CN111624706B - 一种tm、te模式禁带可调的混合等离激元波导布拉格光栅及其设计方法 - Google Patents

一种tm、te模式禁带可调的混合等离激元波导布拉格光栅及其设计方法 Download PDF

Info

Publication number
CN111624706B
CN111624706B CN202010458540.XA CN202010458540A CN111624706B CN 111624706 B CN111624706 B CN 111624706B CN 202010458540 A CN202010458540 A CN 202010458540A CN 111624706 B CN111624706 B CN 111624706B
Authority
CN
China
Prior art keywords
plasmon waveguide
bragg grating
layer
waveguide
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010458540.XA
Other languages
English (en)
Other versions
CN111624706A (zh
Inventor
许吉
陆昕怡
周天诺
黄兢凯
董雅璠
谭悦
刘宁
陆云清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Posts and Telecommunications
Original Assignee
Nanjing University of Posts and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Posts and Telecommunications filed Critical Nanjing University of Posts and Telecommunications
Priority to CN202010458540.XA priority Critical patent/CN111624706B/zh
Publication of CN111624706A publication Critical patent/CN111624706A/zh
Application granted granted Critical
Publication of CN111624706B publication Critical patent/CN111624706B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/124Geodesic lenses or integrated gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0012Optical design, e.g. procedures, algorithms, optimisation routines
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1226Basic optical elements, e.g. light-guiding paths involving surface plasmon interaction

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

本发明揭示了一种TM、TE模式禁带可调的混合等离激元波导布拉格光栅及其设计方法,该混合等离激元波导布拉格光栅由两种混合等离激元波导结构交替排列构成,两种混合等离激元波导结构均在SiO2基底上方居中放置宽度为w的高折射率材料Si,于SiO2基底上方两侧通过支撑层ZnO层架起无限宽金属Ag层,在支撑层ZnO层与金属层Ag层中间填充一过渡层Si3N4,两种混合等离激元波导结构的宽度w不同。该混合等离激元波导布拉格光栅结构简单,结构集成度高且容易制备,可以根据所需实现的偏振效果选定特定的高折射率介质层的宽度,并适当调整光栅单元周期和周期数,可以实现对指定波段内的通频带的动态选择。

