CN111607025A - 一种高分子季铵盐纳米胶束抗菌剂及其制备方法 - Google Patents

一种高分子季铵盐纳米胶束抗菌剂及其制备方法 Download PDF

Info

Publication number
CN111607025A
CN111607025A CN202010544879.1A CN202010544879A CN111607025A CN 111607025 A CN111607025 A CN 111607025A CN 202010544879 A CN202010544879 A CN 202010544879A CN 111607025 A CN111607025 A CN 111607025A
Authority
CN
China
Prior art keywords
pdms
quaternary ammonium
ammonium salt
preparation
hema
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010544879.1A
Other languages
English (en)
Inventor
张玉花
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN202010544879.1A priority Critical patent/CN111607025A/zh
Publication of CN111607025A publication Critical patent/CN111607025A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/44Preparation of metal salts or ammonium salts
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N55/00Biocides, pest repellants or attractants, or plant growth regulators, containing organic compounds containing elements other than carbon, hydrogen, halogen, oxygen, nitrogen and sulfur
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本发明公开了一种高分子季铵盐纳米胶束抗菌剂及其制备方法,包括:以阴离子开环聚合制备单端乙烯基聚硅氧烷,再与丙烯酸、乙烯基吡啶、甲基丙烯酸羟乙酯进行自由基共聚,产物进行季铵化后得到具有梳型结构的高分子季铵盐(疏水侧链、亲水主链),能够在溶液中自组装成核‑壳结构的纳米胶束,大大增加其表面的阳离子密度和表面积,具有很好的抗菌活性。

Description

一种高分子季铵盐纳米胶束抗菌剂及其制备方法
技术领域
本发明属于高分子化学合成领域,具体涉及一种高分子季铵盐纳米胶束抗菌剂及其制备方法。
背景技术
随着经济的快速发展,人们对生活品质的要求越来越高,越来越关注健康和环保,各种各样的抗菌、防霉材料应运而生,而抗菌材料关键指标在于其抗菌性持久性和无毒性。
抗菌剂分为天然抗菌剂、无机抗菌剂和有机抗菌剂。天然抗菌剂如壳聚糖、大蒜素等,来源丰富且无毒,但具有耐热性差、不稳定的缺点。相比而言,无机抗菌剂如Ag+、TiO2、ZnO等金属化合物具有良好的热稳定性、安全性,但需要外界条件激发其抗菌性能,或者价格昂贵;有机抗菌剂如季铵盐、胍盐、季磷盐等,具有长久有效抗菌的效果,近年来得到广泛的研究。特别是季铵盐类化合物,其具有两亲性结构,对于具有强致病性的ESKAPE类的细菌有显著的抑制与杀灭效果,十二烷基二甲基苄基氯化铵(苯扎氯铵)是市面上最常用的广谱抗菌剂之一。但研究表明,小分子季铵盐抗菌剂具有极强的细胞毒性与皮肤刺激性,为了增强其生物相容性,衍生出一类高分子季铵盐抗菌剂,延长亲油链段以降低分子毒性。另外,高分子季铵盐能通过分子间力(如静电作用、亲/疏水作用、氢键)形成自组装结构,提高了表面阳离子密度,加之纳米粒度的自组装加大了分子的表面积,使得该类高分子季铵盐具有很高的抗菌活性,在日化、涂料、纺织、医疗卫生等领域有广泛的应用前景。
现有技术中基于聚硅氧烷的高分子季铵盐主要通过嵌段的方式合成具有两亲性的分子链(CN108641087A),或乙烯基硅烷与带烯丙基的叔胺共聚后进行水解交联等方法制备(Chen S,et al.,Shaped core/shell polymer nanoobjects with highantibacterial activities via block copolymer microphase separation.Polymer,2013,54,3485-3491.),对具有梳型结构的聚硅氧烷高分子季铵盐未见有报道。
发明内容
本发明通过乙烯基单封端聚硅氧烷与季铵盐单体进行无规共聚,得到一种具有梳型结构的季铵盐聚合物,聚硅氧烷具有很强的疏水性,作为侧链能够诱导共聚物自组装成纳米胶束。
本发明的目的在于提供一种高分子季铵盐纳米胶束抗菌剂。
本发明的另一目在于是提供上述一种高分子季铵盐纳米胶束抗菌剂的制备方法。
本发明上述目的通过以下技术方案实现:
一种高分子季铵盐纳米胶束抗菌剂,其结构式如下式所示:
Figure BDA0002540342280000021
式中,m:n:r:t:x=10~20:10~20:20~40:0~20:10~30;R=CH3或C6H13
上述高分子季铵盐纳米胶束抗菌剂的反应流程及制备方法如下:
Figure BDA0002540342280000031
1.单边乙烯基封端的聚硅氧烷(PDMS-vinyl)的制备
往封闭充满氮气的反应釜中,注入六甲基环三硅氧烷(D3)和等体积干燥的四氢呋喃,以及计量的正丁基锂(n-BuLi)引发剂,在-1~3℃下反应24h后往反应釜中注射计量的氯硅烷,继续搅拌1h,终止反应。挥发溶剂,抽滤以除去析出的氯化锂,得到无色透明的液体产物(PDMS-vinyl)。
所述氯硅烷为符合结构式R2SiClCH2CHCH2的硅氧烷,如烯丙基二己基氯硅烷、烯丙基二甲基氯硅烷等。
所述D3、n-BuLi、氯硅烷的投料摩尔比为4~9:1:1.1。
2.无规共聚物P(PDMS-co-AA-co-VP-co-HEMA)的制备
按比例称取各原料,将PDMS-vinyl、丙烯酸(AA)、乙烯吡啶(4-VP)、甲基丙烯酸羟乙酯(HEMA)放入反应釜中,加入N,N-二甲基甲酰胺(DMF),充分搅拌10min后加入引发剂偶氮二异丁腈(AIBN),升温至60~70℃反应5h,挥发溶剂,得到具有梳型结构的无规共聚物P(PDMS-co-AA-co-VP-co-HEMA)。
所述PDMS-vinyl、AA、4-VP、HEMA的投料摩尔比为10~20:10~20:20~40:0~20,AIBN的投入量为单体总质量的0.1~0.3%。
3.季铵化P(PDMS-co-AA-co-QA-co-HEMA)的制备
在装有冷凝回流装置、恒压滴液漏斗、氮气保护装置和搅拌桨的三口烧瓶中,投入无规共聚物和两倍体积乙醇溶液充分搅拌溶解,升温至60~90℃后开始滴加氯化苄(BC),滴加完毕后,保温反应10h。蒸发溶剂,用水:石油醚=1:1的混合溶剂洗涤产物3次,即得到一种具有梳型结构的高分子季铵盐P(PDMS-co-AA-co-QA-co-HEMA)。
所述BC的投料量为P(PDMS-co-AA-co-VP-co-HEMA)中4-VP摩尔量的3倍。
4.季铵盐纳米胶束的制备
将2mg P(PDMS-co-AA-co-QA-co-HEMA)溶于4ml四氢呋喃中,搅拌至完全溶解后转至透析袋中(截留分子量为3500Da),在1L去离子水中透析24h,通过孔径为0.45μm的过滤网过滤,得到季铵盐纳米胶束溶液。
与现有技术相比,本发明具有如下优点和有益效果:
P(PDMS-co-AA-co-QA-co-HEMA)具有梳型结构,以疏水链为侧链,亲水链为主链,在溶液中能够自组装成核-壳结构的纳米胶束。纳米尺度的季铵盐胶束表面具有较高的阳离子密度,且有较大的表面积,使得抗菌活性大大提高。
附图说明:
图1为实施例1P(PDMS-co-AA-co-VP-co-HEMA)的红外光谱。
图2为实施例1对应的PDMS-vinyl和P(PDMS-co-AA-co-VP-co-HEMA)的GPC图谱。
图3为实施例1纳米胶束的TEM图。
具体实施方式
下面结合具体实施例对本发明做进一步详细说明,但实施例并不对本发明做任何形式的限定。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。
分别对实施例1~4和对比例1以及广谱抗菌剂苯扎氯铵进行如下测试,结果列于表1:
数均分子量(Mn):Waters 515-2414型凝胶渗透色谱仪,流动相为氯仿,流速为1mL/min,检测器温度为35℃,柱温为40℃,标样为窄分布的聚苯乙烯(PS)。
临界胶束浓度(CMC):以去离子水为溶剂,采用电导率法测定并推导。胶束粒径及其分布:采用Beckman CoulterN4 Plus粒径分析仪测定纳米胶束尺寸和粒径分布,将合成步骤(4)透析得到的聚合物胶束水溶液加入到比色皿中,在25℃测量其尺寸及其分布。
最小抑菌浓度(MIC):实验菌为革兰氏阴性菌大肠杆菌(Escherichia Coli,E.coli),采用SMA5000型微量紫外-可见分光光度计测量不同浓度的含菌混合液在600nm处的吸光值(OD600)的变化曲线。测定方法:调节含菌混合液初始浓度,使初始OD600约为0.2,然后测量0~3.5h内混合菌液吸光度与时间的关系,OD600不随时间的变化而发现变化的最小浓度,即为抗菌剂的最小抑菌浓度(MIC)。
实施例1
(1)单边乙烯基封端的聚硅氧烷(PDMS-vinyl)的制备
往封闭充满氮气的反应釜中,注入D3和等体积干燥的四氢呋喃,以及n-BuLi,在0℃下反应24h后往反应釜中注射烯丙基二甲基氯硅烷,继续搅拌1h,终止反应。挥发溶剂,抽滤以除去析出的氯化锂,得到无色透明的液体产物PDMS-vinyl。
所述各原料投料摩尔比为D3:n-BuLi:烯丙基二甲基氯硅烷=4.5:1:1.1。
(2)无规共聚物P(PDMS-co-AA-co-VP-co-HEMA)的制备
将PDMS-vinyl、AA、4-VP、HEMA放入反应釜中,加入DMF,充分搅拌10min后加入AIBN,升温至65℃反应5h,挥发溶剂,得到具有梳型结构的无规共聚物P(PDMS-co-AA-co-VP-co-HEMA),所述PDMS-vinyl、AA、4-VP、HEMA的投料摩尔比为10:15:40:10,AIBN为单体总质量的0.2%。
参阅图1,P(PDMS-co-AA-co-VP-co-HEMA)的红外光谱如图1所示。
参阅图2,PDMS-vinyl和P(PDMS-co-AA-co-VP-co-HEMA)的GPC图谱如图2所示。
(3)P(PDMS-co-AA-co-QA-co-HEMA)的制备
在装有冷凝回流装置、恒压滴液漏斗、氮气保护装置和搅拌桨的三口烧瓶中,投入P(PDMS-co-AA-co-VP-co-HEMA)和两倍体积乙醇溶液充分搅拌溶解,升温至60~90℃后开始滴加BC,滴加完毕后,保温反应10h。蒸发溶剂,用水:石油醚=1:1的混合溶剂洗涤产物3次,即得到一种具有梳型结构的高分子季铵盐P(PDMS-co-AA-co-QA-co-HEMA)。
所述BC的投料量为P(PDMS-co-AA-co-VP-co-HEMA)中4-VP摩尔量的3倍。
(4)季铵盐纳米胶束的制备
将2mg P(PDMS-co-AA-co-QA-co-HEMA)溶于4ml四氢呋喃中,搅拌至完全溶解后转至透析袋中(截留分子量为3500Da),在1L去离子水中透析24h,通过孔径为0.45μm的过滤网过滤,得到季铵盐纳米胶束溶液。
参考图3,实施例1纳米胶束的TEM如图3所示。
实施例2
步骤(1)中D3、n-BuLi、烯丙基二甲基氯硅烷的投料摩尔比为6.7:1:1.1,其余与实施例1相同,。
步骤(2)中PDMS-vinyl:AA:4-VP:HEMA的投料摩尔比为10:15:40:10,AIBN的投入量为单体总质量的0.2%,其余与实施例1相同。
步骤(3)和(4)与实施例1相同。
实施例3
步骤(1)中D3、n-BuLi、烯丙基二甲基氯硅烷的投料摩尔比为4.5:1:1.1,其余与实施例1相同,。
步骤(2)中PDMS27-vinyl:AA:4-VP:HEMA的投料摩尔比为10:15:30:10,AIBN的投入量为单体总质量的0.2%,其余与实施例1相同。
步骤(3)和(4)与实施例1相同。
实施例4
步骤(1)中D3、n-BuLi、烯丙基二甲基氯硅烷的投料摩尔比为4.5:1:1.1,其余与实施例1相同,。
步骤(2)中PDMS27-vinyl:AA:4-VP:HEMA的投料摩尔比为10:15:20:10,AIBN的投入量为单体总质量的0.2%,其余与实施例1相同。
步骤(3)和(4)与实施例1相同。
对比例1
单边乙烯基封端的聚硅氧烷的投入量为0,无规共聚物中AA:4-VP:HEMA的投料摩尔比为15:40:10,按实施例1步骤(2)~(4)制备得到季铵盐溶液P(AA-co-QA-co-HEMA)。
表1.实施例1~4、对比例1和广谱抗菌剂苯扎氯铵性能测试结果
Figure BDA0002540342280000081
实施例1、3、4中具有不同的4-VP的投料量,从表中数据可以看出,随着无规共聚物中VP单元的数量越多,纳米抗菌剂的MIC越小,抗菌活性越高,临界胶束浓度(CMC)也越小,但由于具有相近的数均分子量,并且具有优异的亲水性,纳米抗菌剂的平均粒径变化不大。对比例1与实施例1、2相比,抗菌活性较低,CMC较高,抗菌剂粒径也较大,说明疏水链段PDMS的存在使得分子在水溶液中发生自组装行为,其表面的阳离子密度大大增强。

Claims (4)

1.一种高分子季铵盐纳米胶束抗菌剂及其制备方法,其特征在于,其结构式如式(I)所示:
Figure FDA0002540342270000011
式中m:n:r:t:x=10~20:10~20:20~40:0~20:10~30;R=CH3或C6H13
2.一种高分子季铵盐纳米胶束抗菌剂及其制备方法,其特征在于,包括如下步骤:
(1)单边乙烯基封端的聚硅氧烷(PDMS-vinyl)的制备
在干燥四氢呋喃溶液中,以正丁基锂(n-BuLi)引发六甲基环三硅氧烷(D3)阴离子开环聚合,在-1~3℃下反应24h后注入氯硅烷终止反应;
(2)无规共聚物P(PDMS-co-AA-co-VP-co-HEMA)的制备
以偶氮二异丁腈(AIBN)为引发剂,N,N-二甲基甲酰胺(DMF)为反应溶液,PDMS-vinyl、丙烯酸(AA)、乙烯吡啶(4-VP)、甲基丙烯酸羟乙酯(HEMA)为单体进行自由基聚合反应,在60~70℃反应5h;
(3)P(PDMS-co-AA-co-QA-co-HEMA)的制备
在氮气保护下,P(PDMS-co-AA-co-VP-co-HEMA)在乙醇溶液中,与氯化苄(BC)进行季铵化反应;
(4)季铵盐纳米胶束的制备
将P(PDMS-co-AA-co-QA-co-HEMA)溶于四氢呋喃中,完全溶解后转至透析袋中(截留分子量为3500Da),在去离子水中透析24h、过滤,得到季铵盐纳米胶束溶液。
3.根据权利要求2所述的一种高分子季铵盐纳米胶束抗菌剂及其制备方法,其特征在于:
所述步骤(1)的氯硅烷为符合结构式R2SiClCH2CHCH2的硅氧烷,可以是烯丙基二己基氯硅烷、烯丙基二甲基氯硅烷。
4.根据权利要求2所述的一种高分子季铵盐纳米胶束抗菌剂及其制备方法,其特征在于:
所述步骤(1)的D3,n-BuLi,氯硅烷的投料摩尔比为4~9:1:1.1;
所述步骤(2)的PDMS-vinyl、AA、4-VP、HEMA的投料摩尔比为10~20:10~20:20~40:0~20;
所述步骤(2)的AIBN的投料量为单体总质量的0.1~0.3%;
所述步骤(3)的BC的投料量为P(PDMS-co-AA-co-VP-co-HEMA)中4-VP摩尔量的3倍。
CN202010544879.1A 2020-06-15 2020-06-15 一种高分子季铵盐纳米胶束抗菌剂及其制备方法 Pending CN111607025A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010544879.1A CN111607025A (zh) 2020-06-15 2020-06-15 一种高分子季铵盐纳米胶束抗菌剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010544879.1A CN111607025A (zh) 2020-06-15 2020-06-15 一种高分子季铵盐纳米胶束抗菌剂及其制备方法

Publications (1)

Publication Number Publication Date
CN111607025A true CN111607025A (zh) 2020-09-01

Family

ID=72198669

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010544879.1A Pending CN111607025A (zh) 2020-06-15 2020-06-15 一种高分子季铵盐纳米胶束抗菌剂及其制备方法

Country Status (1)

Country Link
CN (1) CN111607025A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113402866A (zh) * 2021-07-08 2021-09-17 长春工业大学 一种基于形状记忆调控药物释放的聚合物

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4831092A (en) * 1986-09-08 1989-05-16 Exxon Research And Engineering Company Micellar process for preparing hydrophobically functionalized cationic polymers (C-2114)
CN103159966A (zh) * 2011-12-15 2013-06-19 财团法人工业技术研究院 形成季铵盐的交联制剂
CN108641087A (zh) * 2018-05-23 2018-10-12 华南理工大学 一种含聚硅氧烷链段的两嵌段大分子季铵盐及其制备方法与应用
US20190110987A1 (en) * 2017-10-13 2019-04-18 Jiangnan University A method for preparation of hybrid amphiphilic star copolymer nano micelles

