLJ-32 as a final product.1H NMR(400MHz,DMSO):9.53(s,1H),8.92(s,1H),8.15(s,1H),7.56(d,J=8.6Hz,2H),7.40(d,J=8.6Hz,2H),7.20(s,1H),6.52(s,1H),6.09(s,2H),4.87(s,1H),4.73(s,2H),4.61(s,1H),1.68(s,3H),1.31(s,9H).HRMS(ESI),m/z:446.2298[M+H]+.
EXAMPLE 331- (4- (4-amino-7- (pent-4-en-1-yl) -7H-pyrrolo [2,3-d ] pyrimidin-5-yl) phenyl) -3- (5-tert-butyl-isoxazol-3-yl) urea Compound CLJ-33
Figure BDA0002393819090000411
In the same manner as in example 13, high-purity CLJ-33 was obtained by substituting 5-bromo-1-pentene for N- (2-chloroethyl) morpholine hydrochloride.1H NMR(400MHz,DMSO):9.77(s,1H),9.58(s,1H),8.48(s,1H),7.68(s,1H),7.61(d,J=8.6Hz,2H),7.42(d,J=8.6Hz,2H),6.53(s,1H),5.83(ddt,J=16.8,10.2,6.4Hz,1H),5.09–4.95(m,2H),4.27(t,J=7.0Hz,2H),2.05(dd,J=13.7,6.7Hz,2H),1.99–1.87(m,2H),1.31(s,9H).HRMS(ESI),m/z:460.2458[M+H]+.
EXAMPLE 341- (4- (4-amino-7- (hex-5-en-1-yl) -7H-pyrrolo [2,3-d ] pyrimidin-5-yl) phenyl) -3- (5-tert-butyl-isoxazol-3-yl) urea Compound CLJ-34
Figure BDA0002393819090000412
In the same manner as in example 13, high-purity CLJ-34 was obtained by substituting 5-bromo-1-pentene for N- (2-chloroethyl) morpholine hydrochloride.1H NMR(400MHz,DMSO):9.78(s,1H),9.60(s,1H),8.48(s,1H),7.68(s,1H),7.61(d,J=8.6Hz,2H),7.41(d,J=8.6Hz,2H),6.53(s,1H),5.78(ddt,J=16.9,10.2,6.7Hz,1H),5.05–4.90(m,2H),4.27(t,J=7.0Hz,2H),2.06(q,J=7.2Hz,2H),1.83(dt,J=14.9,7.2Hz,2H),1.41–1.31(m,2H),1.31(s,9H).HRMS(ESI),m/z:474.2618[M+H]+.
Example 351- (4- (4-amino-7-methyl-7H-pyrrolo [2,3-d ] pyrimidin-5-yl) phenyl) -3- (5-tert-butyl-isoxazol-3-yl) urea Compound CLJ-35
Figure BDA0002393819090000421
The same synthesis method as that in example 13 was used to replace N- (2-chloroethyl) morpholine hydrochloride with methyl iodide to obtain high purity final product CLJ-35.1H NMR(400MHz,DMSO):9.53(s,1H),8.93(s,1H),8.11(s,1H),7.55(d,J=8.5Hz,2H),7.40(d,J=8.5Hz,2H),7.19(d,J=2.3Hz,1H),6.52(s,1H),5.99(s,2H),3.7(s,3H),1.31(s,9H).HRMS(ESI),m/z:406.1992[M+H]+.
EXAMPLE 361- (4- (4-amino-7-ethyl-7H-pyrrolo [2,3-d ] pyrimidin-5-yl) phenyl) -3- (5-tert-butyl-isoxazol-3-yl) urea Compound CLJ-36
Figure BDA0002393819090000422
Same as the synthesis method of example 13And simultaneously, the iodoethane is used for replacing N- (2-chloroethyl) morpholine hydrochloride to obtain the high-purity final product CLJ-36.1H NMR(400MHz,DMSO):9.78(s,1H),9.61(s,1H),8.48(s,1H),7.69(s,1H),7.61(d,J=8.6Hz,2H),7.42(d,J=8.5Hz,2H),6.53(s,1H),4.30(q,J=7.2Hz,2H),1.43(t,J=7.2Hz,3H),1.31(s,9H).HRMS(ESI),m/z:420.2142[M+H]+.
Example 371- (4- (4-amino-7-propyl-7H-pyrrolo [2,3-d ] pyrimidin-5-yl) phenyl) -3- (5-tert-butyl-isoxazol-3-yl) urea Compound CLJ-37
Figure BDA0002393819090000423
High purity final product CLJ-37 was obtained by substituting iodopropane for N- (2-chloroethyl) morpholine hydrochloride in the same manner as in the synthesis of example 13.1H NMR(400MHz,DMSO):9.80(s,1H),9.66(s,1H),8.48(s,1H),7.68(s,1H),7.61(d,J=8.5Hz,2H),7.41(d,J=8.5Hz,2H),6.53(s,1H),4.23(t,J=7.0Hz,2H),1.90–1.77(m,2H),1.31(s,9H),0.87(t,J=7.4Hz,3H).HRMS(ESI),m/z:434.2303[M+H]+.
Example 381- (4- (4-amino-7-butyl-7H-pyrrolo [2,3-d ] pyrimidin-5-yl) phenyl) -3- (5-tert-butyl-isoxazol-3-yl) urea Compound CLJ-38
Figure BDA0002393819090000431
High purity final product CLJ-38 was obtained by substituting N- (2-chloroethyl) morpholine hydrochloride with bromobutane in the same manner as in the synthesis of example 13.1H NMR(400MHz,DMSO):9.78(s,1H),9.61(s,1H),8.48(s,1H),7.68(s,1H),7.61(d,J=8.6Hz,2H),7.41(d,J=8.5Hz,2H),6.53(s,1H),4.26(t,J=7.1Hz,2H),1.87–1.75(m,2H),1.31(s,9H),1.26(dd,J=14.9,7.5Hz,2H),0.91(t,J=7.4Hz,3H).HRMS(ESI),m/z:448.2460[M+H]+.
Example 391- (4- (4-amino-7-cyclopentyl-7H-pyrrolo [2,3-d ] pyrimidin-5-yl) phenyl) -3- (5-tert-butyl-isoxazol-3-yl) urea Compound CLJ-39
Figure BDA0002393819090000432
The same synthesis method as that in example 13 is adopted, and bromocyclopentane is used to replace N- (2-chloroethyl) morpholine hydrochloride to obtain high-purity final product CLJ-39.1H NMR(400MHz,DMSO):9.78(s,1H),9.62(s,1H),8.47(s,1H),7.73(s,1H),7.61(d,J=8.6Hz,2H),7.44(d,J=8.5Hz,2H),6.53(s,1H),5.22–5.08(m,1H),2.16(d,J=7.9Hz,2H),2.02–1.83(m,4H),1.71(d,J=7.0Hz,2H),1.31(s,9H).HRMS(ESI),m/z:460.2457[M+H]+.
EXAMPLE 401- (4- (4-amino-7-hexyl-7H-pyrrolo [2,3-d ] pyrimidin-5-yl) phenyl) -3- (5-tert-butyl-isoxazol-3-yl) urea Compound CLJ-40
Figure BDA0002393819090000433
The same synthesis method as that in example 13 was used to replace N- (2-chloroethyl) morpholine hydrochloride with N-bromo-hexane to obtain high-purity final product CLJ-40.1H NMR(400MHz,DMSO):9.71(s,1H),9.40(s,1H),8.46(s,1H),7.67(s,1H),7.61(d,J=8.6Hz,2H),7.41(d,J=8.5Hz,2H),6.52(s,1H),4.25(t,J=7.1Hz,2H),1.88–1.77(m,2H),1.31(s,9H),1.28(m,6H),0.86(t,J=6.8Hz,3H).HRMS(ESI),m/z:476.2770[M+H]+.
EXAMPLE 411- (4- (4-amino-7-benzyl-7H-pyrrolo [2,3-d ] pyrimidin-5-yl) phenyl) -3- (5-tert-butyl-isoxazol-3-yl) urea Compound CLJ-41
Figure BDA0002393819090000441
High purity final product CLJ-41 was obtained by substituting benzyl bromide for N- (2-chloroethyl) morpholine hydrochloride in the same manner as in the synthesis of example 13.1H NMR(400MHz,DMSO):9.71(s,1H),8.49(s,1H),7.74(s,1H),7.60(d,J=8.6Hz,2H),7.41(d,J=8.5Hz,2H),7.38–7.27(m,5H),6.52(s,1H),5.49(s,2H),1.31(s,9H).HRMS(ESI),m/z:482.2303[M+H]+.
Example 421- (4- (4-amino-7-propynyl-7H-pyrrolo [2,3-d ] pyrimidin-5-yl) phenyl) -3- (5-tert-butyl-isoxazol-3-yl) urea Compound CLJ-42
Figure BDA0002393819090000442
The same synthesis method as that in example 13 is adopted, and N- (2-chloroethyl) morpholine hydrochloride is replaced by propargyl bromide to obtain the high-purity final product CLJ-42.1H NMR(400MHz,DMSO):9.66(s,1H),9.28(s,1H),8.49(s,1H),7.66(s,1H),7.61(d,J=8.5Hz,2H),7.43(d,J=8.5Hz,2H),6.52(s,1H),5.15(d,J=2.3Hz,2H),3.52(t,J=2.4Hz,2H),1.31(s,9H).HRMS(ESI),m/z:430.1985[M+H]+.
Example 431- (4- (4-amino-7- (2-cyanoethyl) -7H-pyrrolo [2,3-d ] pyrimidin-5-yl) phenyl) -3- (5-tert-butyl-isoxazol-3-yl) urea Compound CLJ-43
Figure BDA0002393819090000443
The high purity final product CLJ-43 can be obtained by replacing N- (2-chloroethyl) morpholine hydrochloride with bromopropionitrile in the same way as the synthesis method of the embodiment 13.1H NMR(400MHz,DMSO):9.71(s,1H),9.42(s,1H),8.50(s,1H),7.70(s,1H),7.63(d,J=8.6Hz,2H),7.42(d,J=8.5Hz,2H),6.53(s,1H),4.56(t,J=6.4Hz,2H),3.19(t,J=6.4Hz,2H),1.31(s,9H).HRMS(ESI),m/z:445.2097[M+H]+.
Example 441- (4- (4-amino-7H-pyrrolo [2,3-d ] pyrimidin-5-) -2-fluorophenyl) -3- (5-tert-butyl-isoxazol-3-yl) urea Compound CLJ-44
Figure BDA0002393819090000451
Step i: preparation of M7 intermediate
Intermediate M3(9g,25mmol), pinacol 3-fluoro-4-aminophenylborate (6.5g,27.5mmol), potassium carbonate (6.9g,50mmol) and dppf (PdCl)2) The mixture was charged into a 250mL three-necked flask, dioxane/ethanol/water (7: 3:4 in total 120mL) was added as a solvent, nitrogen was replaced three times, and the mixture was put into an oil bath at 80 ℃ for reaction for 2 hours. Inverse directionAfter the reaction is finished, the reaction solution is concentrated and then is mixed with a sample and is separated by a column, and an intermediate M7 is obtained.
Step j: preparation of M8 intermediate
Intermediate M7(4g,11.6mmol) from the previous step was added to 50mL of dichloromethane, concentrated hydrochloric acid (10mL, 36-38% concentrated hydrochloric acid) was added, and the reaction was complete after 1 h. 200mL of dichloromethane and 100mL of water were added to adjust the pH of the mixture to basic pH (about 10), the organic phase was retained by extraction and dried to afford intermediate M8.1H NMR(400MHz,DMSO):11.66(s,1H),8.08(s,1H),7.11(d,J=2.1Hz,1H),7.07(dd,J=12.5,1.8Hz,1H),6.98(dd,J=8.1,1.8Hz,1H),6.85(dd,J=9.5,8.2Hz,1H),5.99(s,2H),5.21(s,2H).
Step k: preparation of CLJ-44
Adding the intermediate M8(243mg,1mmol) in the previous step into 20mL of acetonitrile, adding an active urea intermediate (306mg,1mmol), reacting for 0.5h, separating out a solid, filtering, and rinsing the filter cake with diethyl ether to obtain the high-purity final product CLJ-44.1H NMR(400MHz,DMSO):13.04(s,1H),10.13(s,1H),9.20(s,1H),8.46(s,1H),8.23(t,J=8.5Hz,1H),7.61(d,J=2.3Hz,1H),7.37(dd,J=12.0,1.7Hz,1H),7.27(d,J=8.4Hz,1H),6.51(s,2H),1.31(s,9H).HRMS(ESI),m/z:410.1734[M+H]+.
EXAMPLE 451- (4- (4-amino-7-propynyl-7H-pyrrolo [2,3-d ] pyrimidin-5-) -2-fluorophenyl) -3- (5-tert-butyl-isoxazol-3-yl) urea Compound CLJ-45
Figure BDA0002393819090000452
Figure BDA0002393819090000461
Combining steps l and m into a reaction process of a' one-pot method
Intermediate M8(243mg,1mmol), cesium carbonate (650mg,2mmol), and bromopropyne (143mg,1.2mmol) from the previous step were added to 20mL of acetonitrile, and heated to 80 ℃ for 1 h. The reaction solution was filtered, and the mother liquor was retained. The mother liquor was transferred to 80 ℃ and the active urea intermediate (306mg,1mmol) was added, reaction 0.After 5h, a large amount of solid is separated out, filtered and rinsed by ether, and the high-purity final product CLJ-45 can be obtained.1H NMR(400MHz,DMSO):10.01(s,1H),9.08(s,1H),8.52(s,1H),8.26(t,J=8.5Hz,1H),7.73(s,1H),7.39(dd,J=12.0,1.8Hz,1H),7.30–7.25(m,1H),6.51(s,1H),5.16(d,J=2.4Hz,2H),1.31(s,9H).HRMS(ESI),m/z:448.1891[M+H]+.
Example 461- (4- (4-amino-7-allyl-7H-pyrrolo [2,3-d ] pyrimidin-5) -2-fluorophenyl) -3- (5-tert-butyl-isoxazol-3-yl) urea Compound CLJ-46
Figure BDA0002393819090000462
