CN111627631B - 一种纳米复合永磁材料的制备方法 - Google Patents

一种纳米复合永磁材料的制备方法 Download PDF

Info

Publication number
CN111627631B
CN111627631B CN202010197633.1A CN202010197633A CN111627631B CN 111627631 B CN111627631 B CN 111627631B CN 202010197633 A CN202010197633 A CN 202010197633A CN 111627631 B CN111627631 B CN 111627631B
Authority
CN
China
Prior art keywords
powder
magnetic
permanent magnetic
nano composite
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN202010197633.1A
Other languages
English (en)
Other versions
CN111627631A (zh
Inventor
王凤青
张健
李艳鹏
张耀
池建义
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baotou Rare Earth Research And Development Center Chinese Academy Of Sciences
Ningbo Institute of Material Technology and Engineering of CAS
Original Assignee
Baotou Rare Earth Research And Development Center Chinese Academy Of Sciences
Ningbo Institute of Material Technology and Engineering of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baotou Rare Earth Research And Development Center Chinese Academy Of Sciences, Ningbo Institute of Material Technology and Engineering of CAS filed Critical Baotou Rare Earth Research And Development Center Chinese Academy Of Sciences
Priority to CN202010197633.1A priority Critical patent/CN111627631B/zh
Publication of CN111627631A publication Critical patent/CN111627631A/zh
Application granted granted Critical
Publication of CN111627631B publication Critical patent/CN111627631B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0551Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/142Thermal or thermo-mechanical treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/0036Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity
    • H01F1/0045Zero dimensional, e.g. nanoparticles, soft nanoparticles for medical/biological use
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0556Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together pressed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15308Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15316Amorphous metallic alloys, e.g. glassy metals based on Co
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15333Amorphous metallic alloys, e.g. glassy metals containing nanocrystallites, e.g. obtained by annealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15341Preparation processes therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15358Making agglomerates therefrom, e.g. by pressing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明涉及一种纳米复合永磁材料的制备方法,本发明将R‑Cu合金添加到SmCo/Fe(Co)非晶结构和晶化物中,通过Sm‑(Co,Cu)晶化相的形成与Sm、Cu元素在软硬磁晶粒间富集,实现了SmCo/Fe(Co)纳米复合材料室温矫顽力的提高;通过Cu元素进入硬磁晶格形成Sm‑(Co,Cu)晶化相,提升了SmCo/Fe(Co)复合材料矫顽力的高温稳定性并将SmCo/Fe(Co)材料晶化温度和制备温度降低至500℃以下,最低可至400~425℃。提高室温矫顽力和矫顽力的高温稳定性,使得本发明具有开发高磁能积耐高温纳米复合永磁材料的制备优势;降低制备温度,具有低能耗的节能型制备优势,使本发明非常适合在低能耗下开发高软磁低稀土、高磁能积的耐高温纳米复合永磁材料。

Description

一种纳米复合永磁材料的制备方法
技术领域
本发明涉及一种纳米复合永磁材料的制备方法,尤其是一种具有较高矫顽力的SmCo/Fe(Co)纳米复合永磁材料的制备方法。
背景技术
由软磁相和硬磁相组成的各向同性纳米晶复合永磁材料相对传统硬磁单相永磁材料来说,具有稀土含量低、制备周期短、磁一致性高、近终成型等优点,目前已在信息产业、办公自动化、消费电子、家用电器、传感器、汽车等诸多精密电机和微特电机使用领域有着广泛应用。市场上应用最广的各向同性永磁材料为Nd-Fe-B/Fe型纳米材料,磁能积通常为8~17MGOe,且受Nd2Fe14B相居里温度的影响(Tc~310℃),其使用温度多限制在150℃以下,温度在200℃以上时其磁性锐减,温度在300℃及以上时磁性基本消失,因此难以满足市场对200℃以上尤其是300℃以上耐高温永磁体的应用需求。
作为重要的各向同性纳米晶复合永磁材料,由Sm-Co硬磁相和Fe(Co)软磁相组成的SmCo/Fe(Co)永磁材料,相对市场上普遍使用的钕铁硼纳米晶复合永磁材料具有更高的居里温度(Tc>700℃),并且可以在更低的硬磁相含量下获得更优的室温磁能积(如18~19MGOe),因此在室温和高温应用方面前景广阔。
但是,现有技术制备的各向同性SmCo/Fe(Co)纳米复合永磁材料通常室温矫顽力较低且高温稳定性较差,同时存在室温矫顽力越低,由高温减磁造成的矫顽力和磁能积下降越严重的现象,导致现有的各向同性SmCo/Fe(Co)纳米复合永磁材料在300℃条件下的高温磁能积远低于其室温磁能积水平,因此在满足市场对高温强磁材料的使用需求方面存在很大挑战。另外,降低制备温度可以大量降低能源消耗与制备成本,受SmCo/Fe(Co)纳米复合材料晶化相种类和晶化温度影响,目前18~19MGOe的高性能SmCo/Fe(Co)纳米复合材料制备温度通常要升温至500℃以上,难以控制在500℃以内,因制备温度高而造成的能源消耗问题非常严重。
发明内容
本发明所要解决的技术问题是针对现有技术的现状,提供一种通过添加R-Cu合金从而提高室温矫顽力和矫顽力高温稳定性、降低制备温度的纳米复合永磁材料的制备方法。
本发明解决上述技术问题所采用的技术方案为:一种纳米复合永磁材料的制备方法,其特征在于包括以下步骤:
(1)按比例将R-Cu合金粉末、硬磁原料粉末和软磁原料粉末混合,对所得混合材料进行高能球磨,获得硬磁晶粒非晶化和软磁晶粒纳米尺度化的非晶基体混合粉末;
(2)将步骤(1)所得非晶基体混合粉末进行加热晶化处理,将非晶基体混合粉末中的非晶相转变为晶化态,即得到所述的纳米复合永磁材料。
上述硬磁晶粒非晶化包含所有硬磁晶粒发生非晶化转变、部分硬磁晶粒非晶化转变、微量硬磁晶粒发生非晶化转变、硬磁晶粒部分区域发生非晶化转变等情况。
在上述方案中,所述R-Cu合金为稀土元素与Cu元素的合金。上述Cu元素和稀土元素在NdFeB和SmCo磁体中都具有磁钉扎提升矫顽力的重要作用,根据相似相溶原理,本发明将Cu元素混入与主相Sm元素相同或相似的稀土元素中时,更利于实现Cu元素及合金与SmCo硬磁之间的元素交换,因此更利于提升掺杂相在主相里的均匀分布和磁钉扎提升作用;另外,稀土-Cu合金熔点一般较低,500度以下仍能保持较高的金属塑性和变形能力,有利于促进磁体在较低温度下的全致密化,且Cu元素进入硬磁晶格还可起到降低非磁相晶化温度的作用。因此,本发明在加入R-Cu合金后,在改善双相磁体成型温度、提高磁体矫顽力方面具有很高的发展潜能,更利于在较低的制备温度下获得磁性更为优异的纳米晶双相磁粉和块状磁体。
优选地,所述稀土元素选自Sm、Pr元素中的至少一种。
优选地,所述R-Cu合金粉末的加入量为:R-Cu合金粉末是硬磁原料粉末和软磁原料粉末总量的0.1%~15%。R-Cu合金粉末的加入量过小,则矫顽力提升作用不明显,加入量过大,则磁体的剩磁降低过多,采用上述添加量,可起到优异的效果。
进一步优选,所述R-Cu合金粉末的加入量为:R-Cu合金粉末与硬磁原料粉末和软磁原料粉末总量的比例为1%~5%。
优选地,所述硬磁原料粉末与软磁原料粉末的质量比例为(10:0.1)~(5:5)。
优选地,所述硬磁原料粉末中硬磁相为SmCo2、SmCo3、Sm2Co7,SmCo5、SmCo7、SmCo12、(Sm,Pr)Co5、Sm(Fe,Co)3、Sm(Fe,Co)7型相结构中的一种或多种。
优选地,所述软磁原料粉末为Fe、Co、Fe-Co软磁粉末中的一种或多种,Fe与Co元素的原子百分比为(100-x):x,0≤x≤100。
优选地,所述高能球磨,其所用装置包括但不限于一维或三维振动球磨机、行星球磨机;所用球磨时间、球料比和球磨机转速与球磨装置种类、球磨罐材质、研磨球材质、研磨球尺寸等工艺参数相匹配,不做限制。作为优选,所述高能球磨在三维振动球磨机中进行,球磨罐为硬质合金罐,研磨球为硬质合金球,球磨过程在惰性气体保护或真空条件下进行,球磨机转速高于400rpm,球料比为(15:1)~(30:1),球磨时间2~5h。加热晶化处理是利用加热方式将非晶基体混合粉末中的非晶相转变为晶化态的处理方式;处理环境为无氧条件,包含真空环境或高纯惰性气体环境;晶化处理时,可以只加热,也可以在加热的同时施加磁场、压力等晶化调控条件。所述加热晶化处理的温度为350℃~800℃,优选在650℃以下。
优选地,所述纳米复合永磁材料包括纳米复合永磁粉末和纳米复合永磁块体,当所述纳米复合永磁材料为纳米复合永磁块体时,所述制备方法还包括压力成型处理过程,该过程是在非晶基体粉末加热晶化过程中或加热晶化完成后,对粉体施加1~2600MPa的压力获得低密度或全密度复合永磁块体;上述纳米复合永磁块体还可以是晶化粉体与环氧树脂等无磁材料混合压制后形成的粘结磁体。
当加热晶化过程不涉及压制成型时,制备的材料为永磁粉体;当加热晶化过程与压制成型过程相结合时,制备的材料为永磁块体。加热晶化过程可以与压制成型过程相结合,包含加热晶化过程与压制成型过程的不同组合方式,例如非晶基体混合粉末先加热晶化然后再加热加压成型、非晶基体混合粉末在加热加压条件下同时发生非晶晶化和压制成型、非晶基体混合粉末先压制成型再加热晶化等。
作为优选,还可以对所述永磁块体进行热退火处理,以改善永磁块体均匀性或实现永磁块体磁能积的进一步提升。
本发明还包括无压处理过程,球磨磁粉加热晶化处理后直接获得纳米复合永磁粉体。
与现有技术相比,本发明的优点在于:本发明将R-Cu合金添加到SmCo/Fe(Co)非晶结构和晶化物中,通过Cu元素进入硬磁晶格形成Sm-(Co,Cu)晶化相与Sm、Cu元素在软硬磁晶粒间的富集,提升了SmCo/Fe(Co)纳米复合材料室温矫顽力和磁体高温稳定性;通过降低非晶硬磁晶化温度和改善粉末低温塑性和变形能力,将SmCo/Fe(Co)复合磁粉和全密度磁体的制备温度度降低至500℃及以下,最低可至400~425℃。提高纳米复合磁体室温矫顽力和改善高温稳定性,使得本发明具有开发高性能耐高温纳米复合永磁材料的制备优势;降低制备温度,使本专利具有节能的低成本制备优势;尤其在软磁含量为15%~30%的低稀土高软磁的低成本纳米复合材料中,不仅能降低制备温度和提升室温矫顽力,还能获得达21~23MGOe的高磁能积材料,明显高于市场上广泛使用的磁能积为8~19MGOe的钕铁硼各向同性永磁粉体和永磁块体,因此本发明还非常适合在低能耗下开发高软磁低稀土、高磁能积的耐高温纳米复合永磁材料。
附图说明
图1为本发明实施例1与对比例1所制备材料的磁性能比较图;
图2为本发明实施例1与对比例1所制备材料的另一磁性能比较图。
具体实施方式
以下结合附图实施例对本发明作进一步详细描述。
实施例1:
本实施例纳米复合永磁材料的制备方法包括以下步骤:
(1)在高纯Ar气填充的惰性气体手套箱内,按7.5:2.5比例称取SmCo5硬磁原料粉末和Fe软磁原料粉末,并加入5%总质量的Sm70Cu30合金原料粉末,将原料粉末均匀混合后,连同研磨球一起装入硬质合金球磨罐中密封,研磨球选用硬质合金材质,球料比25:1,研磨球为6mm和9mm两种尺寸;
(2)将密封好的球磨罐,置于Spex-8000球磨机上球磨3h,获得硬磁晶粒非晶化和软磁晶粒纳米尺度化的非晶基体混合粉末;
(3)将非晶基体混合粉末密封在石英管内并置于马弗炉中进行真空加热退火,退火温度为450℃、500℃、550℃、600℃、650℃,退火时间30min,退火真空度高于3×10-3Pa,退火后,将粉体从石英管中取出,获得各向同性SmCo/FeCo纳米复合永磁粉体。
对比例1:
本对比例的制备过程与实施例1基本一致,区别仅在于:本对比例步骤1中Sm70Cu30合金的加入量为0,即无R-Cu合金添加。
图1、2为本发明实施例1与对比例1中不同工艺制备的SmCo/FeCo纳米复合永磁粉体的磁性能比较图,其中,x=5%为实施例1制备的材料;x=0为对比例1制备的材料。磁粉磁性能由美国lakeshore振动样品磁强计(lakeshore 7410)在室温以最大磁场为2.1T条件下测得,测试前磁粉包埋于环氧树脂中并且经7-8T的脉冲磁场进行充磁。
从图中可见,添加Sm-Cu合金可以提升各向同性SmCo/Fe(Co)纳米复合粉体的室温矫顽力,有效制备出磁能积最高为23MGOe的高性能磁粉,并将高性能SmCo/Fe(Co)纳米复合粉体制备温度将低至450~500℃范围,证实了本发明在提高各向同性SmCo/Fe(Co)纳米复合粉体室温矫顽力与降低其制备温度方面的优越性,同时证实了本发明在在制备高软磁、高性能SmCo/Fe(Co)纳米复合永磁材料方面的优越性。
实施例2:
本实施例纳米复合永磁材料的制备方法包括以下步骤:
(1)在高纯Ar气填充的惰性气体手套箱内,按8.0:2.0比例称取SmCo5硬磁原料粉末和Fe软磁原料粉末,并加入Sm70Cu30合金原料粉末,将原料粉末均匀混合后,连同研磨球一起装入硬质合金球磨罐中密封,研磨球选用硬质合金材质,球料比25:1,研磨球尺寸为9mm;
(2)将密封好的球磨罐,置于Spex-8000球磨机上球磨3h,获得硬磁晶粒非晶化和软磁晶粒纳米尺度化的非晶基体混合粉末;
(3)将二硫化钼脱模剂涂在压制模具上,并在惰性气体手套箱中将非晶基体混合粉末装入模具,在对上述粉末施加700MPa压力进行室温预压后,将预压坯与模具置于热压炉内抽真空,待真空度达到1.9×10-3Pa以下时开启加热程序,并在250℃与最高温度之间对粉体施加压制压力,使粉体在加热加压条件下同时发生非晶晶化和压制成型,获得由晶化粉末直接压制成型的各向同性SmCo/FeCo纳米复合永磁块体。
对比例2:
本对比例的制备过程与实施例2基本一致,区别仅在于:本对比例步骤1中Sm70Cu30合金的加入量为0,即无R-Cu合金添加。
表1为实施例2和对比例2制备的SmCo/FeCo永磁块体的室温磁性能数据。永磁块体磁性能由美国lakeshore振动样品磁强计(lakeshore 7410)在室温以最大磁场为2.1T条件下测得,测试前块体在7-8T的脉冲磁场进行充磁。
表1实施例2和对比例2所制备永磁块体的室温磁性
Figure GDA0002596455210000051
实施例3:
本实施例纳米复合永磁材料的制备方法包括以下步骤:
(1)在高纯Ar气填充的惰性气体手套箱内,按7.5:2.5比例称取SmCo5硬磁原料粉末和Fe软磁原料粉末,并加入5%总质量的RCu合金粉末,将原料粉末均匀混合后,连同研磨球一起装入硬质合金球磨罐中密封,研磨球选用硬质合金材质,球料比15:1,研磨球尺寸12mm;
(2)将密封好的球磨罐,置于Spex-8000球磨机上球磨4h,获得硬磁晶粒非晶化和软磁晶粒纳米尺度化的非晶基体混合粉末;
(3)将二硫化钼脱模剂涂在压制模具上,并在惰性气体手套箱中将非晶基体混合粉末装入模具,在对上述粉末施加600MPa压力进行室温预压后,将预压坯与模具置于热压炉内抽真空,待真空度达到2.9×10-3Pa以下时开启加热程序,并在475℃的最高温度下对磁粉进行压制成型,获得由晶化磁粉直接压制成型的各向同性SmCo/FeCo纳米复合永磁块体。
对比例3:
本对比例的制备过程与实施例3基本一致,区别仅在于:本对比例步骤1中R-Cu合金的加入量为0,即无R-Cu合金添加。
表2为实施例3和对比例3所获得永磁块体的磁性能变化数据。永磁块体磁性能由美国lakeshore振动样品磁强计(lakeshore 7410)在室温以最大磁场为2.1T条件下测得,测试前块体在7-8T的脉冲磁场进行充磁。
表2实施例3和对比例3制备永磁块体的室温磁性能
Figure GDA0002596455210000061
实施例4:
本实施例纳米复合永磁材料的制备方法包括以下步骤:
(1)在高纯Ar气填充的惰性气体手套箱内,按比例称取SmCo5硬磁原料粉末、Fe软磁原料粉末和Sm70Cu30合金粉末,将原料粉末均匀混合后,连同研磨球一起装入硬质合金球磨罐中密封,研磨球选用硬质合金材质,球料比30:1,研磨球尺寸12mm;
(2)将密封好的球磨罐,置于Spex-8000球磨机上球磨4h,获得硬磁晶粒非晶化和软磁晶粒纳米尺度化的非晶基体混合粉末;
(3)将二硫化钼脱模剂涂在压制模具上,并在惰性气体手套箱中将非晶基体混合粉末装入模具,在对上述粉末施加800MPa压力进行室温预压后,将预压坯与模具置于热压炉内抽真空,待真空度达到1.7×10-3Pa以下时开启加热程序,并在290℃与最高温度之间对粉体施加压制压力,使粉体在加热加压条件下同时发生非晶晶化和压制成型,获得各向同性SmCo/FeCo纳米复合永磁块体。
对比例4:
本对比例的制备过程与实施例4基本一致,区别仅在于:本对比例步骤1中Sm70Cu30合金的加入量为0,即无R-Cu合金添加。
表3为实施例4和对比例4制备条件下所获得永磁块体的室温磁性能。永磁块体磁性能由美国lakeshore振动样品磁强计(lakeshore 7410)在室温以最大磁场为2.1T条件下测得,测试前块体在7-8T的脉冲磁场进行充磁。
表3实施例4和对比例4中所获得永磁块体的室温磁性能
Figure GDA0002596455210000071
从上述表1、2、3可以看出,添加R-Cu合金可在不明显改变磁体磁能积的前提下有效提升各向同性SmCo/Fe(Co)纳米复合永磁块体的室温矫顽力、并将高性能SmCo/Fe(Co)纳米复合块体制备温度将低至500℃以下,最低至400~425℃,证实了本发明在提高各向同性SmCo/Fe(Co)纳米复合永磁材料室温矫顽力、降低各向同性SmCo/Fe(Co)纳米复合永磁材料制备温度方面的优越性,同时证明了本发明在低能耗条件下制备高软磁低稀土、高磁能积、耐高温SmCo/Fe(Co)纳米复合永磁块体方面的优越性。
需要说明的是,本发明并不限于上述实施方式,在不背离本发明的实质内容的情况下,本领域技术人员可以想到的任何变形、改进、替换均落入本发明的范围。

Claims (8)

1.一种纳米复合永磁材料的制备方法,其特征在于包括以下步骤:
(1)按比例将R-Cu合金粉末、硬磁原料粉末和软磁原料粉末混合,对所得混合粉末进行高能球磨,获得硬磁晶粒非晶化和软磁晶粒纳米尺度化的非晶基体混合粉末;
(2)将步骤(1)所得非晶基体混合粉末进行加热晶化处理,将非晶基体混合粉末中的非晶相转变为晶化态,即得到所述的纳米复合永磁材料;
在上述步骤中,通过降低非晶硬磁晶化温度和改善粉末低温塑性和变形能力,将复合磁粉和全密度磁体的制备温度降低至500℃及以下,其中,复合磁粉中的硬磁组分为SmCo,软磁组分为Fe、Co、Fe-Co中的一种或多种;
所述R-Cu合金为稀土元素与Cu元素的合金,R-Cu合金中,R与Cu元素的添加比例为(100-y):y,其中0<y<100;
所述R-Cu合金粉末的加入量为:R-Cu合金粉末是硬磁原料粉末和软磁原料粉末总量的0.1 ~ 15%。
2.根据权利要求1所述的纳米复合永磁材料的制备方法,其特征在于:所述稀土元素选自Sm、Pr元素中的至少一种。
3.根据权利要求1所述的纳米复合永磁材料的制备方法,其特征在于:所述R-Cu合金粉末的加入量为:R-Cu合金粉末是硬磁原料粉末和软磁原料粉末总量的0.5% ~ 5%。
4.根据权利要求1或2或3所述的纳米复合永磁材料的制备方法,其特征在于:所述硬磁原料粉末与软磁原料粉末的质量比例为(10:0.1) ~ (5:5)。
5.根据权利要求1或2或3所述的纳米复合永磁材料的制备方法,其特征在于:所述硬磁原料粉末中硬磁相为SmCo2、SmCo3、Sm2Co7,SmCo5、SmCo7、SmCo12、(Sm, Pr)Co5、Sm(Fe,Co)3、Sm(Fe,Co)7型相结构中的一种或多种。
6.根据权利要求1或2或3所述的纳米复合永磁材料的制备方法,其特征在于:所述软磁原料粉末为Fe、Co、Fe-Co软磁粉末中的一种或多种,Fe与Co元素的原子百分比为(100-x):x,0≤x≤100。
7.根据权利要求1或2或3所述的纳米复合永磁材料的制备方法,其特征在于:所述高能球磨球磨过程在惰性气体保护或真空条件下进行;所述加热晶化处理在无氧条件下,无氧条件包括真空条件、惰性气体条件、还原性气体条件。
8.根据权利要求1或2或3所述的纳米复合永磁材料的制备方法,其特征在于:所述纳米复合永磁材料包括纳米复合永磁粉末和纳米复合永磁块体,当所述纳米复合永磁材料为纳米复合永磁块体时,所述纳米复合永磁块体是在非晶基体粉末加热晶化过程中或加热晶化完成后对粉体施加1 ~ 2600MPa的压力获得的低密度/全密度复合永磁块体,或者是晶化粉体与无磁材料混合压制后形成的粘结磁体。
CN202010197633.1A 2020-03-19 2020-03-19 一种纳米复合永磁材料的制备方法 Expired - Fee Related CN111627631B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010197633.1A CN111627631B (zh) 2020-03-19 2020-03-19 一种纳米复合永磁材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010197633.1A CN111627631B (zh) 2020-03-19 2020-03-19 一种纳米复合永磁材料的制备方法

Publications (2)

Publication Number Publication Date
CN111627631A CN111627631A (zh) 2020-09-04
CN111627631B true CN111627631B (zh) 2022-07-05

Family

ID=72273157

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010197633.1A Expired - Fee Related CN111627631B (zh) 2020-03-19 2020-03-19 一种纳米复合永磁材料的制备方法

Country Status (1)

Country Link
CN (1) CN111627631B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102496437A (zh) * 2011-11-17 2012-06-13 中国科学院宁波材料技术与工程研究所 各向异性纳米晶复相致密化块体钕铁硼永磁材料及其制备方法
CN106531382A (zh) * 2015-09-10 2017-03-22 燕山大学 一种永磁材料及其制备方法
CN108962523A (zh) * 2018-08-14 2018-12-07 徐靖才 一种掺杂SmCu合金的钐钴基纳米复合永磁体的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120021219A1 (en) * 2010-07-21 2012-01-26 Alexander Gabay Magnetic nanoflakes
CN104078175B (zh) * 2014-06-12 2016-06-22 嘉兴市鹏程磁钢有限公司 一种钐钴基纳米晶永磁体材料的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102496437A (zh) * 2011-11-17 2012-06-13 中国科学院宁波材料技术与工程研究所 各向异性纳米晶复相致密化块体钕铁硼永磁材料及其制备方法
CN106531382A (zh) * 2015-09-10 2017-03-22 燕山大学 一种永磁材料及其制备方法
CN108962523A (zh) * 2018-08-14 2018-12-07 徐靖才 一种掺杂SmCu合金的钐钴基纳米复合永磁体的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
球磨时间和硬相成分对SmCo/α-Fe(Co)系磁体微结构和磁性能的影响;李晨浩;《中国优秀硕士学位论文全文数据库工程科技Ⅱ辑》;20170815;正文第12-28页 *

Also Published As

Publication number Publication date
CN111627631A (zh) 2020-09-04

Similar Documents

Publication Publication Date Title
CN107424695B (zh) 一种双合金纳米晶稀土永磁体及其制备方法
CN104841927A (zh) 高耐蚀性、高耐候性稀土永磁材料的制备方法
CN103928204A (zh) 一种低稀土含量的各向异性纳米晶NdFeB致密磁体及其制备方法
CN110060833B (zh) 一种高剩磁、高矫顽力r-t-b永磁材料及其制备方法
He et al. Effects of grain boundary diffusion process on magnetic properties enhancement and microstructure evolution of hot-deformed Nd-Fe-B magnets
CN203791590U (zh) 一种粘结钕铁硼永磁材料的制备设备
CN111627631B (zh) 一种纳米复合永磁材料的制备方法
Popov et al. Preparation of sintered Nd-Fe-B magnets by pressless process
CN116612956A (zh) 一种具有核壳结构的含铈钕铁硼磁体及其制备方法和应用
CN115938771B (zh) 一种SmFexM12-x纳米晶永磁材料的制备方法
CN110415908A (zh) 一种稀土钕铁硼永磁材料及其制备方法
Korent et al. Magnetic properties and microstructure evolution of hot-deformed Nd-Fe-B magnets produced by low-pressure spark-plasma sintering
CN114156031A (zh) 钕铁硼磁体及其制备方法
CN104576022B (zh) 稀土永磁体的制备方法
CN103779026A (zh) 一种粘结钕铁硼永磁材料及其制备设备
Cook et al. Rare-earth iron boron supermagnets
CN103413668B (zh) 一种制备镝铁钕铁硼磁体的方法
Strnat Permanent magnets based on 4f-3d compounds
CN109637768A (zh) 一种含钇的稀土永磁材料及其制备方法
JPH04143221A (ja) 永久磁石の製造方法
JPH0142338B2 (zh)
CN107146673B (zh) 一种粘结磁粉及其制备方法
KR100213333B1 (ko) 초미세립 복합상 영구자석 조성물 및 이를 모재로 한 영구자석 재료 제조방법
JPH03153852A (ja) 磁性材料、それから成る磁石及びそれらの製造方法
CN117790166A (zh) 一种制备垂直各向异性钕铁硼/锰铋复合磁体的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220705