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4831092A (en) * 1986-09-08 1989-05-16 Exxon Research And Engineering Company Micellar process for preparing hydrophobically functionalized cationic polymers (C-2114)
CN103159966A (zh) * 2011-12-15 2013-06-19 财团法人工业技术研究院 形成季铵盐的交联制剂
US20190110987A1 (en) * 2017-10-13 2019-04-18 Jiangnan University A method for preparation of hybrid amphiphilic star copolymer nano micelles
CN108641087A (zh) * 2018-05-23 2018-10-12 华南理工大学 一种含聚硅氧烷链段的两嵌段大分子季铵盐及其制备方法与应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113402866A (zh) * 2021-07-08 2021-09-17 长春工业大学 一种基于形状记忆调控药物释放的聚合物
CN113402866B (zh) * 2021-07-08 2022-09-27 长春工业大学 一种基于形状记忆调控药物释放的聚合物

Similar Documents

Publication Publication Date Title
Zhao et al. Carboxymethyl chitosan grafted trisiloxane surfactant nanoparticles with pH sensitivity for sustained release of pesticide
Xu et al. Redox-responsive self-assembly micelles from poly (N-acryloylmorpholine-block-2-acryloyloxyethyl ferrocenecarboxylate) amphiphilic block copolymers as drug release carriers
Loh Poly (DMAEMA‐co‐PPGMA): Dual‐responsive “reversible” micelles
Chen et al. Synthesis and swelling properties of pH‐sensitive hydrogels based on chitosan and poly (methacrylic acid) semi‐interpenetrating polymer network
CN101665576B (zh) 基于环糊精的微凝胶及其制备方法
Bag et al. Styrene‐Maleimide/Maleic Anhydride Alternating Copolymers: Recent Advances and Future Perspectives
Rudolph et al. Toward anisotropic hybrid materials: Directional crystallization of amphiphilic polyoxazoline-based triblock terpolymers
Tizzotti et al. Synthesis of thermosensitive guar‐based hydrogels with tunable physico‐chemical properties by click chemistry
Rwei et al. Preparation of thermo-and pH-responsive star copolymers via ATRP and its use in drug release application
Volkmann et al. Poly (2-acrylamidoglycolic acid)(PAGA): Controlled Polymerization Using RAFT and Chelation of Metal Cations
Rymaruk et al. Effect of core cross-linking on the physical properties of poly (dimethylsiloxane)-based diblock copolymer worms prepared in silicone oil
Dadhaniya et al. Swelling and dye adsorption study of novel superswelling [Acrylamide/N-vinylpyrrolidone/3 (2-hydroxyethyl carbamoyl) acrylic acid] hydrogels
CN115161993A (zh) 一种有机/无机键合型复合抗菌剂、制备方法及其应用
CN107880211B (zh) 一种水不溶型季铵盐的制备方法
CN111607025A (zh) 一种高分子季铵盐纳米胶束抗菌剂及其制备方法
Sana et al. Development of poly (acrylamide-co-diallyldimethylammoniumchloride) nanogels and study of their ability as drug delivery devices
Chan et al. Block copolymer nanoparticles are effective dispersants for micrometer-sized organic crystalline particles
He et al. Temperature/pH smart nanofibers with excellent biocompatibility and their dual interactions stimulus-responsive mechanism
RU2269544C2 (ru) Катионные блок-сополимеры
Xu et al. Thermosensitive t‐PLA‐b‐PNIPAAm tri‐armed star block copolymer nanoscale micelles for camptothecin drug release
Houillot et al. Miniemulsion polymerization of styrene using a pH-responsive cationic diblock macromonomer and its nonreactive diblock copolymer counterpart as stabilizers
Geyik et al. pH/temperature‐responsive poly (dimethylaminoethyl methacrylate) grafted κ‐carrageenan copolymer: Synthesis and physicochemical properties
Abu‐Thabit et al. The pH‐responsive cycloterpolymers of diallyldimethylammonium chloride, 3‐(N, N‐diallylammonio) propanesulfonate, and sulfur dioxide
CN118027299A (zh) 抗微生物纳米蠕虫
CN104804142B (zh) 多重响应性羟丙基纤维素接枝共聚物及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200901

WD01 Invention patent application deemed withdrawn after publication