The high purity final product, CLJ-46, was obtained by substituting bromopropyne for bromopropene in the same manner as in example 45.1H NMR(400MHz,DMSO):9.86(s,1H),8.88(s,1H),8.20(t,J=8.5Hz,1H),8.16(s,1H),7.33(s,1H),7.33(dd,J=12.1,1.8Hz,2H),7.26(dd,J=8.5,1.3Hz,1H),6.51(s,1H),6.19(s,2H),6.05(ddd,J=22.5,10.6,5.5Hz,1H),5.18(dd,J=10.2,1.3Hz,1H),5.09(dd,J=17.1,1.4Hz,1H),4.80(d,J=5.5Hz,2H),1.31(s,9H).HRMS(ESI),m/z:450.2042[M+H]+.
EXAMPLE 471- (4- (4-amino-7- (but-3-en-1-yl) -7H-pyrrolo [2,3-d ] pyrimidin-5) -2-fluorophenyl) -3- (5-tert-butyl-isoxazol-3-yl) urea Compound CLJ-47
Figure BDA0002393819090000463
In the same manner as in example 45, the bromopropyne was replaced with 4-bromo-1-butene, thereby obtaining high-purity final product CLJ-47.1H NMR(400MHz,DMSO):10.05(s,1H),9.12(s,1H),8.49(s,1H),8.25(t,J=8.5Hz,1H),7.73(s,1H),7.36(dd,J=12.0,1.7Hz,1H),7.26(d,J=8.4Hz,1H),6.51(s,1H),5.80(ddt,J=17.0,10.3,6.7Hz,1H),5.10–4.99(m,2H),4.34(t,J=7.0Hz,2H),2.61(q,J=6.8Hz,2H),1.31(s,9H).HRMS(ESI),m/z:464.2212[M+H]+.
Example 481- (4- (4-amino-7-methoxyethyl-7H-pyrrolo [2,3-d ] pyrimidin-5) -2-fluorophenyl) -3- (5-tert-butyl-isoxazol-3-yl) urea Compound CLJ-48
Figure BDA0002393819090000471
In the same manner as the synthesis method in example 45, bromopropyne was replaced with chloroethyl methyl ether, thereby obtaining high-purity final product CLJ-48.1H NMR(400MHz,DMSO):10.10(s,1H),9.16(s,1H),8.51(s,1H),8.25(t,J=8.5Hz,1H),7.70(s,1H),7.43–7.33(m,1H),7.26(m,1H),6.51(s,1H),4.43(t,J=5.1Hz,2H),3.76(t,J=5.3Hz,2H),1.31(s,9H).HRMS(ESI),m/z:468.2159[M+H]+.
Example 491- (4- (4-amino-7-ethoxyethyl-7H-pyrrolo [2,3-d ] pyrimidin-5) -2-fluorophenyl) -3- (5-tert-butyl-isoxazol-3-yl) urea Compound CLJ-49
Figure BDA0002393819090000472
The synthesis method of example 45 was followed, and bromopropyne was replaced with bromoethyl ether to obtain high-purity final product CLJ-49.1H NMR(400MHz,DMSO):10.02(s,1H),9.09(s,1H),8.48(s,1H),8.26(t,J=8.5Hz,1H),7.68(s,1H),7.37(dd,J=12.0,1.8Hz,1H),7.27(d,J=8.5Hz,1H),6.51(s,1H),4.42(t,J=5.3Hz,2H),3.78(t,J=5.3Hz,2H),3.46(dd,J=14.0,7.0Hz,2H),1.31(s,9H),1.06(t,J=7.0Hz,3H).HRMS(ESI),m/z:482.2313[M+H]+.
Example 501- (4- (4-amino-7-cyanomethyl-7H-pyrrolo [2,3-d ] pyrimidin-5) -2-fluorophenyl) -3- (5-tert-butyl-isoxazol-3-yl) urea Compound CLJ-50
Figure BDA0002393819090000481
In the same manner as in example 45, the bromopropyne was replaced with chloroacetonitrile, whereby CLJ-50, a high-purity final product, was obtained.1H NMR(400MHz,DMSO):10.10(s,1H),9.16(s,1H),8.57(s,1H),8.26(t,J=8.5Hz,1H),7.72(s,1H),7.39(dd,J=11.9,1.8Hz,1H),7.28(d,J=8.4Hz,1H),6.51(s,1H),5.55(s,2H),1.31(s,9H).HRMS(ESI),m/z:449.1848[M+H]+.
EXAMPLE 511- (4- (4-amino-7- (2-cyanoethyl) -7H-pyrrolo [2,3-d ] pyrimidin-5) -2-fluorophenyl) -3- (5-tert-butyl-isoxazol-3-yl) urea Compound CLJ-51
Figure BDA0002393819090000482
In the same manner as in example 45, the bromopropyne was replaced with bromopropionitrile, whereby CLJ-51, a high-purity final product, was obtained.1H NMR(400MHz,DMSO):10.05(s,1H),9.12(s,1H),8.54(s,1H),8.28(t,J=8.5Hz,1H),7.79(s,1H),7.65(s,1H),7.37(dd,J=11.9,1.8Hz,1H),7.28(d,J=8.5Hz,1H),6.51(s,1H),4.60–4.51(t,J=6.5Hz,2H),3.19(t,J=6.6Hz,2H),1.31(s,9H).HRMS(ESI),m/z:463.2004[M+H]+.
Example 521- (4- (4-amino-7H-pyrazolo [2,3-d ] pyrimidin-5-yl) phenyl) -3- (5-tert-butyl-isoxazol-3-yl) urea Compound CLJ-52
Figure BDA0002393819090000483
The synthetic route is shown as follows;
Figure BDA0002393819090000484
the synthetic route corresponds essentially to example 13, except that the starting material is replaced by 4-chloropyrazolo [2,3-d ]]Pyrimidine is reacted in 6 steps to obtain the final product CLJ-52.1H NMR(400MHz,DMSO):13.80(s,1H),9.35(s,1H),9.14(s,1H),8.50(s,1H),7.53(s,2H),7.24–7.18(m,2H),6.73–6.67(m,2H),6.46(s,1H),1.29(s,9H).HRMS(ESI),m/z:392.1907[M+H]+.
Example 531- (4- (4-amino-7-allyl-7H-pyrazolo [2,3-d ] pyrimidin-5-yl) phenyl) -3- (5-tert-butyl-isoxazol-3-yl) urea compound CLJ-53
Figure BDA0002393819090000491
In line with the route of example 52, except that bromopropene was added in g, and the reactive urea intermediate reacted with the next step was synthesized according to the "one-pot" synthesis to give final product CLJ-53.1H NMR(400MHz,DMSO):9.56(s,1H),9.02(s,1H),8.26(s,1H),7.63(t,J=7.0Hz,4H),7.00(dd,J=114.0,63.4Hz,2H),6.53(s,1H),6.10–6.01(m,1H),5.19(d,J=10.3Hz,1H),5.11(d,J=17.1Hz,1H),4.97(d,J=5.5Hz,2H),1.31(s,9H).HRMS(ESI),m/z:433.2099[M+H]+.
Example 541- (4- (4-amino-7- (2-morpholinoethyl) -7H-pyrazolo [2,3-d ] pyrimidin-5-yl) phenyl) -3- (5-tert-butyl-isoxazol-3-yl) urea compound CLJ-54
Figure BDA0002393819090000492
This compound was synthesized in the same manner as in example 53 except that N- (2-chloroethylmorpholine) hydrochloride was used in place of bromopropene to give the desired end product CLJ-54.1H NMR(400MHz,DMSO)9.57(s,1H),9.04(s,1H),8.25(s,1H),7.66–7.63(m,2H),7.63–7.61(m,2H),6.75(s,2H),6.53(s,1H),4.48–4.46(m,2H),3.52–3.48(m,4H),2.83–2.81(m,2H),2.49–2.46(m,4H),1.31(s,9H).HRMS(ESI),m/z:506.2628[M+H]+.
Example 551- (4- (4-amino-7- (2- (piperidin-1-yl) ethyl) -7H-pyrazolo [2,3-d ] pyrimidin-5-yl) phenyl) -3- (5-tert-butyl-isoxazol-3-yl) urea Compound CLJ-55
Figure BDA0002393819090000493
This compound was synthesized in the same manner as in example 53 except that N- (2-chloroethylpiperidine) hydrochloride was used in place of bromopropene to obtain the objective end product CLJ-55.1H NMR(400MHz,DMSO):9.58(s,1H),9.05(s,1H),8.25(s,1H),7.66–7.63(m,2H),7.63–7.61(m,2H),6.75(s,2H),6.53(s,1H),4.52–4.48(m,2H),4.44–4.40(m,2H),2.78–2.74(m,2H),2.44–2.38(m,4H),1.46–1.40(m 4H),1.31(s,9H).HRMS(ESI),m/z:504.2829[M+H]+.
EXAMPLE 561- (4- (4-amino-7- (cyclopropylmethyl) -7H-pyrazolo [2,3-d ] pyrimidin-5-yl) phenyl) -3- (5-tert-butyl-isoxazol-3-yl) urea compound CLJ-56
Figure BDA0002393819090000501
The synthesis of this compound was performed in the same manner as in example 53 except that 2-chlorocyclopropane was used instead of bromopropene to obtain the desired final product, CLJ-56.1H NMR(400MHz,DMSO):9.56(s,1H),9.02(s,1H),8.25(s,1H),7.66–7.63(m,2H),7.63–7.61(m,2H),6.90(s,2H),6.53(s,1H),5.84–5.76(m,1H),5.05–4.97(m,2H),4.42–4.39(m,2H),2.66–2.61(m,2H),1.31(s,9H).HRMS(ESI),m/z:447.2257[M+H]+.
Example 571- (4- (4-amino-7-propargyl-7H-pyrazolo [2,3-d ] pyrimidin-5-yl) phenyl) -3- (5-tert-butyl-isoxazol-3-yl) urea Compound CLJ-57
Figure BDA0002393819090000502
The synthesis of this compound was performed in the same manner as in example 53 except that bromopropyne was used in place of bromopropene to obtain the objective final product, CLJ-57.1H NMR(400MHz,DMSO)9.63(s,1H),9.10(s,1H),8.34(s,1H),7.72–7.68(m,4H),6.59(s,1H),5.51(s,2H),5.25(s,2H),3.43(s,1H),1.37(s,9H).HRMS(ESI),m/z:431.1944[M+H]+.
Example 581- (4- (4-amino-7-methyl-7H-pyrazolo [2,3-d ] pyrimidin-5-yl) phenyl) -3- (5-tert-butyl-isoxazol-3-yl) urea Compound CLJ-58
Figure BDA0002393819090000503
The synthesis of this compound was performed in the same manner as in example 53 except that methyl iodide was used instead of propylene bromide to obtain the desired final product, CLJ-58.1H NMR(400MHz,DMSO):9.56(s,1H),9.05(s,1H),8.26(s,1H),7.66–7.61(m,4H),6.53(s,1H),5.41(s,2H),4.03–3.99(m,3H),1.31(s,9H).HRMS(ESI),m/z:407.1948[M+H]+.
Example 591- (4- (4-amino-7-ethyl-7H-pyrazolo [2,3-d ] pyrimidin-5-yl) phenyl) -3- (5-tert-butyl-isoxazol-3-yl) urea compound CLJ-59
Figure BDA0002393819090000511
The synthesis of this compound was performed in the same manner as in example 53 except that iodoethane was used instead of bromopropene to obtain the desired final product, CLJ-59.1H NMR(400MHz,DMSO):9.58(s,1H),9.05(s,1H),8.26(s,1H),7.66–7.61(m,4H),6.53(s,1H),5.41(s,2H),3.97–3.93(m,2H),1.31(s,9H),1.26–1.22(m,3H).HRMS(ESI),m/z:421.2100[M+H]+.
Example 601- (4- (4-amino-7- (2-cyanoethyl) -7H-pyrazolo [2,3-d ] pyrimidin-5-yl) phenyl) -3- (5-tert-butyl-isoxazol-3-yl) urea Compound CLJ-60
Figure BDA0002393819090000512
This compound was synthesized in the same manner as in example 53 except that chloropropionitrile was used in place of bromopropene to give the desired final product CLJ-60.1H NMR(400MHz,DMSO)9.62(s,1H),9.10(s,1H),8.34(s,1H),7.72–7.66(m,4H),6.59(s,1H),5.67(s,2H),4.66(s,2H),3.22–3.18(m,2H),1.36(s,9H).HRMS(ESI),m/z:446.2056[M+H]+.
Example 611- (4- (4-amino-7-hexyl-7H-pyrazolo [2,3-d ] pyrimidin-5-yl) phenyl) -3- (5-tert-butyl-isoxazol-3-yl) urea Compound CLJ-61
Figure BDA0002393819090000513
This compound was synthesized in the same manner as in example 53 except that 1-bromohexane was used in place of bromopropene to obtain the objective final product CLJ-61.1H NMR(400MHz,DMSO)9.56(s,1H),9.03(s,1H),8.25(s,1H),7.65–7.59(m,4H),6.54(s,1H),5.42(s,2H),4.34–4.31(m,2H),1.84–1.82(m,4H),1.31(s,9H),0.85–0.82(m,7H).HRMS(ESI),m/z:477.2396[M+H]+.
Example 621- (4- (4-amino-7-propyl-7H-pyrazolo [2,3-d ] pyrimidin-5-yl) phenyl) -3- (5-tert-butyl-isoxazol-3-yl) urea Compound CLJ-62
Figure BDA0002393819090000521
The synthesis of this compound was performed in the same manner as in example 53 except that 1-bromopropyl was used instead of bromopropene to obtain the desired final product, CLJ-62.1H NMR(400MHz,DMSO):9.56(s,1H),9.02(s,1H),8.25(s,1H),7.64–7.60(m,4H),6.53(s,1H),5.41(s,2H),4.32–4.28(m,2H),1.92–1.84(m,2H),1.31(s,9H),0.89–0.85(m,3H).HRMS(ESI),m/z:435.2256[M+H]+.
Example 631- (4- (4-amino-7-cyclopentyl-7H-pyrazolo [2,3-d ] pyrimidin-5-yl) phenyl) -3- (5-tert-butyl-isoxazol-3-yl) urea Compound CLJ-63
Figure BDA0002393819090000522
The synthesis of this compound was the same as in example 53 except that bromocyclopentane was substituted for bromopropene to give the desired end product, CLJ-63.1H NMR(400MHz,DMSO)9.55(s,1H),9.03(s,1H),8.23(s,1H),7.64–7.60(m,4H),6.72(s,2H),6.53(s,1H),5.28–5.19(m,1H),2.08–2.08(m,4H),1.92–1.87(m,2H),1.74–1.67(m,2H),1.31(s,9H).HRMS(ESI),m/z:461.2407[M+H]+.
Example 641- (4- (4-amino-7- (2-ethoxyethyl) -7H-pyrazolo [2,3-d ] pyrimidin-5-yl) phenyl) -3- (5-tert-butyl-isoxazol-3-yl) urea compound CLJ-64
Figure BDA0002393819090000523
The synthesis of this compound was the same as in example 53 except that bromoethyl ether was used instead of bromopropene to give the desired end product, CLJ-64.1H NMR(400MHz,DMSO):9.57(s,1H),9.05(s,1H),8.25(s,1H),7.67–7.61(m,4H),6.88(s,2H),6.54(s,1H),4.49–4.42(m,4H),1.31(s,9H),1.04–1.00(m,5H).HRMS(ESI),m/z:465.2361[M+H]+.
Example 651- (4- (4-amino-7- (3-methylbut-2-en-1-yl) -7H-pyrazolo [2,3-d ] pyrimidin-5-yl) phenyl) -3- (5-tert-butyl-isoxazol-3-yl) urea Compound CLJ-65
Figure BDA0002393819090000531
The synthesis of this compound was the same as in example 53 except that 3, 3-dimethylbromopropene was used instead of bromopropene to give the desired end product, CLJ-65.1H NMR(400MHz,DMSO):9.57(s,1H),9.05(s,1H),8.25(s,1H),7.65–7.59(m,4H),6.53(s,1H),5.42(s,2H),4.94–4.88(m,3H),1.82–1.79(m,5H),1.70(s,3H),1.31(s,9H).HRMS(ESI),m/z:461.2407[M+H]+.
EXAMPLE 661- (4- (4-amino-7- (2, 2-dimethoxyethyl) -7H-pyrazolo [2,3-d ] pyrimidin-5-yl) phenyl) -3- (5-tert-butyl-isoxazol-3-yl) urea compound CLJ-66
Figure BDA0002393819090000532
The synthesis of this compound is the same as in example 53 except that 2, 2-dimethyl bromoethyl is substituted for bromopropene to give the desired end product, CLJ-66.1H NMR(400MHz,DMSO):9.57(s,1H),9.04(s,1H),8.27(s,1H),7.66–7.60(m,4H),6.54(s,1H),5.46(s,2H),4.96–4.93(m,1H),4.44–4.42(m,2H),3.33(s,6H),1.31(s,9H).HRMS(ESI),m/z:481.2307[M+H]+.
EXAMPLE 671- (4- (4-amino-7- (4-oxopentyl) -7H-pyrazolo [2,3-d ] pyrimidin-5-yl) phenyl) -3- (5-tert-butyl-isoxazol-3-yl) urea compound CLJ-67
Figure BDA0002393819090000533
The synthesis of this compound was the same as in example 53 except that 2, 2-dimethylbromoethyl was used instead of bromopropene to give the desired end product, CLJ-67.1H NMR(400MHz,DMSO):9.57(s,1H),9.05(s,1H),8.21(s,1H),7.66–7.60(m,4H),6.54(s,1H),5.42(s,2H),4.30–4.25(m,2H),2.48–2.42(m,4H),2.05(s,3H),1.31(s,9H).HRMS(ESI),m/z:477.2396[M+H]+.
Example 681- (4- (4-amino-7H-pyrazolo [2,3-d ] pyrimidin-5-yl) phenyl) -3- (3-tert-butyl-1H-pyrazol-5-yl) urea Compound CLJ-68
Figure BDA0002393819090000541
Preparation of active urea intermediate 1,3- (3-tert-butyl-1H-pyrazol-5-yl) urea
Figure BDA0002393819090000542
Triphosgene (4.71g,15.7mmol) was added to 50mL of tetrahydrofuran, and 3-amino-5-tert-butylpyrazole (1.99g,14.3mmol) was dissolved in 5mL of tetrahydrofuran under ice bath, then added dropwise to the triphosgene solution, and finally triethylamine (4.0mL,28.5mmol) was added dropwise. The reaction was transferred to a 60 ℃ oil bath and reacted for 5 h. And after the reaction is completed, filtering the reaction mixture, reserving filtrate, concentrating the filtrate under reduced pressure to obtain a solid, and separating the solid by a column to obtain the active urea intermediate.1H NMR(400MHz,DMSO):12.66(s,2H),9.51(s,2H),6.30(s,2H),1.30(s,18H).
And adding the intermediate M5(225mg,1mmol) into 20mL of acetonitrile, heating to 80 ℃ for reaction, adding the active urea intermediate (390mg,1mmol) in the previous step, reacting for 0.5h, precipitating a large amount of solid, filtering, and leaching with diethyl ether to obtain the high-purity final product CLJ-68.1H NMR(400MHz,DMSO):12.64(s,1H),11.54(s,1H),9.52(s,1H),8.86(s,1H),8.11(s,1H),7.80(d,J=8.5Hz,2H),7.65(d,J=8.5Hz,2H),7.19(d,J=2.3Hz,1H),6.54(s,1H),6.01(s,2H),1.31(s,9H).HRMS(ESI),m/z:391.1924[M+H]+.
Example 691- (4- (4-amino-7- (2-morpholinoethyl) -pyrazolo [2,3-d ] pyrimidin-5-yl) phenyl) -3- (3-tert-butyl-1H-pyrazol-5-yl) urea Compound CLJ-69
Figure BDA0002393819090000543
The synthesis of this compound is the same as in example 54, except that the activity of the pyrazolylureasThe intermediate replaces an isoxazole active intermediate to obtain a target final product CLJ-69.1H NMR(400MHz,DMSO)12.00(s,1H),9.46(s,1H),9.05(s,1H),8.24(s,1H),7.61(dd,J=21.8,8.6Hz,4H),6.78(s,2H),6.02(s,1H),4.46(t,J=6.6Hz,2H),3.54–3.47(m,4H),2.80(t,J=6.7Hz,2H),2.46(d,J=3.8Hz,4H),1.27(s,9H).HRMS(ESI),m/z:505.2811[M+H]+.
Example 701- (4- (4-amino-7-ethyl-pyrazolo [2,3-d ] pyrimidin-5-yl) phenyl) -3- (3-tert-butyl-1H-pyrazol-5-yl) urea Compound CLJ-70
Figure BDA0002393819090000551
The synthesis of this compound is the same as in example 59 except that the isoxazole reactive intermediate is replaced by the reactive intermediate of pyrazolylurea to give the desired end product CLJ-70.1H NMR(400MHz,DMSO):12.01(s,1H),9.42(s,1H),9.00(s,1H),8.25(s,1H),7.61(dd,J=18.2,8.6Hz,4H),6.69(s,2H),6.02(s,1H),4.37(dd,J=14.2,7.0Hz,2H),1.42(t,J=7.1Hz,3H),1.19(s,9H).HRMS(ESI),m/z:420.2279[M+H]+.
Example 711- (4- (4-amino-7- (cyclopropylmethyl) -pyrazolo [2,3-d ] pyrimidin-5-yl) phenyl) -3- (3-tert-butyl-1H-pyrazol-5-yl) urea Compound CLJ-71
Figure BDA0002393819090000552
The synthesis of this compound is the same as in example 56 except that the active intermediate of pyrazolylurea is substituted for the active intermediate of isoxazole to give the desired end product CLJ-71.1H NMR(400MHz,DMSO):12.00(s,1H),9.49(s,1H),9.04(s,1H),8.25(s,1H),7.61(dd,J=21.9,8.5Hz,4H),6.69(s,2H),6.03(s,1H),5.03(dd,J=35.8,13.0Hz,2H),4.40(d,J=7.1Hz,2H),2.63(dd,J=13.6,6.8Hz,2H),1.19(s,9H),0.84(dd,J=10.0,7.0Hz,1H).HRMS(ESI),m/z:446.2456[M+H]+.
Example 721- (4- (4-amino-7-propyl-pyrazolo [2,3-d ] pyrimidin-5-yl) phenyl) -3- (3-tert-butyl-1H-pyrazol-5-yl) urea Compound CLJ-72
Figure BDA0002393819090000553
The synthesis of this compound is the same as in example 62 except that the active intermediate of pyrazolylurea is substituted for the active intermediate of isoxazole to give the desired end product CLJ-72.1H NMR(400MHz,DMSO):12.00(s,1H),9.43(s,1H),8.98(s,1H),8.25(s,1H),7.61(dd,J=21.9,8.5Hz,4H),6.02(s,1H),4.29(t,J=6.2Hz,2H),1.90–1.84(m,2H),1.27(s,9H),0.86(m,3H).HRMS(ESI),m/z:434.2419[M+H]+.
Example 731- (4- (4-amino-7-cyclopentyl-pyrazolo [2,3-d ] pyrimidin-5-yl) phenyl) -3- (3-tert-butyl-1H-pyrazol-5-yl) urea Compound CLJ-73
Figure BDA0002393819090000561
The synthesis of this compound is the same as in example 63 except that the active intermediate of pyrazolylurea is substituted for the active intermediate of isoxazole to give the desired end product CLJ-73.1H NMR(400MHz,DMSO)12.01(s,1H),9.40(s,1H),8.98(s,1H),8.23(s,1H),7.61(dd,J=19.4,8.4Hz,4H),6.72(s,2H),6.02(s,1H),5.23(dt,J=14.8,7.5Hz,1H),2.12–2.03(m,4H),1.90(d,J=8.5Hz,2H),1.73–1.65(m,2H),1.27(s,9H).HRMS(ESI),m/z:460.2624[M+H]+.
Example 741- (4- (4-amino-7-allyl-pyrazolo [2,3-d ] pyrimidin-5-yl) phenyl) -3- (3-tert-butyl-1H-pyrazol-5-yl) urea Compound CLJ-74
Figure BDA0002393819090000562
The synthesis of this compound is the same as in example 53 except that the active intermediate of pyrazolylurea is substituted for the active intermediate of isoxazole to give the desired end product CLJ-74.1H NMR(400MHz,DMSO):12.04(s,1H),9.41(s,1H),9.00(s,1H),8.25(s,1H),7.61(dd,J=16.8,7.2Hz,4H),,6.72(s,2H),6.11–6.04(m,1H),6.02(s,1H),5.19(d,J=10.4Hz,1H),5.11(d,J=17.5Hz,1H),4.97(s,2H),1.27(s,9H).HRMS(ESI),m/z:432.2307[M+H]+.
Example 751- (4- (4-amino-7- (2-cyanoethyl) -pyrazolo [2,3-d ] pyrimidin-5-yl) phenyl) -3- (3-tert-butyl-1H-pyrazol-5-yl) urea Compound CLJ-75
Figure BDA0002393819090000563
The synthesis method of the compound is the same as that of example 60, except that the active intermediate of the pyrazole urea is used for replacing the active intermediate of the isoxazole to obtain the target final product CLJ-75.1H NMR(400MHz,DMSO):12.00(s,1H),9.52(s,1H),9.05(s,1H),8.28(s,1H),7.63(dd,J=19.1,8.1Hz,4H),6.73(s,2H),6.03(s,1H),4.61(t,J=6.1Hz,2H),3.17(t,J=6.0Hz,2H),1.27(s,9H).HRMS(ESI),m/z:445.2244[M+H]+.
Pharmacodynamic test section
The following representative experiments, without limitation, were used to analyze the biological activity of the compounds of the present invention.
MTT method for measuring MV4-11, Molm-13 and RS 4; 11 cell proliferation inhibition assay
The test compounds of the invention were tested for their effect on cancer cell viability on MV4-11 and Molm-13 cells, a human leukemia cell line, expressing the constitutive FLT3 receptor and containing the FLT3-ITD mutation. If the compound has strong growth inhibition activity on FLT3-ITD expression cells, the compound has obvious effect on FLT3-ITD mutant strains. If the growth inhibition activity on cells expressing FLT3-WT is poor, the compound has poor effect on FLT3-WT wild type, and the selectivity is better. The invention selects FLT3-ITD high specificity compound AC220 (CAS: 950769-58-1) as a positive control, and is synthesized by the laboratory according to the preparation method of the literature (J.Med.chem.2009,52, 7808-.
MV4-11 cells (from the American type culture center, by Sichuan university biotherapy national Key laboratory cell Bank cultures) were plated in 96-well plates in a medium of 100. mu.L IMDM, and Molm-13 cells (from the American type culture center, by Sichuan university biotherapy national Key laboratory cell Bank cultures) in 100. mu.L RPMI1640 containing 10% fetal bovine serum per 96-well plate10000-15000 cells in the well, test compounds in 100% DMSO, added to the cells, concentration of 100nM to 0.032nM (according to 5 times the dilution of the concentration of 6 concentration points) culture dish at 37 degrees C5% CO2And culturing for 72 h. RS 4; 11 cells (from the American type culture center, from Sichuan university biotherapy national emphasis laboratory cell bank culture stock) were plated in 96-well plates in 100. mu.L RPMI1640 containing 10% fetal bovine serum, 10000-15000 cells per well, test compounds were prepared in 100% DMSO, added to the cells to a concentration of 1000nM, and plates were plated at 37 ℃ with 5% CO2And culturing for 72 h. At the end point, 20 μ LMTT (5mg/mL) was added to each well and the cells were incubated for an additional 1-4 hours. After treatment with 20% SDS overnight, an absorbance value at a wavelength of 570nM was obtained on a spectrophotometer (Molecular Devices, Sunnyvale, USA). Calculation of IC Using percent growth compared to untreated control50The values and measurement results are shown in Table 1.
TABLE 1 IC inhibition of leukemia cell proliferation by test Compounds50Value of
Figure BDA0002393819090000571
Figure BDA0002393819090000581
Figure BDA0002393819090000591
Figure BDA0002393819090000601
******:0.01-0.1nM;*****:0.1-1nM;****:1-10nM;***:10-100nM;**:100-1000nM;*:>1000nM
The results show that the test compounds of the present invention have better inhibitory activity against MV4-11 and Molm-13 cell proliferation, some of which show better antiproliferative activity than AC220, and against RS 4; 11 is poor in inhibitory activity and is a novel, potential and potential inhibitor for treating FLT3-ITD related diseases.
In vitro kinase inhibition assay
In a reaction tube, buffer (8mM) MOPS, pH 7.0,0.2mM EDTA,10mM MnCl was added thereto2) A kinase to be tested, a substrate for the kinase to be tested, 10mM magnesium acetate and gamma33PATP solution, and compounds of different concentrations, then MgATP was added to the reaction to start the enzymatic process, and incubated at room temperature for 40 min. Finally, stopping the reaction by using 5 microliter of 3% phosphate buffer solution, titrating 10 microliter of reaction solution onto a Filtermat A membrane, washing three times by using 75mM phosphate solution, washing for 5 minutes each time by using methanol, finally drying the Filtermat A membrane and carrying out scintillation counting on the Filtermat A membrane, wherein the scintillation counting value reflects the phosphorylation degree of a substrate, so that the kinase activity inhibition condition can be represented.
TABLE 2 partial compound FLT3 kinase inhibitor Activity of the present invention
Test compounds FLT3(IC50,nM)
CLJ-13 20
CLJ-14 6
CLJ-20 7
CLJ-21 9
CLJ-22 20
CLJ-42 13
CLJ-44 4
The results show that the compound has better in-vitro enzymology inhibitory activity on FLT 3.
TABLE 3 dissociation constants of the inventive compound CLJ-20 for FLT3 mutant kinase
Type of mutation Kd,nM
FLT3 WT 4.37
FLT3(D835V) 7.04
FLT3(ITD) 20.52
FLT3(ITD,D835V) 41.26
FLT3(ITD,F691L) 48.47
FLT3(N841I) 2.37
FLT3(R834Q) 10.15
FLT3(D835H) 5.14
FLT3(D835Y) 7.78
FLT3(K663Q) 2.48
The results show that CLJ-20 also has good combination effect on various mutations of FLT3 kinase.
Part of tested compounds verify the target effect on Western Blot
The test method comprises the following steps: MV4-11 cells, Molm-13 cells, were treated with the indicated concentrations of the compounds. The cells were then harvested and total protein extracted with RIPA lysis buffer (beyond Co. P0013B, fraction: 50mM Tris, pH 7.4,150mM NaCl, 1% Triton X-100, 1% sodium deoxycholate, 0.1% SDS, 1). 1mM sodium orthovanadate, sodium fluoride, EDTA and leupeptin). The protein concentration was measured by BCA protein assay (ThermoScientific, USA). An equivalent sample (30. mu.g protein) was subjected to SDS-PAGE, and then the protein was transferred onto a PVDF membrane (Millipore, USA). After blocking with 5% skim milk for 1 hour at room temperature, the membranes were incubated with the indicated primary antibodies (FLT3(Cell signaling technology,3462S), p-FLT3(Cell signaling technology,3464S), STAT5(Cell signaling technology,9363S), p-STAT5(Abcam, AB32364), ERK (Zen Bioscience,220003), p-ERK (Zen Bioscience,340767), β -Actin (Abways, AB0035)) at 4 ℃ overnight, followed by detection with an appropriate secondary antibody (Abways, F300409) coupled to horseradish peroxidase for 1 hour. The immunoreactive bands were visualized using enhanced chemiluminescence (Millipore, USA). The molecular size of the detected protein was determined by comparison with a relevant protein marker (ThermoScientific, USA).
The experimental results are shown in figures 1 and 2, and the results show that the tested compound CLJ-20 can significantly reduce p-FLT3, p-STAT5 and p-ERK in a dose-dependent manner, and AC220 also shows the same effect, which indicates that the tested compound really influences the phosphorylation of a downstream signal channel by inhibiting the activity of FLT 3.
In vivo pharmacodynamic experiment of compound CLJ-20 on NOD/SCID nude mice
The purpose of this experiment was to examine the in vivo anti-tumor effect of the compounds of the invention using a mouse subcutaneous tumor model using MV4-11 and Molm-13 cells as cell lines and AC220, a developing clinical drug, as a positive control.
The test method comprises the following steps: 6-8 weeks NOD/SCID mice (purchased from Beijing Huafukang Biotech GmbH) were used, as 1070.1mL of Molm-13 and MV4-11 cells are inoculated in the subcutaneous posterior costal region of the mouse, and the tumor is expanded to 200-3Then, the mice are divided into groups (6 mice in each group) and administered, the drug dissolution mode is 2% DMSO + 2% PEG-400+ 96% normal saline, the experimental group is a drug solvent control group, the oral gavage is carried out by 200 microliters every day, the compound CLJ-20 is orally gavage every day according to the dose of 3mg/kg, the compound CLJ-20 is orally gavage every day according to the dose of 10mg/kg, and the oral gavage is carried out by the positive drug AC220 according to the dose of 3mg/kg every day. The observation indexes are that the body weight of the mice and the long diameter and the short diameter of the tumor are measured once every two days, the volume of the tumor is calculated, and the physiological state of each group of mice is observed.
The experimental results are as follows: the Molm-13 model experiment results are shown in FIG. 3, and the MV4-11 model results are shown in FIG. 4. Experimental results show that the compound CLJ-20 has an obvious in-vivo anti-tumor effect on a Molm-13 model, can obviously inhibit tumor growth under the oral dosage of 3mg/kg, has the tumor inhibition rate of 94 percent, has the tumor inhibition rate of 96 percent at the time of 10mg/kg, has a better anti-tumor effect on AC220, has the tumor inhibition rate of 98 percent, and shows that the CLJ-20 and the AC220 have equivalent in-vivo effects. In the MV4-11 model, the tested drug CLJ-20 showed a tumor suppression rate of 98% at 3mg/kg, and two mice achieved tumor regression, 10mg/kg achieved tumor regression on the eighth day of administration, and the AC 2203 mg/kg group also achieved tumor regression in all mice on the eighth day. No adverse reactions such as weight reduction, rash, diarrhea and the like of the mice are found in the administration process. While a slight decrease in body weight was observed in the AC220 group, indicating that CLJ-20 was less toxic over the range of doses administered at the doses tested.
In vivo survival study of compound CLJ-20 in NCG mouse model
The test method comprises the following steps: NCG mice (purchased from Jiangsu Jiejiaokang Biotech Co., Ltd.) for 7-8 weeks were used according to 106When the Molm-13 cells are inoculated in the tail vein of the mouse at a concentration, the cells can be massively proliferated in the blood circulation system of the mouse, so that the mouse has the symptoms of hind limb paralysis and even death. The mice are divided into groups (8 mice in each group) and are administrated, the drug dissolution mode is 2% DMSO + 2% PEG-400+ 96% normal saline, the experimental group is a drug solvent control group, the gavage is carried out by oral administration for 200 microliter every day, the compound CLJ-20 is carried out by oral administration for 30 days according to the dose of 10mg/kg every day. The therapeutic effect of CLJ-20 was examined by observing and recording the survival time of mice after the model was established.
The results of the experiment show that the Median Survival Time (MST) of the mice in the solvent control group is 20 days, as shown in fig. 5. The median survival time of the 10mg/kg dose group reaches 46.5 days, is prolonged by 26.5 days compared with the control group, and is sufficiently prolonged by more than one time. This indicates that CLJ-20 has significant tumor growth inhibition effects in AML xenograft in situ models, greatly prolonging survival.
Although the present invention has been described in detail hereinabove by way of general description, specific examples and experiments, it will be apparent to those skilled in the art that modifications and improvements can be made thereto based on the present invention. Accordingly, it is intended that all such modifications and variations be included within the scope of the invention as claimed and not departing from the spirit thereof.

Claims (21)

1.4-amino-pyrimidoazepine-phenylurea derivatives having the structural formula shown in formula I:
Figure FDA0002393819080000011
wherein X is N or C;
R1is-H, -OH, halogen, C1-C10 alkoxy, C1-C10 haloalkoxy,
Figure FDA0002393819080000012
C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl,
Figure FDA0002393819080000013
Or substituted or unsubstituted C1-C10 alkyl; the substituent of the substituted C1-C10 alkyl is-H,
Figure FDA0002393819080000014
-CN, -OH, phenyl, halogen, C1-C8 alkoxy, C3-C8 cycloalkyl, C1-C8 carbonyl or substituted or unsubstituted 3-6 membered heterocycloalkyl; the heteroatom of the 3-6 membered heterocycloalkyl is N, O or S, and the number of the heteroatoms is 1-3; the substituent for substituting the 3-to 6-membered heterocycloalkyl is-H, -OH, halogen, C1-C8 oxycarbonyl, C1-C8 alkyl, C1-C8 alkoxy or
Figure FDA0002393819080000015
R4is-H, -OH, halogen, C1-C8 alkyl, C1-C8 alkoxy or
Figure FDA0002393819080000016
R5~R10Independently is-H or C1-C8 alkyl;
R2is-H, -OH, halogen, C1-C10 alkyl, C3-C10 cycloalkyl, C1-C10 haloalkyl, amino-substituted C1-C10 alkyl, benzyl, substituted or unsubstituted C5-C10 aryl or substituted or unsubstituted 5-10 membered heteroaryl; the 5-to 10-membered heteroaryl has N, O or S as heteroatoms, and the number of the heteroatoms is 1-3; the substituent of the substituted C5-C10 aryl or 5-10-membered heteroaryl is-H, halogen or-NH2C1-C8 alkyl, C3-C8 cycloalkyl, C1-C8 haloalkyl, C1-C8 alkoxyC1-C8 haloalkoxy, -OH or C1-C8 carbonyl;
R3is-H, -OH, halogen, -NH2Or C1-C10 alkyl.
2. The 4-amino-pyrimidoazetidic-phenylurea derivative according to claim 1, characterized in that: x is N or C; r1is-H, -OH, halogen, C1-C8 alkoxy, C1-C8 haloalkoxy,
Figure FDA0002393819080000017
C2-C8 alkenyl, C2-C8 alkynyl, C3-C8 cycloalkyl,
Figure FDA0002393819080000018
Or substituted or unsubstituted C1-C8 alkyl; the substituent of the substituted C1-C8 alkyl is-H,
Figure FDA0002393819080000021
-CN, -OH, phenyl, halogen, C1-C6 alkoxy, C3-C6 cycloalkyl, C1-C6 carbonyl or substituted or unsubstituted 3-6 membered heterocycloalkyl; the heteroatom of the 3-6 membered heterocycloalkyl is N, O or S, and the number of the heteroatoms is 1-3; the substituent for substituting the 3-to 6-membered heterocycloalkyl is-H, -OH, halogen, C1-C6 oxycarbonyl, C1-C6 alkyl, C1-C6 alkoxy or
Figure FDA0002393819080000022
R4is-H, -OH, halogen, C1-C6 alkyl, C1-C6 alkoxy or
Figure FDA0002393819080000023
R5~R10Independently is-H or C1-C6 alkyl;
R2is-H, -OH, halogen, C1-C8 alkyl, C3-C8 cycloalkyl, C1-C8 haloalkyl, amino-substituted C1-C8 alkyl, benzyl, substituted or unsubstituted C5-C8 aryl or substituted or unsubstituted 5-8 membered heteroaryl; the hetero atom of the 5-to 8-membered heteroaryl is N,O or S, the number of heteroatoms is 1-3; the substituent of the substituted C5-C8 aryl or 5-8-membered heteroaryl is-H, halogen or-NH2C1-C6 alkyl, C3-C6 cycloalkyl, C1-C6 haloalkyl, C1-C6 alkoxy, C1-C6 haloalkoxy, -OH or C1-C6 carbonyl;
R3is-H, -OH, halogen, -NH2Or C1-C8 alkyl;
preferably, X is N or C; r1is-H, -OH, halogen, C1-C8 alkyl, C1-C6 alkoxy, C1-C6 halogenated alkoxy,
Figure FDA0002393819080000024
C2-C6 alkenyl, C2-C6 alkynyl, C3-C6 cycloalkyl,
Figure FDA0002393819080000025
Or substituted C1-C6 alkyl; the substituent of the substituted C1-C6 alkyl is-H,
Figure FDA0002393819080000026
-CN, -OH, phenyl, halogen, C1-C4 alkoxy, C3-C6 cycloalkyl, C1-C4 carbonyl or substituted or unsubstituted 3-6 membered heterocycloalkyl; the heteroatom of the 3-6 membered heterocycloalkyl is N, O or S, and the number of the heteroatoms is 1-3; the substituent for substituting the 3-to 6-membered heterocycloalkyl is-H, -OH, halogen, C1-C4 oxycarbonyl, C1-C4 alkyl, C1-C4 alkoxy or
Figure FDA0002393819080000027
R4is-H, -OH, halogen, C1-C4 alkyl, C1-C4 alkoxy or
Figure FDA0002393819080000028
R5~R10Independently is-H or C1-C4 alkyl;
R2is-H, -OH, halogen, C1-C6 alkyl, C3-C6 cycloalkyl, C1-C6 haloalkyl, amino substituted C1-C6 alkyl, benzyl, substituted or unsubstituted C5-C6 aryl or substituted or unsubstitutedA 5-6 membered heteroaryl; the 5-6 membered heteroaryl has N, O or S as heteroatoms, and the number of the heteroatoms is 1-3; the substituent of the substituted C5-C6 aryl or 5-6-membered heteroaryl is-H, halogen or-NH2C1-C4 alkyl, C3-C6 cycloalkyl, C1-C4 haloalkyl, C1-C4 alkoxy, C1-C4 haloalkoxy, -OH or C1-C4 carbonyl;
R3is-H, -OH, halogen, -NH2Or C1-C6 alkyl.
3. The 4-amino-pyrimidoazetidic-phenylurea derivative according to claim 2, characterized in that: x is N or C; r1is-H, C1-C8 alkyl,
Figure FDA0002393819080000031
C2-C6 alkenyl, C2-C6 alkynyl, C3-C6 cycloalkyl or substituted C1-C4 alkyl; the substituent of the substituted C1-C4 alkyl is-H,
Figure FDA0002393819080000032
-CN, -OH, phenyl, halogen, C1-C4 alkoxy, C3-C6 cycloalkyl, C1-C4 carbonyl or substituted or unsubstituted 5-to 6-membered heterocycloalkyl; the heteroatom of the 5-6 membered heterocycloalkyl is N or O, and the number of the heteroatoms is 1-2; the substituent for substituting the 5-to 6-membered heterocycloalkyl is-H, C1-C4 oxycarbonyl, C1-C4 alkyl, C1-C4 alkoxy or
Figure FDA0002393819080000033
R4is-H, -OH, halogen, C1-C4 alkyl, C1-C4 alkoxy or
Figure FDA0002393819080000034
R5~R10Independently is-H or C1-C4 alkyl;
R2is-H, -OH, halogen, C1-C6 alkyl, C3-C6 cycloalkyl, C1-C6 haloalkyl, amino-substituted C1-C6 alkyl, benzyl, substituted or unsubstituted C5-C6 aryl or substituted or unsubstituted 5-6 membered heteroaryl; what is needed isThe 5-6 membered heteroaryl has N, O or S as heteroatoms, and the number of the heteroatoms is 1-3; the substituent of the substituted C5-C6 aryl or 5-6-membered heteroaryl is-H, halogen or-NH2C1-C4 alkyl, C3-C6 cycloalkyl, C1-C4 haloalkyl, C1-C4 alkoxy, C1-C4 haloalkoxy, -OH or C1-C4 carbonyl;
R3is-H, -OH, halogen, -NH2Or C1-C6 alkyl;
preferably, X is N or C; r1is-H, C1-C8 alkyl,
Figure FDA0002393819080000035
C2-C6 alkenyl, C2-C6 alkynyl, C3-C6 cycloalkyl or substituted C1-C4 alkyl; the substituent of the substituted C1-C4 alkyl is-H,
Figure FDA0002393819080000036
-CN, -OH, phenyl, halogen, C1-C4 alkoxy, C3-C6 cycloalkyl, C1-C4 carbonyl,
Figure FDA0002393819080000037
Figure FDA0002393819080000038
R4is-H, C1-C4 alkyl, C1-C4 alkoxy or
Figure FDA0002393819080000039
R5~R10Independently is-H or C1-C4 alkyl; r11is-H, C1-C4 oxycarbonyl, C1-C4 alkyl, C1-C4 alkoxy or
Figure FDA00023938190800000310
R2is-H, -OH, halogen, C1-C6 alkyl, C3-C6 cycloalkyl, C1-C6 haloalkyl, amino-substituted C1-C6 alkyl, benzyl, substituted or unsubstituted C5-C6 aryl or substituted or unsubstituted 5-6 membered heteroaryl; the hetero atom of the 5-to 6-membered heteroaryl is N,O or S, the number of heteroatoms is 1-3; the substituent of the substituted C5-C6 aryl or 5-6-membered heteroaryl is-H, halogen or-NH2C1-C4 alkyl, C3-C6 cycloalkyl, C1-C4 haloalkyl, C1-C4 alkoxy, C1-C4 haloalkoxy, -OH or C1-C4 carbonyl;
R3is-H, -OH, halogen, -NH2Or C1-C6 alkyl;
more preferably, X is N or C; r1is-H, C1-C8 alkyl,
Figure FDA0002393819080000041
C2-C6 alkenyl, C2-C6 alkynyl, C3-C6 cycloalkyl or substituted C1-C4 alkyl; the substituent of the substituted C1-C4 alkyl is-H,
Figure FDA0002393819080000042
-CN, -OH, phenyl, halogen, methoxy, ethoxy, N-acetyl, N,
Figure FDA0002393819080000043
Formyl, acetyl,
Figure FDA0002393819080000044
Figure FDA0002393819080000045
R4is-H, C1-C4 alkyl, tert-butyloxy or
Figure FDA0002393819080000046
R5~R10Independently is-H, methyl or ethyl;
R2is-H, -OH, halogen, C1-C6 alkyl, C3-C6 cycloalkyl, C1-C6 haloalkyl, amino-substituted C1-C6 alkyl, benzyl, substituted or unsubstituted C5-C6 aryl or substituted or unsubstituted 5-6 membered heteroaryl; the 5-6 membered heteroaryl has N, O or S as heteroatoms, and the number of the heteroatoms is 1-3; the substituent of the substituted C5-C6 aryl or 5-6-membered heteroaryl is-H, halogen or-NH2C1-C4 alkyl, C3-C6 cycloalkyl, C1-C4 haloalkyl, C1-C4 alkoxy, C1-C4 haloalkoxy, -OH or C1-C4 carbonyl;
R3is-H, -OH, halogen, -NH2Or C1-C6 alkyl;
most preferably, X is N or C; r1is-H, C1-C8 alkyl,
Figure FDA0002393819080000047
T-butyloxycarbonyl, C2-C6 alkenyl, C2-C6 alkynyl,
Figure FDA0002393819080000048
Figure FDA0002393819080000049
R2is-H, -OH, halogen, C1-C6 alkyl, C3-C6 cycloalkyl, C1-C6 haloalkyl, amino-substituted C1-C6 alkyl, benzyl, substituted or unsubstituted C5-C6 aryl or substituted or unsubstituted 5-6 membered heteroaryl; the 5-6 membered heteroaryl has N, O or S as heteroatoms, and the number of the heteroatoms is 1-3; the substituent of the substituted C5-C6 aryl or 5-6-membered heteroaryl is-H, halogen or-NH2C1-C4 alkyl, C3-C6 cycloalkyl, C1-C4 haloalkyl, C1-C4 alkoxy, C1-C4 haloalkoxy, -OH or C1-C4 carbonyl;
R3is-H, -OH, halogen, -NH2Or C1-C6 alkyl.
4. 4-amino-pyrimidoazepine-phenylurea derivatives according to claim 2 or 3, characterized in that: x is N or C; r2Is benzyl, C3-C6 cycloalkyl, substituted or unsubstituted C5-C6 aryl or substituted or unsubstituted 5-6 membered heteroaryl; the 5-6 membered heteroaryl has 1-2 heteroatoms and N or O as heteroatoms; the substituent of the substituted C5-C6 aryl or 5-6-membered heteroaryl is-H, halogen or-NH2C1-C4 alkyl, C3-C6 cycloalkyl, C1-C4 haloalkyl, C1-C4 alkoxy, C1-C4 haloalkoxyA radical, -OH or a C1-C4 carbonyl group;
R1is-H, C1-C8 alkyl,
Figure FDA0002393819080000051
C2-C6 alkenyl, C2-C6 alkynyl, C3-C6 cycloalkyl or substituted C1-C4 alkyl; the substituent of the substituted C1-C4 alkyl is-H,
Figure FDA0002393819080000052
-CN, -OH, phenyl, halogen, C1-C4 alkoxy, C3-C6 cycloalkyl, C1-C4 carbonyl or substituted or unsubstituted 5-to 6-membered heterocycloalkyl; the heteroatom of the 5-6 membered heterocycloalkyl is N or O, and the number of the heteroatoms is 1-2; the substituent for substituting the 5-to 6-membered heterocycloalkyl is-H, C1-C4 oxycarbonyl, C1-C4 alkyl, C1-C4 alkoxy or
Figure FDA0002393819080000053
R4is-H, -OH, halogen, C1-C4 alkyl, C1-C4 alkoxy or
Figure FDA0002393819080000054
R5~R10Independently is-H or C1-C4 alkyl;
R3is-H, -OH, halogen, -NH2Or C1-C6 alkyl;
preferably, X is N or C; r2Is benzyl, C3-C6 cycloalkyl,
Figure FDA0002393819080000055
R12~R19Independently is-H, halogen, -NH2C1-C4 alkyl, C3-C6 cycloalkyl, C1-C4 haloalkyl, C1-C4 alkoxy, C1-C4 haloalkoxy, -OH or C1-C4 carbonyl;
R1is-H, C1-C8 alkyl,
Figure FDA0002393819080000056
C2-C6 alkenyl, C2-C6 alkynyl, C3EC6 cycloalkyl or substituted C1-C4 alkyl; the substituent of the substituted C1-C4 alkyl is-H,
Figure FDA0002393819080000057
-CN, -OH, phenyl, halogen, C1-C4 alkoxy, C3-C6 cycloalkyl, C1-C4 carbonyl or substituted or unsubstituted 5-to 6-membered heterocycloalkyl; the heteroatom of the 5-6 membered heterocycloalkyl is N or O, and the number of the heteroatoms is 1-2; the substituent for substituting the 5-to 6-membered heterocycloalkyl is-H, C1-C4 oxycarbonyl, C1-C4 alkyl, C1-C4 alkoxy or
Figure FDA0002393819080000058
R4is-H, -OH, halogen, C1-C4 alkyl, C1-C4 alkoxy or
Figure FDA0002393819080000059
R5~R10Independently is-H or C1-C4 alkyl;
R3is-H, -OH, halogen, -NH2Or C1-C6 alkyl;
more preferably, X is N or C; r2Is benzyl, C3-C6 cycloalkyl,
Figure FDA0002393819080000061
R16~R19Independently is-H, halogen, -NH2C1-C4 alkyl, C1-C4 haloalkyl, -OH or C1-C4 carbonyl;
R1is-H, C1-C8 alkyl,
Figure FDA0002393819080000062
C2-C6 alkenyl, C2-C6 alkynyl, C3-C6 cycloalkyl or substituted C1-C4 alkyl; the substituent of the substituted C1-C4 alkyl is-H,
Figure FDA0002393819080000063
-CN, -OH, phenyl, halogen, C1-C4 alkoxy, C3-C6 cycloalkyl, C1-C4 carbonyl or substituted or unsubstituted 5-6 memberedA heterocycloalkyl group; the heteroatom of the 5-6 membered heterocycloalkyl is N or O, and the number of the heteroatoms is 1-2; the substituent for substituting the 5-to 6-membered heterocycloalkyl is-H, C1-C4 oxycarbonyl, C1-C4 alkyl, C1-C4 alkoxy or
Figure FDA0002393819080000064
R4is-H, -OH, halogen, C1-C4 alkyl, C1-C4 alkoxy or
Figure FDA0002393819080000065
R5~R10Independently is-H or C1-C4 alkyl;
R3is-H, -OH, halogen, -NH2Or C1-C6 alkyl;
further preferably, X is N or C; r2Is benzyl, C3-C6 cycloalkyl,
Figure FDA0002393819080000066
Figure FDA0002393819080000067
R16~R19Independently is-H, -F, -Cl, -Br, -CF3Methyl or acetyl;
R1is-H, C1-C8 alkyl,
Figure FDA0002393819080000068
C2-C6 alkenyl, C2-C6 alkynyl, C3-C6 cycloalkyl or substituted C1-C4 alkyl; the substituent of the substituted C1-C4 alkyl is-H,
Figure FDA0002393819080000069
-CN, -OH, phenyl, halogen, C1-C4 alkoxy, C3-C6 cycloalkyl, C1-C4 carbonyl or substituted or unsubstituted 5-to 6-membered heterocycloalkyl; the heteroatom of the 5-6 membered heterocycloalkyl is N or O, and the number of the heteroatoms is 1-2; the substituent for substituting the 5-to 6-membered heterocycloalkyl is-H, C1-C4 oxycarbonyl, C1-C4 alkyl, C1-C4 alkoxy or
Figure FDA00023938190800000610
R4is-H, -OH, halogen, C1-C4 alkyl, C1-C4 alkoxy or
Figure FDA00023938190800000611
R5~R10Independently is-H or C1-C4 alkyl;
R3is-H, -OH, halogen, -NH2Or C1-C6 alkyl;
most preferably, X is N or C; r2Is composed of
Figure FDA00023938190800000612
Figure FDA0002393819080000071
R1is-H, C1-C8 alkyl,
Figure FDA0002393819080000072
C2-C6 alkenyl, C2-C6 alkynyl, C3-C6 cycloalkyl or substituted C1-C4 alkyl; the substituent of the substituted C1-C4 alkyl is-H,
Figure FDA0002393819080000073
-CN, -OH, phenyl, halogen, C1-C4 alkoxy, C3-C6 cycloalkyl, C1-C4 carbonyl or substituted or unsubstituted 5-to 6-membered heterocycloalkyl; the heteroatom of the 5-6 membered heterocycloalkyl is N or O, and the number of the heteroatoms is 1-2; the substituent for substituting the 5-to 6-membered heterocycloalkyl is-H, C1-C4 oxycarbonyl, C1-C4 alkyl, C1-C4 alkoxy or
Figure FDA0002393819080000074
R4is-H, -OH, halogen, C1-C4 alkyl, C1-C4 alkoxy or
Figure FDA0002393819080000075
R5~R10Independently is-H or C1-C4 alkyl;
R3is-H, -OH, halogen, -NH2Or C1-C6 alkyl.
5. The 4-amino-pyrimidoazetidine-phenylurea derivative according to any one of claims 2 to 4, wherein: x is N or C; r3is-H, halogen, -OH or C1-C4 alkyl; r2Is benzyl, C3-C6 cycloalkyl, substituted or unsubstituted C5-C6 aryl or substituted or unsubstituted 5-6 membered heteroaryl; the 5-6 membered heteroaryl has 1-2 heteroatoms and N or O as heteroatoms; the substituent of the substituted C5-C6 aryl or 5-6-membered heteroaryl is-H, halogen or-NH2C1-C4 alkyl, C3-C6 cycloalkyl, C1-C4 haloalkyl, C1-C4 alkoxy, C1-C4 haloalkoxy, -OH or C1-C4 carbonyl;
R1is-H, C1-C8 alkyl,
Figure FDA0002393819080000076
C2-C6 alkenyl, C2-C6 alkynyl, C3-C6 cycloalkyl or substituted C1-C4 alkyl; the substituent of the substituted C1-C4 alkyl is-H,
Figure FDA0002393819080000077
-CN, -OH, phenyl, halogen, C1-C4 alkoxy, C3-C6 cycloalkyl, C1-C4 carbonyl or substituted or unsubstituted 5-to 6-membered heterocycloalkyl; the heteroatom of the 5-6 membered heterocycloalkyl is N or O, and the number of the heteroatoms is 1-2; the substituent for substituting the 5-to 6-membered heterocycloalkyl is-H, C1-C4 oxycarbonyl, C1-C4 alkyl, C1-C4 alkoxy or
Figure FDA0002393819080000078
R4is-H, -OH, halogen, C1-C4 alkyl, C1-C4 alkoxy or
Figure FDA0002393819080000079
R5~R10Independently is-H or C1-C4 alkyl;
preferably, X is N or C; r3is-H, halogen or C1-C4 alkyl; r2Is benzyl, C3-C6 cycloalkyl, substituted or unsubstituted C5-C6 aryl or substituted or unsubstituted 5-6 membered heteroaryl; the 5-6 membered heteroaryl has 1-2 heteroatoms and N or O as heteroatoms; the substituent of the substituted C5-C6 aryl or 5-6-membered heteroaryl is-H, halogen or-NH2C1-C4 alkyl, C3-C6 cycloalkyl, C1-C4 haloalkyl, C1-C4 alkoxy, C1-C4 haloalkoxy, -OH or C1-C4 carbonyl;
R1is-H, C1-C8 alkyl,
Figure FDA0002393819080000081
C2-C6 alkenyl, C2-C6 alkynyl, C3-C6 cycloalkyl or substituted C1-C4 alkyl; the substituent of the substituted C1-C4 alkyl is-H,
Figure FDA0002393819080000082
-CN, -OH, phenyl, halogen, C1-C4 alkoxy, C3-C6 cycloalkyl, C1-C4 carbonyl or substituted or unsubstituted 5-to 6-membered heterocycloalkyl; the heteroatom of the 5-6 membered heterocycloalkyl is N or O, and the number of the heteroatoms is 1-2; the substituent for substituting the 5-to 6-membered heterocycloalkyl is-H, C1-C4 oxycarbonyl, C1-C4 alkyl, C1-C4 alkoxy or
Figure FDA0002393819080000083
R4is-H, -OH, halogen, C1-C4 alkyl, C1-C4 alkoxy or
Figure FDA0002393819080000084
R5~R10Independently is-H or C1-C4 alkyl;
more preferably, X is N or C; r3is-H or halogen; r2Is benzyl, C3-C6 cycloalkyl, substituted or unsubstituted C5-C6 aryl or substituted or unsubstituted 5-6 membered heteroaryl; the 5-6 membered heteroaryl has 1-2 heteroatoms and N or O as heteroatoms; the substituted C5-C6 aryl isThe substituent of the 5-to 6-membered heteroaryl is-H, halogen, -NH2C1-C4 alkyl, C3-C6 cycloalkyl, C1-C4 haloalkyl, C1-C4 alkoxy, C1-C4 haloalkoxy, -OH or C1-C4 carbonyl;
R1is-H, C1-C8 alkyl,
Figure FDA0002393819080000085
C2-C6 alkenyl, C2-C6 alkynyl, C3-C6 cycloalkyl or substituted C1-C4 alkyl; the substituent of the substituted C1-C4 alkyl is-H,
Figure FDA0002393819080000086
-CN, -OH, phenyl, halogen, C1-C4 alkoxy, C3-C6 cycloalkyl, C1-C4 carbonyl or substituted or unsubstituted 5-to 6-membered heterocycloalkyl; the heteroatom of the 5-6 membered heterocycloalkyl is N or O, and the number of the heteroatoms is 1-2; the substituent for substituting the 5-to 6-membered heterocycloalkyl is-H, C1-C4 oxycarbonyl, C1-C4 alkyl, C1-C4 alkoxy or
Figure FDA0002393819080000087
R4is-H, -OH, halogen, C1-C4 alkyl, C1-C4 alkoxy or
Figure FDA0002393819080000088
R5~R10Independently is-H or C1-C4 alkyl;
most preferably, X is N or C; r3is-H, -F, -Cl or-Br; r2Is benzyl, C3-C6 cycloalkyl, substituted or unsubstituted C5-C6 aryl or substituted or unsubstituted 5-6 membered heteroaryl; the 5-6 membered heteroaryl has 1-2 heteroatoms and N or O as heteroatoms; the substituent of the substituted C5-C6 aryl or 5-6-membered heteroaryl is-H, halogen or-NH2C1-C4 alkyl, C3-C6 cycloalkyl, C1-C4 haloalkyl, C1-C4 alkoxy, C1-C4 haloalkoxy, -OH or C1-C4 carbonyl;
R1is-H, C1-C8 alkyl,
Figure FDA0002393819080000091
C2-C6 alkenyl, C2-C6 alkynyl, C3-C6 cycloalkyl or substituted C1-C4 alkyl; the substituent of the substituted C1-C4 alkyl is-H,
Figure FDA0002393819080000092
-CN, -OH, phenyl, halogen, C1-C4 alkoxy, C3-C6 cycloalkyl, C1-C4 carbonyl or substituted or unsubstituted 5-to 6-membered heterocycloalkyl; the heteroatom of the 5-6 membered heterocycloalkyl is N or O, and the number of the heteroatoms is 1-2; the substituent for substituting the 5-to 6-membered heterocycloalkyl is-H, C1-C4 oxycarbonyl, C1-C4 alkyl, C1-C4 alkoxy or
Figure FDA0002393819080000093
R4is-H, -OH, halogen, C1-C4 alkyl, C1-C4 alkoxy or
Figure FDA0002393819080000094
R5~R10Independently is-H or C1-C4 alkyl.
6. The 4-amino-pyrimidoazetidine-phenylurea derivative according to any one of claims 2 to 5, wherein: x is N or C; r1is-H, C1-C8 alkyl,
Figure FDA0002393819080000095
C2-C6 alkenyl, C2-C6 alkynyl, C3-C6 cycloalkyl or substituted C1-C4 alkyl; the substituent of the substituted C1-C4 alkyl is-H,
Figure FDA0002393819080000096
-CN, -OH, phenyl, halogen, C1-C4 alkoxy, C3-C6 cycloalkyl, C1-C4 carbonyl,
Figure FDA0002393819080000097
Figure FDA0002393819080000098
R4is-H, C1-C4 alkyl, C1-C4 alkoxy or
Figure FDA0002393819080000099
R5~R10Independently is-H or C1-C4 alkyl; r11is-H, C1-C4 oxycarbonyl, C1-C4 alkyl, C1-C4 alkoxy or
Figure FDA00023938190800000910
R2Is benzyl, C3-C6 cycloalkyl,
Figure FDA00023938190800000911
R12~R19Independently is-H, halogen, -NH2C1-C4 alkyl, C3-C6 cycloalkyl, C1-C4 haloalkyl, C1-C4 alkoxy, C1-C4 haloalkoxy, -OH or C1-C4 carbonyl;
R3is-H, halogen or C1-C4 alkyl;
further, X is N or C; r1is-H, C1-C8 alkyl,
Figure FDA00023938190800000912
C2-C6 alkenyl, C2-C6 alkynyl, C3-C6 cycloalkyl or substituted C1-C4 alkyl; the substituent of the substituted C1-C4 alkyl is-H,
Figure FDA00023938190800000913
-CN, -OH, phenyl, halogen, methoxy, ethoxy, N-acetyl, N,
Figure FDA0002393819080000101
Formyl, acetyl,
Figure FDA0002393819080000102
Figure FDA0002393819080000103
R4is-H, C1-C4 alkyl, tert-butyloxy or
Figure FDA0002393819080000104
R5~R10Independently is-H, methyl or ethyl;
R2is benzyl, C3-C6 cycloalkyl,
Figure FDA0002393819080000105
R16~R19Independently is-H, halogen, -NH2C1-C4 alkyl, C1-C4 haloalkyl, -OH or C1-C4 carbonyl;
R3is-H or halogen;
most preferably, X is N or C; r1is-H, C1-C8 alkyl,
Figure FDA0002393819080000106
T-butyloxycarbonyl, C2-C6 alkenyl, C2-C6 alkynyl,
Figure FDA0002393819080000107
Figure FDA0002393819080000108
R3is-H, -F, -Cl or-Br.
7. The 4-amino-pyrimidoazetidic-phenylurea derivative according to claim 1, characterized in that: when R is2Is composed of
Figure FDA0002393819080000111
And the structure is shown as formula II:
Figure FDA0002393819080000112
wherein X is N or C; r1is-H, -OH, halogen, C1-C10 alkoxy,C1-C10 haloalkoxy,
Figure FDA0002393819080000113
C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl,
Figure FDA0002393819080000114
Or substituted or unsubstituted C1-C10 alkyl; the substituent of the substituted C1-C10 alkyl is-H,
Figure FDA0002393819080000115
-CN, -OH, phenyl, halogen, C1-C8 alkoxy, C3-C8 cycloalkyl, C1-C8 carbonyl or substituted or unsubstituted 3-6 membered heterocycloalkyl; the heteroatom of the 3-6 membered heterocycloalkyl is N, O or S, and the number of the heteroatoms is 1-3; the substituent for substituting the 3-to 6-membered heterocycloalkyl is-H, -OH, halogen, C1-C8 oxycarbonyl, C1-C8 alkyl, C1-C8 alkoxy or
Figure FDA0002393819080000116
R4is-H, -OH, halogen, C1-C8 alkyl, C1-C8 alkoxy or
Figure FDA0002393819080000117
R5~R10Independently is-H or C1-C8 alkyl;
R3is-H, -OH, halogen, -NH2Or C1-C10 alkyl.
8. The 4-amino-pyrimidoazetidic-phenylurea derivative according to claim 7, characterized in that: x is N or C; r1is-H, -OH, halogen, C1-C8 alkoxy, C1-C8 haloalkoxy,
Figure FDA0002393819080000118
C2-C8 alkenyl, C2-C8 alkynyl, C3-C8 cycloalkyl,
Figure FDA0002393819080000119
Or substituted or unsubstituted C1-C8 alkyl; the substituent of the substituted C1-C8 alkyl is-H,
Figure FDA00023938190800001110
-CN, -OH, phenyl, halogen, C1-C6 alkoxy, C3-C6 cycloalkyl, C1-C6 carbonyl or substituted or unsubstituted 3-6 membered heterocycloalkyl; the heteroatom of the 3-6 membered heterocycloalkyl is N, O or S, and the number of the heteroatoms is 1-3; the substituent for substituting the 3-to 6-membered heterocycloalkyl is-H, -OH, halogen, C1-C6 oxycarbonyl, C1-C6 alkyl, C1-C6 alkoxy or
Figure FDA00023938190800001111
R4is-H, -OH, halogen, C1-C6 alkyl, C1-C6 alkoxy or
Figure FDA0002393819080000121
R5~R10Independently is-H or C1-C6 alkyl;
R3is-H, -OH, halogen, -NH2Or C1-C8 alkyl;
preferably, X is N or C; r1is-H, -OH, halogen, C1-C8 alkyl, C1-C6 alkoxy, C1-C6 halogenated alkoxy,
Figure FDA0002393819080000122
C2-C6 alkenyl, C2-C6 alkynyl, C3-C6 cycloalkyl,
Figure FDA0002393819080000123
Or substituted C1-C6 alkyl; the substituent of the substituted C1-C6 alkyl is-H,
Figure FDA0002393819080000124
-CN, -OH, phenyl, halogen, C1-C4 alkoxy, C3-C6 cycloalkyl, C1-C4 carbonyl or substituted or unsubstituted 3-6 membered heterocycloalkyl; the heteroatom of the 3-6 membered heterocycloalkyl is N, O or S, and the number of the heteroatoms is 1-3;the substituent for substituting the 3-to 6-membered heterocycloalkyl is-H, -OH, halogen, C1-C4 oxycarbonyl, C1-C4 alkyl, C1-C4 alkoxy or
Figure FDA0002393819080000125
R4is-H, -OH, halogen, C1-C4 alkyl, C1-C4 alkoxy or
Figure FDA0002393819080000126
R5~R10Independently is-H or C1-C4 alkyl;
R3is-H, -OH, halogen, -NH2Or C1-C6 alkyl;
further, X is N or C; r1is-H, C1-C8 alkyl,
Figure FDA0002393819080000127
C2-C6 alkenyl, C2-C6 alkynyl, C3-C6 cycloalkyl or substituted C1-C4 alkyl; the substituent of the substituted C1-C4 alkyl is-H,
Figure FDA0002393819080000128
-CN, -OH, phenyl, halogen, C1-C4 alkoxy, C3-C6 cycloalkyl, C1-C4 carbonyl or substituted or unsubstituted 5-to 6-membered heterocycloalkyl; the heteroatom of the 5-6 membered heterocycloalkyl is N or O, and the number of the heteroatoms is 1-2; the substituent for substituting the 5-to 6-membered heterocycloalkyl is-H, C1-C4 oxycarbonyl, C1-C4 alkyl, C1-C4 alkoxy or
Figure FDA0002393819080000129
R4is-H, -OH, halogen, C1-C4 alkyl, C1-C4 alkoxy or
Figure FDA00023938190800001210
R5~R10Independently is-H or C1-C4 alkyl;
R3is-H, -OH, halogen or C1-C4 alkyl;
further, X is N or C; r1is-H, C1-C8 alkyl,
Figure FDA00023938190800001211
C2-C6 alkenyl, C2-C6 alkynyl, C3-C6 cycloalkyl or substituted C1-C4 alkyl; the substituent of the substituted C1-C4 alkyl is-H,
Figure FDA00023938190800001212
Figure FDA00023938190800001213
-CN, -OH, phenyl, halogen, C1-C4 alkoxy, C3-C6 cycloalkyl, C1-C4 carbonyl,
Figure FDA00023938190800001214
Figure FDA00023938190800001215
R4is-H, C1-C4 alkyl, C1-C4 alkoxy or
Figure FDA00023938190800001216
R5~R10Independently is-H or C1-C4 alkyl; r11is-H, C1-C4 oxycarbonyl, C1-C4 alkyl, C1-C4 alkoxy or
Figure FDA0002393819080000131
R3is-H, -OH or halogen;
more preferably, X is N or C; r1is-H, C1-C8 alkyl,
Figure FDA0002393819080000132
C2-C6 alkenyl, C2-C6 alkynyl, C3-C6 cycloalkyl or substituted C1-C4 alkyl; the substituent of the substituted C1-C4 alkyl is-H,
Figure FDA0002393819080000133
-CN, -OH, benzeneHalogen, methoxy, ethoxy,
Figure FDA0002393819080000134
Formyl, acetyl,
Figure FDA0002393819080000135
Figure FDA0002393819080000136
R4is-H, C1-C4 alkyl, tert-butyloxy or
Figure FDA0002393819080000137
R5~R10Independently is-H, methyl or ethyl;
R3is-H or halogen;
most preferably, X is N or C; r1is-H, C1-C8 alkyl,
Figure FDA0002393819080000138
T-butyloxycarbonyl, C2-C6 alkenyl, C2-C6 alkynyl,
Figure FDA0002393819080000139
Figure FDA00023938190800001310
R3is-H, -F, -Cl or-Br.
9. The 4-amino-pyrimidoazetidic-phenylurea derivative according to claim 1, characterized in that: when R is2Is composed of
Figure FDA00023938190800001311
R3When the structure is-H, the structure is shown as formula III:
Figure FDA0002393819080000141
wherein X is N or C; r1is-H, -OH, halogen, C1-C10 alkoxy, C1-C10 haloalkoxy,
Figure FDA0002393819080000142
C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl,
Figure FDA0002393819080000143
Or substituted or unsubstituted C1-C10 alkyl; the substituent of the substituted C1-C10 alkyl is-H,
Figure FDA0002393819080000144
-CN, -OH, phenyl, halogen, C1-C8 alkoxy, C3-C8 cycloalkyl, C1-C8 carbonyl or substituted or unsubstituted 3-6 membered heterocycloalkyl; the heteroatom of the 3-6 membered heterocycloalkyl is N, O or S, and the number of the heteroatoms is 1-3; the substituent for substituting the 3-to 6-membered heterocycloalkyl is-H, -OH, halogen, C1-C8 oxycarbonyl, C1-C8 alkyl, C1-C8 alkoxy or
Figure FDA0002393819080000145
R4is-H, -OH, halogen, C1-C8 alkyl, C1-C8 alkoxy or
Figure FDA0002393819080000146
R5~R10Independently is-H or C1-C8 alkyl.
10. The 4-amino-pyrimidoazetidic-phenylurea derivative according to claim 9, characterized in that: x is N or C; r1is-H, -OH, halogen, C1-C8 alkoxy, C1-C8 haloalkoxy,
Figure FDA0002393819080000147
C2-C8 alkenyl, C2-C8 alkynyl, C3-C8 cycloalkyl,
Figure FDA0002393819080000148
Or substituted or unsubstituted C1-C8 alkyl; the substituent of the substituted C1-C8 alkyl is-H,
Figure FDA0002393819080000149
-CN, -OH, phenyl, halogen, C1-C6 alkoxy, C3-C6 cycloalkyl, C1-C6 carbonyl or substituted or unsubstituted 3-6 membered heterocycloalkyl; the heteroatom of the 3-6 membered heterocycloalkyl is N, O or S, and the number of the heteroatoms is 1-3; the substituent for substituting the 3-to 6-membered heterocycloalkyl is-H, -OH, halogen, C1-C6 oxycarbonyl, C1-C6 alkyl, C1-C6 alkoxy or
Figure FDA00023938190800001410
R4is-H, -OH, halogen, C1-C6 alkyl, C1-C6 alkoxy or
Figure FDA00023938190800001411
R5~R10Independently is-H or C1-C6 alkyl;
preferably, X is N or C; r1is-H, -OH, halogen, C1-C8 alkyl, C1-C6 alkoxy, C1-C6 halogenated alkoxy,
Figure FDA0002393819080000151
C2-C6 alkenyl, C2-C6 alkynyl, C3-C6 cycloalkyl,
Figure FDA0002393819080000152
Or substituted or unsubstituted C1-C6 alkyl; the substituent of the substituted C1-C6 alkyl is-H,
Figure FDA0002393819080000153
-CN, -OH, phenyl, halogen, C1-C4 alkoxy, C3-C6 cycloalkyl, C1-C4 carbonyl or substituted or unsubstituted 3-6 membered heterocycloalkyl; the heteroatom of the 3-6 membered heterocycloalkyl is N, O or S, and the number of the heteroatoms is 1-3; the substituent of the substituted 3-to 6-membered heterocycloalkyl is-H, -OH, halogen, C1-C4Oxycarbonyl, C1-C4 alkyl, C1-C4 alkoxy or
Figure FDA0002393819080000154
R4is-H, -OH, halogen, C1-C4 alkyl, C1-C4 alkoxy or
Figure FDA0002393819080000155
R5~R10Independently is-H or C1-C4 alkyl;
further, X is N or C; r1is-H, C1-C8 alkyl,
Figure FDA0002393819080000156
C2-C6 alkenyl, C2-C6 alkynyl, C3-C6 cycloalkyl or substituted C1-C4 alkyl; the substituent of the substituted C1-C4 alkyl is-H,
Figure FDA0002393819080000157
-CN, -OH, phenyl, halogen, C1-C4 alkoxy, C3-C6 cycloalkyl, C1-C4 carbonyl or substituted or unsubstituted 5-to 6-membered heterocycloalkyl; the heteroatom of the 5-6 membered heterocycloalkyl is N or O, and the number of the heteroatoms is 1-2; the substituent for substituting the 5-to 6-membered heterocycloalkyl is-H, C1-C4 oxycarbonyl, C1-C4 alkyl, C1-C4 alkoxy or
Figure FDA0002393819080000158
R4is-H, -OH, halogen, C1-C4 alkyl, C1-C4 alkoxy or
Figure FDA0002393819080000159
R5~R10Independently is-H or C1-C4 alkyl;
further, X is N or C; r1is-H, C1-C8 alkyl,
Figure FDA00023938190800001510
C2-C6 alkenyl, C2-C6 alkynyl, C3-C6 cycloalkyl or substituted C1-C4 alkyl; the takingThe substituent of the C1-C4 alkyl is-H,
Figure FDA00023938190800001511
Figure FDA00023938190800001512
-CN, -OH, phenyl, halogen, C1-C4 alkoxy, C3-C6 cycloalkyl, C1-C4 carbonyl,
Figure FDA00023938190800001513
Figure FDA00023938190800001514
R4is-H, C1-C4 alkyl, C1-C4 alkoxy or
Figure FDA00023938190800001515
R5~R10Independently is-H or C1-C4 alkyl; r11is-H, C1-C4 oxycarbonyl, C1-C4 alkyl, C1-C4 alkoxy or
Figure FDA00023938190800001516
More preferably, X is N or C; r1is-H, C1-C8 alkyl,
Figure FDA00023938190800001517
C2-C6 alkenyl, C2-C6 alkynyl, C3-C6 cycloalkyl or substituted C1-C4 alkyl; the substituent of the substituted C1-C4 alkyl is-H,
Figure FDA00023938190800001518
Figure FDA0002393819080000161
-CN, -OH, phenyl, halogen, methoxy, ethoxy, N-acetyl, N,
Figure FDA0002393819080000162
Formyl radicalsA group, acetyl group,
Figure FDA0002393819080000163
Figure FDA0002393819080000164
R4is-H, C1-C4 alkyl, tert-butyloxy or
Figure FDA0002393819080000165
R5~R10Independently is-H, methyl or ethyl;
most preferably, X is N or C; r1is-H, C1-C8 alkyl,
Figure FDA0002393819080000166
T-butyloxycarbonyl, C2-C6 alkenyl, C2-C6 alkynyl,
Figure FDA0002393819080000167
Figure FDA0002393819080000168
11. The 4-amino-pyrimidoazetidic-phenylurea derivative according to claim 1, characterized in that: when R is2Is composed of
Figure FDA0002393819080000169
R3is-H, X is C, R1Is composed of
Figure FDA00023938190800001610
And when the structure is shown as formula IV:
Figure FDA00023938190800001611
wherein R is16~R19Independently is-H, halogen, -NH2C1-C4 alkyl, C3-C6 ringAlkyl, C1-C4 haloalkyl, C1-C4 alkoxy, C1-C4 haloalkoxy, -OH or C1-C4 carbonyl.
12. The 4-amino-pyrimidoazetidic-phenylurea derivative according to claim 11, characterized in that: r16~R19Independently is-H, halogen, -NH2C1-C4 alkyl, C1-C4 haloalkyl, -OH or C1-C4 carbonyl; preferably, R16~R19Independently is-H, -F, -Cl, -Br, -CF3Methyl or acetyl.
4-amino-pyrimidoazepine-phenylureas derivatives of the formula:
Figure FDA0002393819080000171
Figure FDA0002393819080000181
Figure FDA0002393819080000191
Figure FDA0002393819080000201
14. a pharmaceutically acceptable salt of a 4-amino-pyrimidoazepine-phenylurea derivative according to any one of claims 1 to 13.
15. A pharmaceutically acceptable hydrate of a 4-amino-pyrimidoazepine-phenylurea derivative according to any one of claims 1 to 13.
16. A pharmaceutical composition comprising the 4-amino-pyrimidoazepine-phenylurea derivative according to any one of claims 1 to 13, the salt according to claim 14 or the hydrate according to claim 15 as an active ingredient, together with a pharmaceutically acceptable carrier.
17. Use of a 4-amino-pyrimidoazepin-phenylurea derivative according to any one of claims 1 to 13, a salt according to claim 14, a hydrate according to claim 15 or a pharmaceutical composition according to claim 16 for the preparation of an inhibitor of FLT3 kinase; preferably, the FLT3 kinase is a mutant FLT3 kinase; more preferably, the mutant FLT3 kinase is FLT3/ITD mutant kinase.
18. Use of a 4-amino-pyrimidoazepine-phenylurea derivative according to any one of claims 1 to 13, a salt according to claim 14, a hydrate according to claim 15 or a pharmaceutical composition according to claim 16 for the preparation of a medicament for the treatment of a tumor.
19. The use of claim 18, wherein the tumor comprises a solid tumor and/or a hematological tumor.
20. The use of claim 19, the solid tumor comprising: lymphoma, B-cell lymphoma, diffuse large B-cell lymphoma, chronic lymphocytic lymphoma, lymphoplasmacytic lymphoma, ovarian cancer, breast cancer, prostate cancer, bladder cancer, kidney cancer, esophageal cancer, neck cancer, pancreatic cancer, colorectal cancer, gastric cancer, non-small cell lung cancer, thyroid cancer, brain cancer, lymphatic cancer, epidermal hyperplasia, psoriasis and/or prostatic hyperplasia.
21. The use of claim 19, the hematological neoplasm comprising: acute myeloid leukemia, chronic myeloid leukemia, myeloma, acute lymphocytic leukemia, acute myelogenous leukemia, acute promyelocytic leukemia, chronic lymphocytic leukemia, chronic neutrophilic leukemia, acute undifferentiated cell leukemia, myelodysplastic syndrome, myelodysplasia, multiple myeloma, and/or myelosarcoma.
CN202010123847.4A 2019-03-04 2020-02-27 4-amino-pyrimidoazenitrogen heterocycle-phenylurea derivative and preparation method and application thereof Active CN111646995B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2019101604853 2019-03-04
CN201910160485 2019-03-04

Publications (2)

Publication Number Publication Date
CN111646995A true CN111646995A (en) 2020-09-11
CN111646995B CN111646995B (en) 2023-03-21

Family

ID=72344703

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010123847.4A Active CN111646995B (en) 2019-03-04 2020-02-27 4-amino-pyrimidoazenitrogen heterocycle-phenylurea derivative and preparation method and application thereof

Country Status (1)

Country Link
CN (1) CN111646995B (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112552302A (en) * 2019-09-26 2021-03-26 深圳市塔吉瑞生物医药有限公司 Substituted aromatic fused ring derivatives, compositions and uses thereof
CN112961158A (en) * 2020-03-05 2021-06-15 四川大学华西医院 Aminopyrimidinopyrazole/pyrrole derivative and preparation method and application thereof
US11161852B1 (en) 2020-05-08 2021-11-02 Halia Therapeutics, Inc. Inhibitors of NEK7 kinase
WO2021252488A1 (en) * 2020-06-08 2021-12-16 Halia Therapeutics, Inc. Inhibitors of nek7 kinase
WO2021226547A3 (en) * 2020-05-08 2021-12-30 Halia Therapeutics, Inc. Targeted nek7 inhibition for modulation of the nlrp3 inflammasome
WO2022212326A1 (en) * 2021-03-29 2022-10-06 Halia Therapeutics, Inc. Nek7 inhibitors
WO2022216680A1 (en) * 2021-04-05 2022-10-13 Halia Therapeutics, Inc. Nek7 inhibitors
WO2022226182A1 (en) * 2021-04-22 2022-10-27 Halia Therapeutics, Inc. Nek7 inhibitors
WO2023083373A1 (en) * 2021-11-15 2023-05-19 微境生物医药科技(上海)有限公司 Compound used as src inhibitor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101675051A (en) * 2007-03-21 2010-03-17 惠氏公司 Pyrazolopyrimidine analogs and their use as mtor kinase and pi3 kinase inhibitors
CN101883774A (en) * 2007-10-16 2010-11-10 惠氏有限责任公司 Thienopyrimidine and Pyrazolopyrimidine compound and as the purposes of MTOR kinases and PI3 kinase inhibitor
CN101899057A (en) * 2010-07-21 2010-12-01 中国药科大学 Preparation method of pyrimido-oxazole derivative and use thereof in medicine
US20110275651A1 (en) * 2008-10-16 2011-11-10 The Regents Of The University Of California Fused ring heteroaryl kinase inhibitors
CN102266341A (en) * 2011-06-20 2011-12-07 广州市第十二人民医院 Application of pyrazolopyrimidine compounds in preparing medicines for treating lung cancer
US20140243357A1 (en) * 2011-09-02 2014-08-28 Mount Sinai School Of Medicine Substituted pyrazolo[3,4-d]pyrimidines and uses thereof
WO2018052120A1 (en) * 2016-09-15 2018-03-22 Riken A hck inhibitor and a bcl-2 inhibitor for treating acute myeloid leukemia
CN107849045A (en) * 2015-04-21 2018-03-27 贵州百灵企业集团制药股份有限公司 Purine radicals N hydroxy pyrimidine carboxamides derivatives and its production and use

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101675051A (en) * 2007-03-21 2010-03-17 惠氏公司 Pyrazolopyrimidine analogs and their use as mtor kinase and pi3 kinase inhibitors
CN101883774A (en) * 2007-10-16 2010-11-10 惠氏有限责任公司 Thienopyrimidine and Pyrazolopyrimidine compound and as the purposes of MTOR kinases and PI3 kinase inhibitor
US20110275651A1 (en) * 2008-10-16 2011-11-10 The Regents Of The University Of California Fused ring heteroaryl kinase inhibitors
CN101899057A (en) * 2010-07-21 2010-12-01 中国药科大学 Preparation method of pyrimido-oxazole derivative and use thereof in medicine
CN102266341A (en) * 2011-06-20 2011-12-07 广州市第十二人民医院 Application of pyrazolopyrimidine compounds in preparing medicines for treating lung cancer
US20140243357A1 (en) * 2011-09-02 2014-08-28 Mount Sinai School Of Medicine Substituted pyrazolo[3,4-d]pyrimidines and uses thereof
CN107849045A (en) * 2015-04-21 2018-03-27 贵州百灵企业集团制药股份有限公司 Purine radicals N hydroxy pyrimidine carboxamides derivatives and its production and use
WO2018052120A1 (en) * 2016-09-15 2018-03-22 Riken A hck inhibitor and a bcl-2 inhibitor for treating acute myeloid leukemia

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MASATO YOSHIKAWA,等: "Discovery of 7-Oxo-2,4,5,7-tetrahydro-6H-pyrazolo[3,4-c]pyridine Derivatives as Potent, Orally Available, and Brain-Penetrating Receptor Interacting Protein 1 (RIP1) Kinase Inhibitors: Analysis of Structure–Kinetic Relationships", 《JOURNAL OF MEDICINAL CHEMISTRY》 *
李平英; 林坤华; 黄素秋; 曾凡波: "卟啉化合物的研究 Ⅴ。5,10,15-三对磺酰-5’-氟脲嘧啶苯基-20-对磺酸苯基卟啉的合成及抗肿瘤作用的研究", 《武汉大学学报(自然科学版)》 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112552302A (en) * 2019-09-26 2021-03-26 深圳市塔吉瑞生物医药有限公司 Substituted aromatic fused ring derivatives, compositions and uses thereof
WO2021057877A1 (en) * 2019-09-26 2021-04-01 深圳市塔吉瑞生物医药有限公司 Substituted aromatic fused ring derivative and composition comprising same, and use thereof
AU2020355359B2 (en) * 2019-09-26 2023-08-24 Shenzhen Targetrx, Inc. Substituted aromatic fused ring derivative and composition comprising same, and use thereof
CN112961158A (en) * 2020-03-05 2021-06-15 四川大学华西医院 Aminopyrimidinopyrazole/pyrrole derivative and preparation method and application thereof
CN112961158B (en) * 2020-03-05 2022-07-01 四川大学华西医院 Aminopyrimidinopyrazole/pyrrole derivative and preparation method and application thereof
WO2021226547A3 (en) * 2020-05-08 2021-12-30 Halia Therapeutics, Inc. Targeted nek7 inhibition for modulation of the nlrp3 inflammasome
WO2021242505A1 (en) * 2020-05-08 2021-12-02 Halia Therapeutics, Inc. Inhibitors of nek7 kinase
US11713321B2 (en) 2020-05-08 2023-08-01 Halia Therapeutics, Inc. Inhibitors of NEK7 kinase
US11161852B1 (en) 2020-05-08 2021-11-02 Halia Therapeutics, Inc. Inhibitors of NEK7 kinase
WO2021252488A1 (en) * 2020-06-08 2021-12-16 Halia Therapeutics, Inc. Inhibitors of nek7 kinase
WO2022212326A1 (en) * 2021-03-29 2022-10-06 Halia Therapeutics, Inc. Nek7 inhibitors
WO2022216680A1 (en) * 2021-04-05 2022-10-13 Halia Therapeutics, Inc. Nek7 inhibitors
WO2022226182A1 (en) * 2021-04-22 2022-10-27 Halia Therapeutics, Inc. Nek7 inhibitors
WO2023083373A1 (en) * 2021-11-15 2023-05-19 微境生物医药科技(上海)有限公司 Compound used as src inhibitor

Also Published As

Publication number Publication date
CN111646995B (en) 2023-03-21

Similar Documents

Publication Publication Date Title
CN111646995B (en) 4-amino-pyrimidoazenitrogen heterocycle-phenylurea derivative and preparation method and application thereof
CN110582483B (en) Compound containing o-amino heteroaromatic alkynyl and preparation method and application thereof
JP5452811B2 (en) Compounds for inhibiting mitotic progression
TWI804933B (en) Compounds and uses thereof as CDK7 kinase inhibitors
CN108329311B (en) Tricyclic compound as selective estrogen receptor down-regulator and application thereof
CN114423750B (en) 2, 4-Disubstituted pyrimidine derivative, preparation method and application thereof
CN109963842A (en) Benzimidazoles compound kinase inhibitor and its preparation method and application
HUE031955T2 (en) Novel pyrrolopyrimidine compounds as inhibitors of protein kinases
WO2014082578A1 (en) Heteroaryl alkyne compound and application thereof
JP2021517555A (en) Phenyl-2-hydroxy-acetylamino-2-methyl-phenyl compound
WO2012089106A1 (en) Aromatic alkyne derivative as protein kinase inhibitor and medical use thereof
JP2019535820A (en) Selective breton-type tyrosine kinase inhibitor and use thereof
CN112010839B (en) Crystalline forms of a targeted silk/threonine kinase inhibitor
JP2023548204A (en) CD73 inhibitors and their applications
US11655254B2 (en) Substituted piperazines as BTK inhibitors
TW202110848A (en) A substituted fused bicyclic derivative, a preparation method thereof, and medical applications thereof
CN108299420B (en) Pentacyclic compounds as selective estrogen receptor down-regulators and uses thereof
CN111718350B (en) Pyrazole-substituted pyrazolopyrimidine compounds, pharmaceutical compositions and uses thereof
CN113416181B (en) Quinazoline derivative and application thereof
CN115724844A (en) Heterocyclic compound with antitumor activity and application thereof
JP7398156B2 (en) A class of trialromatic compounds targeting the STAT3 bifunctional phosphorylation site and their applications
CN109438279B (en) Small molecule compound for overcoming EGFR drug-resistant mutation and preparation method and application thereof
US10301325B2 (en) Quinoline derivative, and pharmaceutical composition, preparation method and use thereof
WO2021036814A1 (en) Pyrazole derivative and use thereof
CN113354630B (en) 5,6-dihydrobenzo [ h ] quinazoline compound and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant