CN111628556B - 提高基于能量路由器的充电站dcdc效率的控制策略 - Google Patents

提高基于能量路由器的充电站dcdc效率的控制策略 Download PDF

Info

Publication number
CN111628556B
CN111628556B CN202010178537.2A CN202010178537A CN111628556B CN 111628556 B CN111628556 B CN 111628556B CN 202010178537 A CN202010178537 A CN 202010178537A CN 111628556 B CN111628556 B CN 111628556B
Authority
CN
China
Prior art keywords
res
period
current
resonant
charging station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010178537.2A
Other languages
English (en)
Other versions
CN111628556A (zh
Inventor
李健勋
徐鹏飞
范建华
李鸿儒
赵新举
王庆园
纪华丽
金立亭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Topscomm Communication Co Ltd
Original Assignee
Qingdao Topscomm Communication Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao Topscomm Communication Co Ltd filed Critical Qingdao Topscomm Communication Co Ltd
Priority to CN202010178537.2A priority Critical patent/CN111628556B/zh
Publication of CN111628556A publication Critical patent/CN111628556A/zh
Application granted granted Critical
Publication of CN111628556B publication Critical patent/CN111628556B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/3353Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having at least two simultaneously operating switches on the input side, e.g. "double forward" or "double (switched) flyback" converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明提出一种提高基于能量路由器的充电站DCDC效率的控制策略,属于中高压电动汽车充电站领域。本发明通过采集谐振电流ir1信号,计算出谐振电流ir1的谐振周期,并根据获取的谐振电流的谐振周期来动态调节IGBT(S1、S2、S3、S4、S5、S6、S7、S8)占空比大小解决串联谐振式隔离型DC‑DC拓扑由于在实际运行时,电容和电感器件参数随着温度、电流以及寿命影响导致变化从而产生的硬开关现象。保证能量双向流动能力的同时实现串联谐振变换器全负载范围内的零电流开关,降低***的开关损耗,提高了电动汽车充电站的整机效率,保证***的动态响应。