Description

一种TM、TE模式禁带可调的混合等离激元波导布拉格光栅及 其设计方法
技术领域
本发明涉及一种TM、TE模式禁带可调的混合等离激元波导布拉格光栅及其设计方法,可用于光通信、集成光学等技术领域。
背景技术
近年来人们发展了多种纳米光波导结构来满足集成光子器件领域的高集成度要求,如光子晶体波导、等离激元波导等。其中,表面等离激元波导因其突破衍射极限的尺度和光电集成的材料特性被广泛关注。然而金属带来的损耗导致波导模式的传播距离很小,限制了表面等离激元波导及波导型器件的应用。因此能有效降低损耗和增大了传输距离的混合等离激元波导结构被提出。混合等离激元波导(hybrid plasmonic waveguides,HPWs)的关键点就是在金属和高折射率介质间引入了低折射率间隙,使得波导结构能够在介质波导的低损耗和表面等离激元波导的模式约束能力之间获得较好的折中。正是基于这个原因,各种基于HPWs的集成光子器件被设计出来,例如表面等离激元纳米透镜、高效的光学调制器、偏振光束器,等等。
其中,作为波长依赖的光子器件布拉格光栅,结合HPWs结构以杰出的滤波特性和低损耗特性吸引了很多学者的研究。Xiao Jing等人设计了一种基于HPSW的超紧凑宽带布拉格光栅(Xiao J,Liu J,Zheng Z,et al.Design and analysis of a nanostructuregrating based on a hybrid plasmonic slot waveguide[J].Journal of Optics,2011,13(10):105001.),该布拉格光栅可以在1550nm的中心波长处有75%的透过率且有效模式面积优越,在高集成度的光电子学方向有着广泛的应用前景。重要的是,一个具有高集成度、高利用率特点的光器件,往往在某一结构上进行微调即可实现多个功能,所以研究如何在原有的带通滤波器的基础上解决禁带模式单一性的问题是非常有意义的。
发明内容
本发明的目的就是为了解决现有技术中存在的上述问题,提出一种TM、TE模式禁带可调的混合等离激元波导布拉格光栅及其设计方法。
本发明的目的将通过以下技术方案得以实现:一种TM、TE模式禁带可调的混合等离激元波导布拉格光栅,由两种混合等离激元波导结构交替排列构成,
两种混合等离激元波导结构均在SiO2基底上方居中放置宽度为w的高折射率材料Si,于SiO2基底上方两侧通过支撑层ZnO层架起无限宽金属Ag层,在支撑层ZnO层与金属层Ag层中间填充一过渡层Si3N4,两种混合等离激元波导结构的宽度w不同。
优选地,所述混合等离激元波导布拉格光栅交替排列的周期数为N,所述周期数N=10.5。
优选地,所述布拉格光栅高折射率Si层的宽度为w,w取不同值,当宽度为wa时,对应的混合等离激元波导为a,当宽度为wb时,对应的混合等离激元波导为b,且wa<wb,布拉格光栅中混合等离激元波导的排布顺序为babab……bab。
优选地,所述混合等离激元波导布拉格光栅中的周期长度为Λ=dB,1+dB,2,具体参数值由下式决定:
Figure GDA0003860710400000021
其中,Re(neff1)和Re(neff2)分别为波导a与波导b的有效折射率;dB,1和dB,2分别为波导a与波导b在一个周期内的长度;q为布拉格级数,取1。
优选地,两种混合等离激元波导在一个周期内的占空比均为0.5,即dB,1=dB,2=Λ/2。
本发明还揭示了一种TM、TE模式禁带可调的混合等离激元波导布拉格光栅的设计方法,该设计方法包括以下步骤:
S1:构建混合等离激元波导结构;
S2:对S1步骤中得到的混合等离激元波导在相同波长、不同宽度w的条件下进行有效折射率的计算与模式分析;
S3:对S2步骤中得到的相同中心波长、不同宽度w下有效折射率数据进行采样分析,选定两个宽度wa与wb,根据有效折射率差值大小初步得到禁带宽度,根据有效折射率和值大小初步得到禁带中心,并确保混合等离激元模式被激发并局限在低折射率层内;
S4:对S3步骤中选定的wa、wb进行不同中心波长下有效折射率的计算;以入射光垂直入射进布拉格光栅为入射方向条件;
S5:根据S4步骤中得到的有效折射率,可计算出在指定中心波长下的混合等离激元波导布拉格光栅结构的周期长度Λ;
S6:根据S3步骤、S5步骤中选定的宽度为wa、wb时对应的混合等离激元波导结构a和b以周期长度dB,1=dB,2=Λ/2交替排列构建混合等离激元波导布拉格光栅。
本发明采用以上技术方案与现有技术相比,具有以下技术效果:该混合等离激元波导布拉格光栅结构简单、设计流程简便,结构集成度高且容易制备,可以根据所需实现的偏振效果选定特定的高折射率介质层的宽度w,并适当调整光栅单元周期和周期数,可以实现对指定波段内的通频带的动态选择,可用于实现紧凑型光学偏振滤波器件,在光通信、集成光学领域具有一定的应用价值。该设计方法能够根据所要滤波、偏振特性,选定本HPWBG的结构参数。
附图说明
图1为本发明的混合等离激元波导结构的xy截面结构示意图。
图2为本发明的混合等离激元波导布拉格光栅结构的xz截面结构示意图。
图3为本发明的波长在1550nm时TE和TM模式在w变化时有效折射率的实部示意图。
图4为本发明的波长在1550nm时TE和TM模式在w变化时有效折射率的虚部示意图。
图5为本发明的光栅的两种波导的高折射率介质层Si宽度交替排列的顺序为bab...ab时入射光从空气中垂直入射混合等离激元波导布拉格光栅的TM和TE模式透射谱图。
图6为本发明的高折射率材料Si宽度w=200nm时TM和TE模式有效折射率的实部与虚部随波长的变化曲线图。
图7为本发明的高折射率材料Si宽度w=350nm时TM和TE模式有效折射率的实部与虚部随波长的变化曲线图。
图8为本发明的光栅的两种波导的高折射率介质层Si宽度交替排列的顺序为bab...ab时入射光从空气中垂直入射混合等离激元波导布拉格光栅的TM和TE模式透射谱图。
图9为本发明的高折射率材料Si宽度w=275nm时TM和TE模式有效折射率的实部与虚部随波长的变化曲线图。
图10为本发明的高折射率材料Si宽度w=600nm时TM和TE模式有效折射率的实部与虚部随波长的变化曲线图。
具体实施方式
本发明的目的、优点和特点,将通过下面优选实施例的非限制性说明进行图示和解释。这些实施例仅是应用本发明技术方案的典型范例,凡采取等同替换或者等效变换而形成的技术方案,均落在本发明要求保护的范围之内。
本发明揭示了一种TM、TE模式禁带可调的混合等离激元波导布拉格光栅及其设计方法,该混合等离激元波导布拉格光栅由两种混合等离激元波导结构交替排列构成。两种混合等离激元波导结构均在足够宽的SiO2基底上方居中放置宽度为w的高折射率材料Si,于SiO2基底上方两侧通过支撑层ZnO层架起无限宽金属Ag层,在支撑层ZnO层与金属层Ag层中间填充一过渡层Si3N4,两种混合等离激元波导结构的宽度w不同。
所述混合等离激元波导布拉格光栅交替排列的周期数为N,所述周期数N=10.5。所述布拉格光栅高折射率Si层的宽度为w,w取不同值,当宽度为wa时,对应的混合等离激元波导为a,当宽度为wb时,对应的混合等离激元波导为b,且wa<wb,布拉格光栅中混合等离激元波导的排布顺序为babab……bab。
所述混合等离激元波导布拉格光栅中的周期长度为Λ=dB,1+dB,2,具体参数值由下式决定:
Figure GDA0003860710400000041
其中,Re(neff1)和Re(neff2)分别为波导a与波导b的有效折射率;dB,1和dB,2分别为波导a与波导b在一个周期内的长度;q为布拉格级数,取1。两种混合等离激元波导在一个周期内的占空比均为0.5,即dB,1=dB,2=Λ/2。
本发明还揭示了一种TM、TE模式禁带可调的混合等离激元波导布拉格光栅的设计方法,该设计方法包括以下步骤:
S1:构建混合等离激元波导结构;
S2:对S1步骤中得到的混合等离激元波导在相同波长、不同宽度w的条件下进行有效折射率的计算与模式分析;
S3:对S2步骤中得到的相同中心波长、不同宽度w下有效折射率数据进行采样分析,选定两个宽度wa与wb,根据有效折射率差值大小初步得到禁带宽度,根据有效折射率和值大小初步得到禁带中心,并确保混合等离激元模式被激发并局限在低折射率层内;
S4:对S3步骤中选定的wa、wb进行不同中心波长下有效折射率的计算;以入射光垂直入射进布拉格光栅为入射方向条件;
S5:根据S4步骤中得到的有效折射率,可计算出在指定中心波长下的混合等离激元波导布拉格光栅结构的周期长度Λ;
S6:根据S3步骤、S5步骤中选定的宽度为wa、wb时对应的混合等离激元波导结构a和b以周期长度dB,1=dB,2=Λ/2交替排列构建混合等离激元波导布拉格光栅。
在本实施例中设置各参数如下:w1=4000nm,w2=200nm,h1=100nm,h2=15nm,h3=450nm,h4=400nm,w的选择将在后续操作中进行详细说明。
图2为混合等离激元波导布拉格光栅的xz截面结构示意图。该混合等离激元波导布拉格光栅由两种具有不同的高折射率介质层Si层宽度w的混合等离激元波导a与b按babab…bab的顺序交替排列N个周期而成。在本实例中设置各参数如下:周期数N=10.5,即光栅始末端均为波导b结构,周期长度为Λ=dB,1+dB,2,其参数值由下式决定:
Figure GDA0003860710400000061
其中,Re(neff1)和Re(neff2)分别为波导a与波导b的有效折射率;dB,1和dB,2分别为波导a与波导b在一个周期内的长度;q为布拉格级数,取1。周期长度Λ的具体数值将在后续操作中进行详细说明。
利用Comsol软件的有限元算法,对图1的结构进行模式分析,开启参数扫描,高折射率介质Si层的宽度w范围从200nm至600nm,步长为10nm,计算不同宽度w下该结构的有效折射率,计算结果包含了中心波长1550nm,不同宽度w下该结构TE、TM模式的有效折射率的实部与虚部。
根据图3和图4中两种不同宽度w的波导在1550nm时的有效折射率差值大小初步估计禁带宽度,根据图3和图4中两种不同宽度w的波导在1550nm时的有效折射率和值大小初步估计禁带中心位置。实际选取数据后,计算周期长度Λ=2dB,1=2dB,2,其参数值由下式决定:
Figure GDA0003860710400000062
其中,Re(neff1)和Re(neff2)分别为波导a与波导b的有效折射率;dB,1和dB,2分别为波导a与波导b在一个周期内的长度;q为布拉格级数,取1。周期长度Λ的具体数值将在后续操作中进行详细说明。
实施例1:高折射率层宽度wa=200nm,wb=350nm时的两种混合等离激元波导,波长为1550nm时,ΣRe(neff)=4.62,Λ=334nm,dB,1=dB,2=167nm,N=10.5。图5为光栅的两种波导的高折射率介质层Si宽度交替排列的顺序为bab...ab时入射光从空气中垂直入射混合等离激元波导布拉格光栅的TM和TE模式透射谱关系图,横坐标为波长,纵坐标为透过率,其在1250nm~1500nm波段呈现TM模式透过、TE模式截止,在1520nm~1600nm波段呈现TE模式透过、TM模式截止,1500nm~1520nm波段可作为呈现TM、TE双模式截止。图6和图7分别为w=200nm,w=350nm时混合等离激元波导有效折射率实部与虚部随波长的变化情况,横坐标为波长,左侧纵坐标为有效折射率实部,对应实线数据,右侧纵坐标为有效折射率虚部,对应虚线数据。
实施例2:高折射率层宽度wa=275nm,wb=600nm时的两种混合等离激元波导,波长为1550nm时,ΣRe(neff)=5.15,Λ=300nm,dB,1=dB,2=150nm,N=10.5,光栅的两种波导的高折射率介质层Si宽度交替排列的顺序为bab...ab时入射光从空气中垂直入射混合等离激元波导布拉格光栅的TM和TE模式透射谱图。
具体为:图8为混合等离激元波导构成的布拉格光栅的透射谱关系,其在1500nm~1600nm波段呈现TM、TE双模式截止,在1400nm~1500nm波段呈现TE模式截止、TM模式透过。图9和图10分别为高折射率材料Si宽度w=275m,w=600nm时混合等离激元波导有效折射率实部与虚部随波长的变化情况,横坐标为波长,左侧纵坐标为有效折射率实部,对应实线数据,右侧纵坐标为有效折射率虚部,对应虚线数据。
通过改变两种波导的高折射率介质宽度w并适当调整光栅长度和周期数,可以实现对指定波段内的通频带的动态选择,并且可以实现对高频通带及高频禁带的位置和透射谱的调节优化。
本发明尚有多种实施方式,凡采用等同变换或者等效变换而形成的所有技术方案,均落在本发明的保护范围之内。

Claims (4)

1.一种TM、TE模式禁带可调的混合等离激元波导布拉格光栅,其特征在于:
由两种混合等离激元波导结构交替排列构成,
两种混合等离激元波导结构均在SiO2基底上方居中放置宽度为w的高折射率材料Si,于SiO2基底上方两侧通过支撑层ZnO层架起一金属Ag层,在支撑层ZnO层与金属层Ag层中间填充一过渡层Si3N4,两种混合等离激元波导结构的宽度w不同;
所述混合等离激元波导布拉格光栅交替排列的周期数为N,所述周期数N=10.5;
所述布拉格光栅高折射率Si层的宽度为w,w取不同值,当宽度为wa时,对应的混合等离激元波导为a,当宽度为wb时,对应的混合等离激元波导为b,且wa<wb,布拉格光栅中混合等离激元波导的排布顺序为babab……bab。
2.根据权利要求1所述的一种TM、TE模式禁带可调的混合等离激元波导布拉格光栅,其特征在于:所述混合等离激元波导布拉格光栅中的周期长度为Λ=dB,1+dB,2,具体参数值由下式决定:
Figure FDA0003860710390000011
其中,Re(neff1)和Re(neff2)分别为波导a与波导b的有效折射率;dB,1和dB,2分别为波导a与波导b在一个周期内的长度;q为布拉格级数,取1。
3.根据权利要求2所述的一种TM、TE模式禁带可调的混合等离激元波导布拉格光栅,其特征在于:两种混合等离激元波导在一个周期内的占空比均为0.5,即dB,1=dB,2=Λ/2。
4.一种根据权利要求1所述的TM、TE模式禁带可调的混合等离激元波导布拉格光栅的设计方法,其特征在于:该设计方法包括以下步骤:
S1:构建混合等离激元波导结构;
S2:对S1步骤中得到的混合等离激元波导在相同波长、不同宽度w的条件下进行有效折射率的计算与模式分析;
S3:对S2步骤中得到的相同中心波长、不同宽度w下有效折射率数据进行采样分析,选定两个宽度wa与wb,根据有效折射率差值大小初步得到禁带宽度,根据有效折射率和值大小初步得到禁带中心,并确保混合等离激元模式被激发并局限在低折射率层内;
S4:对S3步骤中选定的wa、wb进行不同中心波长下有效折射率的计算;以入射光垂直入射进布拉格光栅为入射方向条件;
S5:根据S4步骤中得到的有效折射率,可计算出在指定中心波长下的混合等离激元波导布拉格光栅结构的周期长度Λ;
S6:根据S3步骤、S5步骤中选定的宽度为wa、wb时对应的混合等离激元波导结构a和b以周期长度dB,1=dB,2=Λ/2交替排列构建混合等离激元波导布拉格光栅。
CN202010458540.XA 2020-05-26 2020-05-26 一种tm、te模式禁带可调的混合等离激元波导布拉格光栅及其设计方法 Active CN111624706B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010458540.XA CN111624706B (zh) 2020-05-26 2020-05-26 一种tm、te模式禁带可调的混合等离激元波导布拉格光栅及其设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010458540.XA CN111624706B (zh) 2020-05-26 2020-05-26 一种tm、te模式禁带可调的混合等离激元波导布拉格光栅及其设计方法

Publications (2)

Publication Number Publication Date
CN111624706A CN111624706A (zh) 2020-09-04
CN111624706B true CN111624706B (zh) 2023-03-07

Family

ID=72271342

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010458540.XA Active CN111624706B (zh) 2020-05-26 2020-05-26 一种tm、te模式禁带可调的混合等离激元波导布拉格光栅及其设计方法

Country Status (1)

Country Link
CN (1) CN111624706B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114660714B (zh) * 2022-03-15 2024-05-10 南京邮电大学 一种tm通偏振滤波器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108181672A (zh) * 2017-12-08 2018-06-19 南京邮电大学 一种混合等离激元波导布拉格光栅
CN108614325A (zh) * 2018-05-09 2018-10-02 南京邮电大学 一种具有双禁带的混合等离激元波导布拉格光栅
CN208314237U (zh) * 2018-05-09 2019-01-01 南京邮电大学 一种多波段选频的混合等离激元波导布拉格光栅
CN208459628U (zh) * 2018-05-30 2019-02-01 南京邮电大学 一种具有tm、te模式双禁带的混合等离激元波导布拉格光栅

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108181672A (zh) * 2017-12-08 2018-06-19 南京邮电大学 一种混合等离激元波导布拉格光栅
CN108614325A (zh) * 2018-05-09 2018-10-02 南京邮电大学 一种具有双禁带的混合等离激元波导布拉格光栅
CN208314237U (zh) * 2018-05-09 2019-01-01 南京邮电大学 一种多波段选频的混合等离激元波导布拉格光栅
CN208459628U (zh) * 2018-05-30 2019-02-01 南京邮电大学 一种具有tm、te模式双禁带的混合等离激元波导布拉格光栅

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Surface Plasmon Bragg Grating Using Hybrid Metal Insulator Metal Plasmonic Waveguide;Prateeksha Sharma and Kumar V. Dinesh;《Progress In Electromagnetics Research Symposium》;20171122;第2747-2751页 *
基于布拉格光栅结构的金属等离激元波导型器件研究;陈奕霖;《中国优秀硕士学位论文全文数据库 信息科技辑》;20190215;全文 *

Also Published As

Publication number Publication date
CN111624706A (zh) 2020-09-04

Similar Documents

Publication Publication Date Title
Lu et al. Manipulation of light in MIM plasmonic waveguide systems
KR101321079B1 (ko) 금속 격자 기반의 광 파장 필터
Qiang et al. Design of Fano broadband reflectors on SOI
EP2523027A2 (en) Waveguide-integrated plasmonic resonator for integrated SERS measurements
Liu et al. Quasiperiodic photonic crystal fiber
Wang et al. Silicon ultraviolet high-Q plasmon induced transparency for slow light and ultrahigh sensitivity sensing
CN111624706B (zh) 一种tm、te模式禁带可调的混合等离激元波导布拉格光栅及其设计方法
Avrutsky et al. Angle-and polarization-independent mid-infrared narrowband optical filters using dense arrays of resonant cavities
Bozhevolnyi et al. Channelling surface plasmons
CN108614325B (zh) 一种具有双禁带的混合等离激元波导布拉格光栅
CN111624705B (zh) 一种宽禁带啁啾混合等离激元波导布拉格光栅
CN208569082U (zh) 一种混合等离激元波导布拉格光栅偏振滤波器
CN108181672B (zh) 一种混合等离激元波导布拉格光栅
Cui et al. Optical bistability based on an analog of electromagnetically induced transparencyin plasmonic waveguide-coupled resonators
CN107976739B (zh) 一种具有谐振腔波导的光谱调控器件
Zegaar et al. An ultra-wideband bandstop plasmonic filter in mid-infrared band based on metal-insulator-metal waveguide coupled with an hexagonal resonator
CN110927871A (zh) 宽带温度不敏感及低色散的光波导结构及其设计方法
CN112379485B (zh) 一种超大自由光谱范围的集成光学滤波器结构
Gao et al. Nanomechanical plasmonic filter based on grating-assisted gap plasmon waveguide
Yang et al. Resonances of hybridized bound plasmon modes in optically-thin metallic nanoslit arrays for narrow-band transmissive filtering
CN117075256B (zh) 一种交错光栅的混合等离激元波导布拉格光栅偏振器
CN108663749B (zh) 一种具有双禁带的混合等离激元波导布拉格光栅的设计方法
CN108196338B (zh) 一种级联准周期结构的全方位反射器
Afdol et al. Numerical analysis of an asymmetric hexagonal plasmonic refractive index sensor model based on metal–insulator–metal and Si-insulator-Si waveguide
Zhang et al. Dual/three-band blocked infrared color filter created by surface plasmons in bilayer nanoring

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant