CN111600564B - 基于γ-石墨二炔的可调频纳机电谐振器 - Google Patents

基于γ-石墨二炔的可调频纳机电谐振器 Download PDF

Info

Publication number
CN111600564B
CN111600564B CN202010571050.0A CN202010571050A CN111600564B CN 111600564 B CN111600564 B CN 111600564B CN 202010571050 A CN202010571050 A CN 202010571050A CN 111600564 B CN111600564 B CN 111600564B
Authority
CN
China
Prior art keywords
temperature control
composite film
layer
substrate
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010571050.0A
Other languages
English (en)
Other versions
CN111600564A (zh
Inventor
田文超
李文华
冯学贵
陈勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Foshan Lanjian Electronics Co Ltd
Xidian University
Original Assignee
FOSHAN BLUE ROCKET ELECTRONICS CO LTD
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FOSHAN BLUE ROCKET ELECTRONICS CO LTD, Xidian University filed Critical FOSHAN BLUE ROCKET ELECTRONICS CO LTD
Priority to CN202010571050.0A priority Critical patent/CN111600564B/zh
Publication of CN111600564A publication Critical patent/CN111600564A/zh
Application granted granted Critical
Publication of CN111600564B publication Critical patent/CN111600564B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/0072Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks of microelectro-mechanical resonators or networks
    • H03H3/0076Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks of microelectro-mechanical resonators or networks for obtaining desired frequency or temperature coefficients
    • H03H3/0077Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks of microelectro-mechanical resonators or networks for obtaining desired frequency or temperature coefficients by tuning of resonance frequency
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H3/04Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks for obtaining desired frequency or temperature coefficient
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02244Details of microelectro-mechanical resonators
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02244Details of microelectro-mechanical resonators
    • H03H9/02433Means for compensation or elimination of undesired effects
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/171Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator implemented with thin-film techniques, i.e. of the film bulk acoustic resonator [FBAR] type
    • H03H9/172Means for mounting on a substrate, i.e. means constituting the material interface confining the waves to a volume
    • H03H9/174Membranes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/176Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator consisting of ceramic material
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H2003/023Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks the resonators or networks being of the membrane type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H2003/027Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks the resonators or networks being of the microelectro-mechanical [MEMS] type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H3/04Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks for obtaining desired frequency or temperature coefficient
    • H03H2003/0414Resonance frequency
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02244Details of microelectro-mechanical resonators
    • H03H9/02433Means for compensation or elimination of undesired effects
    • H03H2009/02456Parasitic elements or effects, e.g. parasitic capacitive coupling between input and output
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H2009/155Constructional features of resonators consisting of piezoelectric or electrostrictive material using MEMS techniques

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Micromachines (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

本发明公开了一种基于γ‑石墨二炔的可调频纳机电谐振器,其包括:两个温控电极(1)、复合薄膜(2)、源极电极(3)、SiO2衬底(4)、栅极电极(5)、Si基底(6)、高介电陶瓷基底(7)和漏极电极(8)。两个温控电极对称分布于复合薄膜上表面两侧,复合薄膜由形状记忆聚合物温控层、聚二甲基硅氧烷介质层与γ‑石墨二炔导电层组成,复合薄膜位于源极和漏极和SiO2衬底上表面,源、漏极分别位于SiO2衬底内侧,栅极位于高介电陶瓷上表面正中位置。通过温控电极激发温控层内部大分子链活性,改变其弹性模量;控制复合薄膜抗弯刚度变化,实现谐振器大范围调频功能。本发明谐振损耗低、可靠性高,可用于射频微波通信设备。

Description

基于γ-石墨二炔的可调频纳机电谐振器
技术领域
本发明属于电子元器件技术领域,特别是一种可调频纳机电谐振器,可用于射频微波通信设备。
技术背景
纳机电谐振器是现在绝大部分通信设备中不可或缺的基本部件,是基于纳机电***制造技术发展的一种核心器件,通过机械能和电能的相互转换产生谐振频率。具有体积小、质量轻、谐振频率高、比表面积大、灵敏度高的优势,广泛应用于谐振式传感器、信号发生器、编码器、加速度计、射频谐振天线、滤波器、导航和时钟***等射频微波通信领域,非常适用于现代无线通信技术发展的要求。
目前,可调谐微纳机电谐振器的调频方式主要集中在多中心频率谐振器组合法和从***外部改变结构刚度法。射频前端仍采用多个不同中心频率谐振器组合成谐振器组,通过选择开关来选择单个或者多个谐振器单元同时工作,以达到选择不同频段信号的目的。然而,多中心频率谐振器组存在体积过大、可靠性低、难集成化等缺点,无法满足高性能谐振器高集成、微型化的要求。外部刚度法又分为基于施加轴向载荷改变***抗弯刚度法和基于外部激励源方式引入外部刚度法。无论是结构外载法,还是外部激励法,都是从***外部改变结构刚度,本质上材料弹性模量没有改变,因此可调频率窄、可靠性低,工艺难度较高。
2019年电子科技大学的鲍景富等人在CN110311642A中公开了“一种集成声子晶体矩阵的微机电谐振器及其加工方法”,如图1所示,其微机电谐振器的支撑台1的顶端两侧对称放置外接输入电极2和输出电极3,两电极两侧均对称设置有外接地电极4,谐振体6通过两根支撑梁5固定悬浮在支撑台1顶端的中心处,两端对称防止有声子晶体矩阵7,谐振体6上的叉指电极通过对应的金属导线分别与外接电极2和3连接,每个声子晶体矩阵7均有3×12个晶胞。虽然这种结构微机电谐振器可以有效阻止能量耗散,减小***损耗和回波损耗,提升品质因数,但存在以下问题:
1)谐振器包含晶体矩阵,尺寸较大,难以集成化:
2)谐振频率较低,在MHz级,不符合高频化需求;
3)对刻蚀要求高,工艺复杂;
4)工作频率调谐范围窄。
2019年美国德克萨斯大学的Michael Cullinan等人在WO2019067488A1中公开了“Graphene microelectromechanical system(mems)resonant gas sensor”,如图2所示,该石墨烯纳机电谐振器基于应变频率可调,在Si衬底1表面上形成一层SiO2介质层2,介质层2中间夹有背栅层3,介质层2上表面是图案化的铜衬底4,具有1-3个原子厚的石墨烯片层5在铜衬底4上悬浮,并由顶部金电极6固定在铜衬底4表面,该谐振器由热激励,通过控制石墨烯片上的表面张力来调谐谐振频率,该结构可使谐振频率均匀调谐,感知微小变化,具有高灵敏度,但存在以下几个问题:
1)1-3个原子厚的石墨烯片层不易分离转移,缺陷众多,可靠性低;
2)采用热驱动,受加热距离限制,功耗大;
3)石墨烯表面张力难以控制,工艺复杂,可靠性低;
4)改变石墨烯谐振梁表面张力属于结构外载法,可调频范围窄。
发明内容
本发明的目的在于针对上述现有技术的不足,提供一种基于γ-石墨二炔的可调频纳机电谐振器,以改变复合薄膜抗弯刚度,完成NEMS谐振器大范围调频功能,实现NEMS谐振器多频段、高可靠、低损耗性能。
为实现上述目的,本发明基于γ-石墨二炔的可调频纳机电谐振器,包括,SiO2衬底、Si基底、栅极电极,源极电极,漏极电极及复合薄膜,其特征在于:还包括两个温控电极和高介电陶瓷基底;
所述两个个温控电极对称分布于于复合薄膜上表面的两侧,通过温控电极改变复合薄膜弹性模量和刚度,实现对谐振频率的改变;
所述Si基底对称分布于高介电陶瓷基底上表面的两侧,构成双层基底结构;
所述栅极传输线位于高介电陶瓷基底上表面的正中位置;
所述复合薄膜,采用自上而下由温控层、介质层和导电层组成的三层结构,且每层采用不同的材料,其位于源极电极、漏极电极和SiO2衬底的上表面。
作为优选,所述三层结构形式的复合薄膜,其上部的温控层材料为形状记忆聚合物,中间的介质层材料为聚二甲基硅氧烷,下部的导电层材料为γ-石墨二炔。
作为优选,所述两个温控电极均选用具有高导电特性的Au材料,以降低能量损耗和静电扰动。
作为优选,所述源极电极、漏极电极和栅极电极,均采用Au或Ti合金材料。
本发明与现有技术相比,具有如下优点:
1)本发明采用的复合薄膜由自上而下层叠的温控层、介质层、导电层复合而成,其弹性模量可变,可实现谐振频率大范围变化,缩短响应时间,满足宽频带、多频段调谐目标。
2)本发明在复合薄膜表面对称固定两个温控电极单元,通过施加电压可实现复合薄膜的内部变形,进而改变***抗弯刚度,提高谐振频率,因此该器件具有高频、高品质因数的特点。
3)本发明采用Si-高介电陶瓷双层基底结构,介电系数高,因此可有效保证降低能量损耗和寄生电阻,同时减小静电扰动力。
附图说明
图1为现有的一种集成声子晶体矩阵的微机电谐振器结构图;
图2为现有的一种石墨烯微机电谐振器结构图;
图3为本发明纳机电谐振器的三维结构图;
图4为本发明谐振器中复合薄膜的主视图。
具体实施方式
参照图3,本发明基于γ-石墨二炔的宽频带可调频纳机电谐振器结构,包括两个温控电极1、复合薄膜2、源极电极3、两个SiO2衬底4、栅极电极5、两个Si衬底6、高介电陶瓷基底7、漏极电极8。其中:两个温控电极1位于复合薄膜2上表面两端,两个SiO2衬底4位于复合薄膜2的下表面两端,源极电极3和漏极电极8对称分布于两个SiO2衬底4的内侧,且位于复合薄膜2与Si衬底6之间,两个Si衬底6位于高介电陶瓷基底7上表面两端,栅极电极5位于高介电陶瓷基底上表面中间。
所述2个温控电极1对称分布于复合薄膜2的表面两侧,其材料选用Au,采用电化学沉积在复合薄膜上表面,由于Au具有高导电特性,通过调节加载电压调控复合薄膜2变形量,可改变***抗弯刚度,实现谐振频率变化,降低能量损耗和静电扰动。
所述Si基底6对称分布于高介电陶瓷基底7上表面的两侧,构成双层基底结构,栅极传输线5通过沉积工艺固定在高介电陶瓷基底7上表面的正中位置,实现对信号的传输控制,高介电陶瓷基底7避免传输线之间发生串扰现象。
所述源极电极3、漏极电极8和栅极电极5采用的材料相同,均可采用Au或Pt、Ti合金材料,由于Au或Pt、Ti合金具有高导电性,可有效降低界面能量损耗和***损耗,确保谐振器的高功率和高可靠性。本实例采用但不限于这三个电极的材料为Au材料。
参照图4,所述复合薄膜2采用自上而下由温控层21、介质层22和导电层23组成的三层结构,且位于源极电极3、漏极电极8和SiO2衬底4的上表面。这三层采用不同的材料,其中上部温控层21的材料为形状记忆聚合物,中部介质层22的材料为聚二甲基硅氧烷,下部导电层23的材料为γ-石墨二炔。
该形状记忆聚合物温控层21的弹性模量随着温度的变化可以发生变化,当其温度达到玻化温度时,形状记忆聚合物弹性模量会锐减,当其温度低于玻化温度时形状记忆聚合物弹性模量会剧增;通过两个温控电极1控制温控层的形状记忆聚合物温度变化,激发大分子链活化性,产生松弛、交联、相变等微观结构变化,从材料内部改变形状记忆聚合物弹性模量,调节复合薄膜抗弯刚度,实现NEMS谐振器大范围调频功能,同时由于形状记忆聚合物具有可降解性,因此具有绿色环保的特性。
该γ-石墨二炔导电层23为单层碳原子,具有“高载流子迁移率”、“超塑性”和“超稳定性”,可保证谐振器的高可靠性和低损耗,其通过Langmuir-Blpdgett制膜技术转移到采用聚二甲基硅氧烷的介质层22表面,并通过准分子激光纳米压印技术与形状记忆聚合物温控层21制作成复合薄膜2,再通过热压印技术压印在Au漏极电极8和Au源极电极3表面。
本发明的工作原理及过程如下:
1)激励过程:
在栅极电极上通直流偏置电压,在复合薄膜与栅极之间形成电容器,复合薄膜中的γ-石墨二炔导电层受到向下的吸引力,在静电力作用下,使整个复合薄膜发生初始形变;再在通入偏置电压的基础上在加入微小的射频交变输入信号给与栅极电极激励,随着交变信号的改变,使得电容器不断充放电,造成复合薄膜所受静电力不断变化,产生同步起振,当激励信号频率接近或达到谐振器的本征频率时复合薄膜的挠度最大,谐振器发生谐振。
2)调频过程:
在温控电极上施加温控电压,温控层的形状记忆聚合物由于电阻生热发生间接热响应,内部大分子链结构活化性被激活,发生交联、松弛、相变这些微观变化,使形状记忆聚合物网状结构改变,当形状记忆聚合物低于玻化温度ht时,形状记忆聚合物的弹性模量为E1;当其高于玻化温度ht时,形状记忆聚合物发生相变,其弹性模量变化为E2;当形状记忆聚合物温度再次降低至低于玻化温度ht时,其弹性模量迅速恢复为E1,即通过控制温控电压变化,可实现形状记忆聚合物弹性模量的变化,使得整个复合薄膜的等效抗弯刚度随形状记忆聚合物弹性模量发生改变,谐振器对应的模态频率也因此改变。当激励信号频率接近***新的固有频率时,谐振器重新发生谐振,实现调频功能。在温控电压的调节下,由于温控层形状记忆聚合物在宽的温度区间内对应不同的弹性模量,因而复合薄膜具有相应的不同等效抗弯刚度,从而可实现谐振器大范围调频功能。
以上描述仅是本发明的一个具体实例,不构成对本发明的任何限制,显然对于本领域的专业人员来说,在了解了本发明内容和原理后,都可能在不背离本发明原理、结构的情况下,进行形式和细节上的各种修正和改变,但是这些基于本发明思想的修正和改变仍在本发明的权利要求保护范围之内。

Claims (5)

1.一种基于γ-石墨二炔的可调频纳机电谐振器,包括, SiO2衬底(4)、Si基底(6)、栅极电极(5),源极电极(3),漏极电极(8)及复合薄膜(2),其特征在于:还包括两个温控电极(1)和高介电陶瓷基底(7);
所述两个温控电极(1)对称分布于于复合薄膜(2)上表面的两侧,通过温控电极(1)改变复合薄膜弹性模量和刚度,实现对谐振频率的改变;
所述Si基底(6)对称分布于高介电陶瓷基底(7)上表面的两侧,构成双层基底结构;
所述栅极电极(5)位于高介电陶瓷基底(7)上表面的正中位置;
所述复合薄膜(2),其位于源极电极(3)、漏极电极(8)和SiO2衬底(4)的上表面,且采用自上而下由温控层(21)、介质层(22)和导电层(23)组成的三层结构。
2.根据权利要求1所述的谐振器,其特征在于,所述三层结构形式的复合薄膜(2),其上部的温控层(21)材料为形状记忆聚合物,中间的介质层(22)材料为聚二甲基硅氧烷,下部的导电层(23)材料为γ-石墨二炔。
3.根据权利要求1所述的谐振器,两个温控电极(1)均选用具有高导电特性的Au材料,以降低能量损耗和静电扰动。
4.根据权利要求1所述谐振器,其特征在于,所述源极电极(3)、漏极电极(8)和栅极电极(5),均采用Au或Pt、Ti 合金材料。
5.根据权利要求2所述谐振器,其特征在于,温控层(21)采用的形状记忆聚合物,其弹性模量可变,通过温度激发其大分子链活性发生的松弛、交联、相变这些微观结构变化,当其温度达到玻化温度时,形状记忆聚合物弹性模量会锐减;当其温度低于玻化温度时形状记忆聚合物弹性模量会剧增。
CN202010571050.0A 2020-06-22 2020-06-22 基于γ-石墨二炔的可调频纳机电谐振器 Active CN111600564B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010571050.0A CN111600564B (zh) 2020-06-22 2020-06-22 基于γ-石墨二炔的可调频纳机电谐振器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010571050.0A CN111600564B (zh) 2020-06-22 2020-06-22 基于γ-石墨二炔的可调频纳机电谐振器

Publications (2)

Publication Number Publication Date
CN111600564A CN111600564A (zh) 2020-08-28
CN111600564B true CN111600564B (zh) 2022-06-10

Family

ID=72189011

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010571050.0A Active CN111600564B (zh) 2020-06-22 2020-06-22 基于γ-石墨二炔的可调频纳机电谐振器

Country Status (1)

Country Link
CN (1) CN111600564B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112202415B (zh) * 2020-09-25 2021-09-24 杭州星阖科技有限公司 一种体声波谐振器的制造工艺方法和体声波谐振器
CN112234949A (zh) * 2020-10-29 2021-01-15 武汉大学 一种多频段可调谐的三维体声波谐振器
CN112772992B (zh) * 2021-03-12 2024-01-16 熊晓辰 一种多电极温控陶瓷雾化芯及应用与制作方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102276954A (zh) * 2011-05-28 2011-12-14 河南工业大学 基于n-乙烯基己内酰胺和柠檬酸的形状记忆聚合物及制备方法
CN102315831A (zh) * 2011-05-04 2012-01-11 西安电子科技大学 基于石墨烯的纳机电谐振器的制备方法
CN103244599A (zh) * 2013-04-16 2013-08-14 北京航空航天大学 一种采用sma的元件级mems器件主动隔振器
CN106748622A (zh) * 2017-01-10 2017-05-31 北京大学 一种β‑石墨二炔纳米薄膜及其制备方法与应用
CN107420291A (zh) * 2017-07-13 2017-12-01 西安电子科技大学 一种基于可变弹性模量的复合薄膜压电微泵
CN110266285A (zh) * 2019-05-31 2019-09-20 武汉大学 一种微机械谐振器、其制备及频率微调校正方法
CN110311642A (zh) * 2019-07-10 2019-10-08 电子科技大学 一种集成声子晶体矩阵的微机电谐振器及其加工方法
CN110668436A (zh) * 2019-11-04 2020-01-10 北京科技大学 一种超薄纳米级石墨炔薄膜的制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9073766B2 (en) * 2009-08-25 2015-07-07 Fahs Stagemyer, Llc Methods for the treatment of ballast water
JP6021947B2 (ja) * 2012-02-16 2016-11-09 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh リチウム−硫黄電池に使用される硫黄含有複合材、それを含む電極材料およびリチウム−硫黄電池
CN103414449B (zh) * 2013-08-30 2016-01-13 电子科技大学 一种基于石墨烯材料的高频纳机电谐振器及其制备工艺
US9584092B2 (en) * 2015-04-14 2017-02-28 International Business Machines Corporation Mechanical resonator with a spring-mass system comprising a phase-change material
CN110277083B (zh) * 2018-03-16 2021-04-02 北京理工大学 一种低频吸声超材料

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102315831A (zh) * 2011-05-04 2012-01-11 西安电子科技大学 基于石墨烯的纳机电谐振器的制备方法
CN102276954A (zh) * 2011-05-28 2011-12-14 河南工业大学 基于n-乙烯基己内酰胺和柠檬酸的形状记忆聚合物及制备方法
CN103244599A (zh) * 2013-04-16 2013-08-14 北京航空航天大学 一种采用sma的元件级mems器件主动隔振器
CN106748622A (zh) * 2017-01-10 2017-05-31 北京大学 一种β‑石墨二炔纳米薄膜及其制备方法与应用
CN107420291A (zh) * 2017-07-13 2017-12-01 西安电子科技大学 一种基于可变弹性模量的复合薄膜压电微泵
CN110266285A (zh) * 2019-05-31 2019-09-20 武汉大学 一种微机械谐振器、其制备及频率微调校正方法
CN110311642A (zh) * 2019-07-10 2019-10-08 电子科技大学 一种集成声子晶体矩阵的微机电谐振器及其加工方法
CN110668436A (zh) * 2019-11-04 2020-01-10 北京科技大学 一种超薄纳米级石墨炔薄膜的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
基于含缺陷石墨烯的纳机电谐振器分子动力学分析;李文华;《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》;20190215(第2期);正文第34-35页,图3(a)、3(b) *
新型双向加载MEMS微执行器动力学分析;田文超等;《纳米技术与精密工程》;20140915;全文 *

Also Published As

Publication number Publication date
CN111600564A (zh) 2020-08-28

Similar Documents

Publication Publication Date Title
CN111600564B (zh) 基于γ-石墨二炔的可调频纳机电谐振器
US7592739B2 (en) Tunable bulk acoustic wave MEMS micro-resonator
US9419583B2 (en) Nano- and micro-electromechanical resonators
US7005946B2 (en) MEMS piezoelectric longitudinal mode resonator
US7804382B2 (en) Tunable resonator using film bulk acoustic resonator (FBAR)
EP1482638B1 (en) Film bulk acoustic resonator having supports and manufacturing method therefor
US8111108B2 (en) Micromechanical resonating devices and related methods
EP1538747A1 (en) Micromechanical electrostatic resonator
US20080136563A1 (en) Electromagnetic composite metamaterial
JP2004134370A (ja) スイッチ
US20120139665A1 (en) Wide bandwidth slanted-finger contour-mode piezoelectric devices
CA2526466A1 (en) Radial bulk annular resonator using mems technology
Sobocinski et al. Monomorph piezoelectric wideband energy harvester integrated into LTCC
CN103427778A (zh) 基于铁电材料的薄膜体声波谐振器的制备方法、谐振器
Piazza et al. AlN contour-mode vibrating RF MEMS for next generation wireless communications
Lahiri et al. RF MEMS SWITCH: An overview at-a-glance
Ziko et al. Design and optimization of AlN based RF MEMS switches
Aghaei et al. A low voltage vertical comb RF MEMS switch
JP2008005443A (ja) 音響波共振子およびフィルタならびに通信装置
JP2007259669A (ja) 圧電アクチュエータ及びそれを用いたマイクロメカニカルデバイス、可変容量キャパシタ、スイッチ
Piazza Alumimun nitride piezoelectric NEMS resonators and switches
Zhou RF MENS DC Contact Switches for Reconfigurable Antennas
Rao et al. Design and simulation of capacitive SPDT RF MEMS switch to improve its isolation
CN115765677A (zh) 基于vo2的频率可调mems平板谐振器
Chand et al. Electromechanical modelling and stress analysis of RF MEMS capacitive shunt switch

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20211216

Address after: 710071 Taibai South Road, Yanta District, Xi'an, Shaanxi Province, No. 2

Applicant after: XIDIAN University

Applicant after: Foshan Lanjian Electronics Co., Ltd

Address before: 710071 No. 2 Taibai South Road, Shaanxi, Xi'an

Applicant before: XIDIAN University

GR01 Patent grant
GR01 Patent grant