Description

提高基于能量路由器的充电站DCDC效率的控制策略
技术领域
本发明涉及中高压电动汽车充电站领域,尤其涉及提高基于能量路由器的充电站DCDC效率的控制策略。
背景技术
中高压电动汽车充电站采用输入串联输出并联型拓扑方案,降低了交流侧单个模块的开关频率和器件耐压等级,使得交流侧可直接并入中高压电网;其后级常使用串联谐振式隔离型DC-DC拓扑,使用开环控制就可以输入输出电压的变比关系并且能实现全功率范围的软开关,提高效率,因此被广泛应用。然而传统开环控制方案在实现能量双向流动功能时,因实际运行电容和电感器件参数随着温度、电流以及寿命影响会发生变化,从而导致固有谐振频率点发生偏移,谐振频率与开关频率无法准确对应从而导致硬开关现象,增加了***损耗。
发明内容
本发明针对上述缺陷及需求,提出一种提高基于能量路由器的充电站DCDC效率的控制策略,在保证DC-DC隔离级能量双向流动功能的前提下,解决因***电容、电感参数发生变化导致的硬开关问题,且简单易实现。本发明提供如下技术方案:
步骤1:中高压充电站前级拓扑结构为级联H桥结构,每相包含N个模组,实现AC-DC变换,每个H桥结构后连接一个串联谐振型变换器实现DC-DC变换,3N个串联谐振型变换器输出并联构成低压直流母线供低压直流充电桩使用;其级联H桥实现对有功分量、无功分量的控制;DC-DC环节为串联谐振型拓扑,通过调节原副边IGBT占空比与开关周期实现直流变压器特性,保证输出输入输出电压比未变压器变比;
步骤2:当有汽车接入进行充电操作时,***启动,DC-DC环节对谐振电流进行采样,并进行谐振电流过零点时刻判定,用于计算出谐振电流的谐振周期Tres和谐振频率fres
步骤3:对谐振频率fres大小进行判定,如果fres大于等于0.5 fres *且小于等于1.5fres *则认为是正确的谐振周期Tres,其中fres *是***固有谐振频率;
步骤4:获取正确的谐振周期Tres以后,计算新的开关周期Ts1,并调节开关周期Ts至Ts1
进一步地,作为本发明的一种优选技术方案:DC-DC环节S1、S4、S5、S8为第一组IGBT,S2、S3、S6、S7为第二组IGBT,两组IGBT驱动信号为占空比是半个开关周期0.5Ts的互补的方波信号,通过设定开关周期Ts大于等于谐振周期Tres实现输入输出电压变比关系。
进一步地,作为本发明的一种优选技术方案:谐振电流过零点判定方法为通过将当前时刻谐振电流采样值ir1与上一时刻谐振电流采样值ir1_1做差后取绝对值,再除以采样周期T得到斜率值ki,比较半个开关周期0.5Ts范围内斜率值并选取两个ki值最大时刻t1与t2为过零时刻,计算出谐振频率和谐振周期提供步骤3判定与计算,斜率值计算公式为ki
Figure GDA0004169266180000021
其中T为采样周期;
谐振周期计算公式为:
Tres=2×|t1-t2|。
进一步地,作为本发明的一种优选技术方案:新的开关周期Ts1与步骤3中确定的谐振周期Tres相等。
与现有技术相比,本发明的优点和积极效果在于:本发明方案简单易行,控制方案复杂度低;可实现DC-DC能量流动双向流动功能的同时,解决了电感、电容参数变化引起的硬开关现象,提高了***的效率,减小了散热器的体积。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定
图1为中高压电动汽车充电站拓扑图;
图2为串联谐振式隔离型DC-DC拓扑图;
图3为DC-DC的控制策略流程图
图4(a)为主电路电感或电容参数变化后串联谐振式隔离型DC-DC电路主要波形图;
图4(b)为采用本发明提出的控制策略后,主电路电感或电容参数变化后串联谐振式隔离型DC-DC电路主要波形图。
具体实施方式
以下,结合附图对本发明的具体实施方式进行进一步的描述。
本发明应用的中高压电动汽车充电站拓扑如图1所示,中高压充电站前级拓扑结构为级联H桥结构,每相包含N个模组,实现AC-DC变换。每个H桥结构后连接一个串联谐振型变换器实现DC-DC变换。3N个串联谐振型变换器输出并联构成低压直流母线供低压直流充电桩使用;其级联H桥实现对有功分量、无功分量的控制;中间DC-DC环节串联谐振型拓扑如图2所示,S1、S4、S5、S8为第一组IGBT,S2、S3、S6、S7为第二组IGBT,两组IGBT驱动信号为占空比是半个开关周期0.5Ts的方波信号,通过设定开关周期Ts大于等于谐振周期Tres实现输入输出电压变比关系。
采用的DC-DC的控制策略流程如图3所示:当有汽车接入进行充电操作时,***启动,DC-DC环节对谐振电流进行采样,并进行谐振电流过零点时刻判定,谐振电流过零点判定方法为通过将当前时刻谐振电流采样值ir1与上一时刻谐振电流采样值ir1_1做差后取绝对值,再除以采样周期Ts得到斜率值ki,比较半个开关周期0.5Ts范围内斜率值并选取两个ki值最大时刻t1与t2为过零时刻,计算出谐振频率和谐振周期,斜率值计算公式为ki
Figure GDA0004169266180000041
其中T为采样周期;
谐振周期计算公式为:
Tres=2×|t1-t2|
对谐振频率fres大小进行判定,如果fres大于等于0.5fres *且小于等于1.5fres *则认为是正确的谐振周期Tres,其中fres *是***固有谐振频率;
获取正确的谐振周期Tres以后,计算新的开关周期Ts1,并调节开关周期Ts至Ts1,其中Ts1等于新计算出来的谐振周期Tres
当DC-DC主电路中电感或电容参数发生变化后串联谐振式隔离型DC-DC电路主要波形图如图4(a)所示,从图中可以看出,tk时刻第二组IGBT处于硬关断状态,tk+1时刻第二组IGBT处于硬关断状态;
采用本发明提出的控制策略后,当主电路电感或电容参数变化后串联谐振式隔离型DC-DC电路主要波形如图4(b)所示,可见tk与tk+1时刻实现了软关断,提高了***效率。
以上所述的具体描述,对发明的目的、技术方案和有益效果进行进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (4)

1.提高基于能量路由器的充电站DCDC效率的控制策略,其特征在于,所述的控制策略包括如下步骤:
步骤1:中高压充电站前级拓扑结构为级联H桥结构,每相包含N个模组,实现AC-DC变换;每个H桥结构后连接一个串联谐振型变换器实现DC-DC变换,3N个串联谐振型变换器输出并联构成低压直流母线供低压直流充电桩使用;其级联H桥实现对有功分量、无功分量的控制;DC-DC环节为串联谐振型拓扑,通过调节原副边IGBT占空比与开关周期实现直流变压器特性,保证输入输出电压比为变压器变比;
步骤2:当有汽车接入进行充电操作时,***启动,DC-DC环节对谐振电流进行采样,并进行谐振电流过零点时刻判定,用于计算出谐振电流的谐振周期Tres和谐振频率fres
步骤3:对谐振频率fres大小进行判定,如果fres大于等于0.5fres *且小于等于1.5fres *则认为是正确的谐振周期Tres,其中fres *是***固有谐振频率;
步骤4:获取正确的谐振周期Tres以后,计算新的开关周期Ts1,并调节开关周期Ts至Ts1
2.根据权利要求1所述的提高基于能量路由器的充电站DCDC效率的控制策略,其特征在于,所述步骤1DC-DC环节S1、S4、S5、S8为第一组IGBT,S2、S3、S6、S7为第二组IGBT,两组IGBT驱动信号为占空比是半个开关周期0.5Ts的互补的方波信号,通过设定开关周期Ts大于等于谐振周期Tres实现输入输出电压变比关系。
3.根据权利要求1所述的提高基于能量路由器的充电站DCDC效率的控制策略,其特征在于,所述步骤2中谐振电流过零点判定为通过将当前时刻谐振电流采样值ir1与上一时刻谐振电流采样值ir1_1做差后取绝对值,再除以采样周期T得到斜率值ki,比较半个开关周期0.5Ts范围内斜率值并选取两个ki值最大时刻t1与t2为过零时刻,计算出谐振频率和谐振周期提供步骤3判定与计算,斜率值计算公式为ki
Figure FDA0004169266170000021
其中T为采样周期;
谐振周期计算公式为:
Tres=2×|t1-t2|。
4.根据权利要求1所述的提高基于能量路由器的充电站DCDC效率的控制策略,其特征在于,所述步骤4中新的开关周期Ts1与步骤3中确定的谐振周期Tres相等。
CN202010178537.2A 2020-03-14 2020-03-14 提高基于能量路由器的充电站dcdc效率的控制策略 Active CN111628556B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010178537.2A CN111628556B (zh) 2020-03-14 2020-03-14 提高基于能量路由器的充电站dcdc效率的控制策略

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010178537.2A CN111628556B (zh) 2020-03-14 2020-03-14 提高基于能量路由器的充电站dcdc效率的控制策略

Publications (2)

Publication Number Publication Date
CN111628556A CN111628556A (zh) 2020-09-04
CN111628556B true CN111628556B (zh) 2023-06-16

Family

ID=72270917

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010178537.2A Active CN111628556B (zh) 2020-03-14 2020-03-14 提高基于能量路由器的充电站dcdc效率的控制策略

Country Status (1)

Country Link
CN (1) CN111628556B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102064702A (zh) * 2010-12-31 2011-05-18 刘闯 双向隔离式的串联谐振dc/dc变换器
CN108885229A (zh) * 2016-04-06 2018-11-23 田建龙 无线电能传输及相关***谐振频率的动态检测及补偿技术
CN110190751A (zh) * 2019-05-17 2019-08-30 中南大学 一种恒增益双向dc-dc谐振变换器及其控制方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4625881B2 (ja) * 2004-04-23 2011-02-02 有限会社金沢大学ティ・エル・オー 共振周波数検出方法及び磁界発生装置
WO2013166579A1 (en) * 2012-05-10 2013-11-14 Arda Power Inc. Dc-dc converter circuit using an llc circuit in the region of voltage gain above unity
CN102023286B (zh) * 2010-11-30 2013-01-09 中国工程物理研究院流体物理研究所 串联谐振充电电源的零电流检测电路及设计方法
CN103580527B (zh) * 2012-07-31 2016-04-06 海尔集团技术研发中心 环流控制方法和装置
US9444346B2 (en) * 2013-10-17 2016-09-13 Futurewei Technologies, Inc. Apparatus and efficiency point tracking method for high efficiency resonant converters
US10224803B1 (en) * 2017-12-20 2019-03-05 Infineon Technologies Austria Ag Switched capacitor converter with compensation inductor
CN109728633B (zh) * 2019-01-17 2021-02-26 中国科学院电工研究所 一种非接触供电装置的直接谐振频率相位跟踪控制方法
CN109768716B (zh) * 2019-03-07 2020-07-31 中国科学院电工研究所 一种电力电子变压器的控制方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102064702A (zh) * 2010-12-31 2011-05-18 刘闯 双向隔离式的串联谐振dc/dc变换器
CN108885229A (zh) * 2016-04-06 2018-11-23 田建龙 无线电能传输及相关***谐振频率的动态检测及补偿技术
CN110190751A (zh) * 2019-05-17 2019-08-30 中南大学 一种恒增益双向dc-dc谐振变换器及其控制方法

Also Published As

Publication number Publication date
CN111628556A (zh) 2020-09-04

Similar Documents

Publication Publication Date Title
US20200052498A1 (en) Phase shift control method for charging circuit
CN107968471B (zh) Lclc谐振电路、宽范围恒功率输出直流充电机及控制方法
CN108879895B (zh) 电动汽车能量传输***及传输方法
CN108964476B (zh) 基于双有源桥的隔离型双向ac/dc变换器的控制方法
CN108880268B (zh) 电压源型半有源桥dc-dc变换器的多模式控制方法
CN110601525B (zh) 新能源汽车集成车载充电变换***
WO2021227231A1 (zh) 一种适用于不同输入电网的dcdc架构及其控制方法
CN110649814A (zh) 一种全桥三电平llc谐振变换器的混合控制方法
CN114448274A (zh) 三相单级式谐振型电能变换装置及控制方法
CN111064371A (zh) 混合五电平双向dc/dc变流器及其电压匹配调制方法
Xu et al. A Novel Phase-Shift Pulsewidth Modulation Method for Light-Load Bidirectional Resonant Converter
CN107769389B (zh) 一种隔离对称式串联反激电路的电池储能***
CN117081403A (zh) 一种应用于宽输出电压cllc变换器的混合调制方法
CN111628556B (zh) 提高基于能量路由器的充电站dcdc效率的控制策略
CN111600487B (zh) 一种提高充电站能量路由器***dcdc效率的控制方法
CN114079384B (zh) 一种宽输出电压范围的变结构llc变换器及方法
CN115864855A (zh) 用于储能***的宽电压范围clllc谐振变换器的控制方法
CN112436747B (zh) 一种电驱动***、动力总成及电动汽车
CN115001284A (zh) 一种隔离单级双向多用途拓扑电路及其控制策略
CN111525798A (zh) 一种三绕组高变比零纹波双向dc/dc变换器
Fan et al. The balancing system of super capacitor based on active clamped forward converter
CN112600414B (zh) 谐振网络、变压器及隔离型直流变换器及其参数设计方法
Xu et al. A ZVS bidirectional three-level DC-DC converter with direct current slew rate control of leakage inductance
CN113708636B (zh) 一种宽电压增益电池储能型双向直流变换电路及方法
CN117294149B (zh) 改进型的单向直流串联谐振变换器的脉冲调制***

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant